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binormal curvature flow
The equation for binormal curvature flow is:

γt = γs × γss (1)

for γ : R× (R/L Z)→ R3, t ∈ R is the time variable, L =length, s ∈ R/L Z is
assumed to be an arc-length parameter, i.e.

|∂s γ(t , s)|2 = 1. (2)

Equivalently, we can write (1) as

∂t γ = κb

where κ = curvature, b =binormal vector. (see numerical example.) This

is thought to approximate vortex filament motion in certain fluids. (see e.g.

simulations of Barenghi, Hanninen, Tsubota, Quantum Fluids Group, University of Newcastle.)

can be thought of as a “Schrödinger equation for curves”.
In fact is a Hamiltonian flow for curves, with Hamiltonian = arclength.
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History

Starting point: 3d Euler equations for incompressible fluid:

∂tu + u · ∇u +∇p = 0 u : R3 × [0, T ]→ R3, ∇ · u = 0.

with p : R3 × [0, T ]→ R the pressure.

The vorticity is defined to be
ω = ∇× u

and satisfies
∂tω+ u · ∇ω = ω · ∇u.

Conversely, the velocity u can be recovered from ω via

u(t , x) =
1

4π

∫
R3

(y − x)×ω
|y − x |2

dy .
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study of motion of vortex filaments in ideal fluids initiated by Helmholz.
(1858, Crelle).

gave basic definitions and description.
noted that vortex filaments are convected by the flow.
described translating vortex rings

stability of vortex rings studied by Kelvin (1967, 1880).

Kelvin also developed a theory of vortex atoms, a sort of precursor of
string theory.
formal derivation of binormal curvature flow given by Da Rios (1906).

work was ignored, except by his advisor, Levi-Civita.

Levi-Civita returned to the question in 1932, extended some of da Rios’
results. This too was mostly ignored.

subsequently rediscovered several times. Recently extended to Rn

(Shashikanth (2011), Khesin (2012).)

rigorous justification still completely open.

binormal curvature flow also believed to describe vortex filaments in
superfluids. Fetter (1966) rigorous justification also open.

Jerrard and Smets (Toronto and UPMC) Filament flows and Schrödinger maps February 12, 2013 4 / 22



three cousins: some related equations
The binormal curvature flow is closely related to the following:

Schrödinger maps from S1 → S2:

ut = u × uss, u : (0, T )× S1 → S2. (3)

cubic nonlinear Schrödinger equation:

i∂tψ+ ∂ssψ+ |ψ|2ψ = 0, ψ : (0, T )× S1 → C (4)

Indeed,
if γ : (0, T )× S1 → R3 is a binormal curvature flow (parametrized by
arclength) then u := γs solves (3).

The remarkable Hasimoto transform: (Hasimoto 1970) Given a binormal
curvature flow, if we define

ψ(t , s) = κ(t , s) exp(i
∫ s

s0

T (t ,σ)dσ)

where κ =curvature and T =torsion, then ψ solves (4).
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Remarks

more tools for nonlinear Schrödinger equation than for its two cousins
semilinear structure
harmonic analysis techniques: multilinear estimates, Strichartz estimates
etc....

BCF, SM often studied by transforming to NLS. this leads to:
well-posedness results. (Banica-Vega, Rodnianski-Rubinstein-Staffilani ...)

solitons on vortex filaments (Hasimoto 1970)

infinite number of conserved quantities: arclength,
∫
κ2, ...

more generally, the binormal curvature flow is in some sense integrable.

NLS, SM never studied by transforming to BCF.

Interpretation:

Chang-Shatah-Uhlenbeck (2000): Hasimoto transform can be seen as choice
of gauge on tangent bundle to S2.

This leads to some generalizations of Hasimoto transform, useful for
Schrödinger maps.
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Our goal: a geometric measure theory approach to binormal curvature flow.

Motivations:

allows changes of topology

Figure: Non unique evolution through strands recombination and singularity formation.

thus possibly useful for studying limiting vortex filament dynamics in ideal
fluids. (see e.g. simulation of R. Tebbs, Quantum Fluids Group, University of Newcastle.)

turns out to yield strong new stability properties.

new insight into irregular or oscillatory vortex filaments.
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Toward weak solutions
Basic idea:

view curve evolving by binormal curvature flow as a distribution acting on
test functions.
similar in spirit to geometric measure theory formulations of minimal
surfaces (varifolds) and motion by mean curvature.
basic calculation: If γ : R× S1 → R3 is a smooth binormal curvature flow
parametrized by arclength, then

d
dt

∫
S1

(φ ◦ γ) · γs ds =

∫
S1

[D(∇× φ) ◦ γ] : (γs ⊗ γs) ds (5)

for all φ ∈ C∞
c (R3; R3).

we will in effect take this as the definition of a weak binormal curvature
flow.
formally, to give a meaning to (5), we only need to know position and
tangent to curve γ.
no second derivatives needed.
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Towards weak solutions
A class of generalized curves that possess (only) position and tangents.

Given any Lipschitz curve γ : S1 → R3, we can define an associated
measure Vγ by∫

R3×S2
f (x , ξ)dVγ =

∫
S1

f (γ(s),
γ ′(s)

|γ ′(s)|
)|γ ′(s)| ds

For a measure Vγ associated as above to a closed Lipchitz curve,∫
R3×S2

∇g(x) · ξVγ(dx , dξ) = 0 for g ∈ C∞
c (R3) (6)

Proof: integration by parts. We interpret this as: “Vγ has no boundary."

More generally, we can view any measure V on R3 × S2 as a
generalized curve. If A ⊂ R3, B ⊂ S2, then we interpret

V (A× B) := H1
(
{x ∈ A : tangent at x belongs to B}

)
.

If (6) holds then we say that V has no boundary.
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definition of weak binormal curvature flow

Definition

Let I be an interval of R. A family of measures (Vt)t∈I on R3 × S2 is a weak
binormal curvature flow of finite mass if

1 Vt has no boundary for a.e.t in the sense of (6)

2 The map t 7→ Vt(R3 × S2) is finite and non-increasing on I.

3 For every φ ∈ D(R3, R3) the map t 7→
∫

R3×S2 φ · ξ Vt(dx , dξ) is Lipschitz
on I and for a.e. t ∈ I,

d
dt

∫
R3×S2

φ · ξ Vt(dx , dξ) = −

∫
R3×S2

D(curlφ) : (ξ⊗ ξ) Vt(dx , dξ).
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remarks

Facts stated earlier immediately imply that

Lemma
If γ : I × S1 → R3 is a smooth binormal curvature flow, then the family of
associated measures (Vγ(t ,·))t∈I is a weak binormal curvature flow.

the definition of weak solutions is linear with respect to V

weak flows may be useful for describing limits of sequences of solutions
with rapid oscillatiions.

it is easy to construct examples of weak solutions exhibiting change of
topology.
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Existence and (failure of) uniqueness

Existence: For any lipschitz γ0 : S1 → R3, there exists a weak solution
(Vt)t∈R such that

wklimt→0 Vt = Vγ0

for Γt(φ) :=
∫

S2 φ(x) · ξVt(dx , dξ),

t 7→ Γt is continuous in suitable weak norms

Γt is an integer multiplicity rectifiable 1-current for every t

Vt(R3 × S2) = |γ0| for all t .

many sources/examples of nonuniqueness:
The definition of weak solution only involves

∫
S2 ξVt(·, dξ) and∫

S2 ξ⊗ ξVt(·, dξ).

collisions and self-intersections.

definition of weak solution does not constrain evolution of second moments.

no possibility of uniqueness if mass is allowed to increase.
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results: weak-strong uniqueness

Nonetheless, we have the following

Theorem (J-Smets, 2012)

Let γ ∈ C([0, T ], W 3,∞(S1, R3)) be a smooth binormal curvature flow without
self-intersection.

Let
(
Vt)t∈[0,T ] be a weak binormal curvature flow.

If V0 = Vγ(0,·), then Vt = Vγ(t ,·) for all t in [0, T ].

1 proof also shows that a WBCF that starts near a smooth flow remains
close for some time. This can be seen in numerics if we believe that a simulation of

(1) with rough data corresponds to a WBCF.

2 self-intersection should always lead to nonuniquenes.

3 uniqueness fails if t 7→ Vt(R3 × S2) is allowed to increase.

4 regularity here is much weaker than in Banica-Vega work.
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results: orbital continuity for Schrödinger maps

Theorem (J-Smets, 2012)

Let u ∈ C(I, H3(T 1, S2)) be a solution of the Schrödinger map equation

ut = u × uss (7)

on I = (−T , T ) for some T > 0. Given any other solution
v ∈ L∞(I, H1/2(T 1, S2)) of (7), there exists a continuous function σ : I → T 1

such that for every t ∈ I,

‖v(t , ·) − u(t , ·+ σ(t))‖L2(T 1, R3) 6 C‖v(0, ·) − u(0, ·)‖L2(T 1, R3),

where the constant C ≡ C(‖∂sssu(0, ·)‖L2 , T ), in particular C does not depend
on v .

we do what never works: study SM1 by transforming to BCF.
Note that here there is no “non-self-intersection” condition.
the critical Sobolev space is H1/2.
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sharpness of the above

The above theorem is not true without the translation σ(t):

Theorem (J-Smets, 2012)

For any given t 6= 0, the flow map for (7) at time t is not continuous as a map
from C∞(T 1, S2), equipped with the weak topology of H1/2, to the space of
distributions (C∞(T 1, R3))∗. Indeed, for any σ0 ∈ R there exist a sequence of
smooth initial data (um,σ0(0, ·))m∈N ∈ C∞(T 1, S2) such that

um,σ0(0, ·) ⇀ u∗(0, ·) in H
1
2

weak(T
1, R3),

where u∗(0, s) := (cos(s), sin(s), 0) is a stationary solution of (7), and for any
t ∈ R

um,σ0(t , ·) ⇀ u∗(t , ·+ σ0t) in H
1
2

weak(T
1, R3).
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key idea: relative entropy

Given smooth curve γ(s), let rγ :=injectivity radius, and

P(x) := nearest point projection onto Image(γ),

when dist(x ,γ) < rγ;

φγ(x) := f (dist(x ,γ(·)))γs(P(x)).

where f is smooth, 0 6 f 6 1, f ′ 6 0, and

f (r) := 1 − r2 for r 6 rγ/2, f (r) = 0 if r > rγ.

Finally, define

E(V ;γ) :=

∫
R3×S2

(1 − φγ(x) · ξ)V (dx , dξ)
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Heuristically,

E(V ;γ) ≈ “H1 norm of V with respect to γ."

In fact, near γ

E(V ;γ) =

∫
(1 − ξ · τγ) +

∫
(1 − f (distγ))(ξ · τγ)

=

∫
1
2

|ξ− τγ|
2 +

∫
1
2

(distγ)2(ξ · τγ)

Thus for V supported near γ,

E(V ;γ) 6 C
∫

min
(
1, |ξ− τγ|

2 + (distγ)2(ξ · τγ)
)

dV .

This leads to

Lemma
If V has no boundary and E(V ;γ) = 0, then V = cVγ for some c.
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main estimate
Key Fact:
Under the hypotheses of Weak-Strong Uniqueness Theorem,

d
dt

E(Vt ;γt) 6 KE(Vt ;γt)

for almost every t ∈ [0, T ], where K is a constant depending only on rγ and
‖γ‖L∞(I,W 3,∞(S1)).

If we know that V is parametrized by a single Lipschitz curve, we can modify
the definition of E , exploiting the parametrization to handle self-intersection of
γ. A suitably modified version of the key fact still holds and is used for the
Schrödinger map “orbital continuity" theorem.

The proof of the key fact is a computation.....
it uses the equation twice:

the weak form of the equation for Vγ,
the strong form of the equation to deduce properties of the vector field φγ
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rapidly oscillating data

Given a smooth curve γ0 : S1 → R3, define

γk ,α(s) = γ0(s) +
α

k

(
cos(ks)n0(s) + sin(ks)b0(s)

)
where n0(s) and b0(s) are the normal and binormal to γ0 at s.

Question: behaviour of solution of binormal curvature flow with initial data γ0?

We do not know.....
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One possibility: extreme instability, due to very large curvature.

Our framework suggests another possibility:
the measures Vk ,α associated to γk ,α converge as k →∞ to a limiting
measure Vlim supported on a set of the form

{(x , ξ) ∈ R3 × S2 : x ∈ Image(γ0), ξ · ∂sγ0 = (1 + α2)−1/2}

one can find an explicit weak binormal curvature (V ∗t ) flow with data Vlim.
V ∗t is supported on

{(x , ξ) ∈ R3 × S2 : x ∈ Image(γ(βt , ·)), ξ · ∂sγ0 = (1 + α2)−1/2}

where γ solves binormal curvature flow with initial data γ0 and

β =
2 − α2

2
√

1 + α2
∈ (−∞, 1).

For this solution, oscillations slow (or reverse!) flow of time, compared to
smooth solution.

This is consistent with numerics. Does it in fact describe sequences of
smooth solutions?
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Numerics

How would curves with corners evolve via the binormal curvature flow?

or stated differently:

How would maps with jump discontinuities evolve as Schrödinger maps?

or maybe:

How would data with Dirac delta functions evolve via cubic NLS?

All these questions should be harder for closed curves than for non compact
curves.
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Thank you for your attention!
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