On the stability of filament flows and Schrödinger maps

Robert L. Jerrard¹ Didier Smets²

¹Department of Mathematics University of Toronto

²Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie

Center for Nonlinear Analysis, CMU February 12, 2013

binormal curvature flow

The equation for binormal curvature flow is:

$$\gamma_t = \gamma_s \times \gamma_{ss} \tag{1}$$

for $\gamma : \mathbb{R} \times (\mathbb{R}/L\mathbb{Z}) \to \mathbb{R}^3$, $t \in \mathbb{R}$ is the time variable, L =length, $s \in \mathbb{R}/L\mathbb{Z}$ is assumed to be an arc-length parameter, i.e.

$$|\partial_s \gamma(t, s)|^2 = 1. \tag{2}$$

Equivalently, we can write (1) as

$$\partial_t \gamma = \kappa b$$

where $\kappa = \text{curvature}, b = \text{binormal vector.}$ (see numerical example.) This

- is thought to approximate vortex filament motion in certain fluids. (see e.g. simulations of Barenghi, Hanninen, Tsubota, Quantum Fluids Group, University of Newcastle.)
- can be thought of as a "Schrödinger equation for curves".
- In fact is a Hamiltonian flow for curves, with Hamiltonian = arclength.

Jerrard and Smets (Toronto and UPMC)

Starting point: 3d Euler equations for incompressible fluid:

 $\partial_t u + u \cdot \nabla u + \nabla p = 0$ $u : \mathbb{R}^3 \times [0, T] \to \mathbb{R}^3, \quad \nabla \cdot u = 0.$

with $p : \mathbb{R}^3 \times [0, T] \to \mathbb{R}$ the pressure.

The vorticity is defined to be

 $\boldsymbol{\omega} = \nabla \times \boldsymbol{u}$

and satisfies

 $\partial_t \omega + u \cdot \nabla \omega = \omega \cdot \nabla u.$

Conversely, the velocity u can be recovered from ω via

$$u(t,x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{(y-x) \times \omega}{|y-x|^2} \, dy.$$

- study of motion of vortex filaments in ideal fluids initiated by Helmholz. (1858, Crelle).
 - gave basic definitions and description.
 - noted that vortex filaments are convected by the flow.
 - described translating vortex rings
- stability of vortex rings studied by Kelvin (1967, 1880).
- Kelvin also developed a theory of vortex atoms, a sort of precursor of string theory.
- formal derivation of binormal curvature flow given by Da Rios (1906).
 - work was ignored, except by his advisor, Levi-Civita.
 - Levi-Civita returned to the question in 1932, extended some of da Rios' results. This too was mostly ignored.
 - subsequently rediscovered several times. Recently extended to ℝⁿ (Shashikanth (2011), Khesin (2012).)
 - rigorous justification still completely open.
- binormal curvature flow also believed to describe vortex filaments in superfluids. Fetter (1966) rigorous justification also open.

three cousins: some related equations

The binormal curvature flow is closely related to the following:

• Schrödinger maps from $S^1 \to S^2$:

$$u_t = u \times u_{ss},$$
 $u: (0, T) \times S^1 \to S^2.$

• cubic nonlinear Schrödinger equation:

$$i\partial_t \psi + \partial_{ss} \psi + |\psi|^2 \psi = 0, \qquad \psi : (0, T) \times S^1 \to \mathbb{C}$$
 (4)

Indeed,

- if γ : (0, T) × S¹ → ℝ³ is a binormal curvature flow (parametrized by arclength) then u := γ_s solves (3).
- The remarkable Hasimoto transform: (Hasimoto 1970) Given a binormal curvature flow, if we define

$$\psi(t, s) = \kappa(t, s) \exp(i \int_{s_0}^s T(t, \sigma) d\sigma)$$

where κ =curvature and *T* =torsion, then ψ solves (4).

(3)

Remarks

- more tools for nonlinear Schrödinger equation than for its two cousins
 - semilinear structure
 - harmonic analysis techniques: multilinear estimates, Strichartz estimates etc....
- BCF, SM often studied by transforming to NLS. this leads to:
 - well-posedness results. (Banica-Vega, Rodnianski-Rubinstein-Staffilani ...)
 - solitons on vortex filaments (Hasimoto 1970)
 - infinite number of conserved quantities: arclength, $\int \kappa^2,\,...$
 - more generally, the binormal curvature flow is in some sense integrable.
- NLS, SM never studied by transforming to BCF.

Interpretation:

Chang-Shatah-Uhlenbeck (2000): Hasimoto transform can be seen as choice of gauge on tangent bundle to S^2 .

This leads to some generalizations of Hasimoto transform, useful for Schrödinger maps.

Our goal: a geometric measure theory approach to binormal curvature flow. Motivations:

allows changes of topology

Figure: Non unique evolution through strands recombination and singularity formation.

- thus possibly useful for studying limiting vortex filament dynamics in ideal fluids. (see *e.g.* simulation of R. Tebbs, Quantum Fluids Group, University of Newcastle.)
- turns out to yield strong new stability properties.
- new insight into irregular or oscillatory vortex filaments.

Toward weak solutions

Basic idea:

- view curve evolving by binormal curvature flow as a distribution acting on test functions.
- similar in spirit to geometric measure theory formulations of minimal surfaces (varifolds) and motion by mean curvature.
- basic calculation: If $\gamma : \mathbb{R} \times S^1 \to \mathbb{R}^3$ is a smooth binormal curvature flow parametrized by arclength, then

$$\frac{d}{dt}\int_{S^1} (\phi \circ \gamma) \cdot \gamma_s \, ds = \int_{S^1} [D(\nabla \times \phi) \circ \gamma] : (\gamma_s \otimes \gamma_s) \, ds$$
(5)

for all $\phi \in \textit{C}^{\infty}_{\textit{c}}(\mathbb{R}^3;\mathbb{R}^3).$

- we will in effect take this as the definition of a weak binormal curvature flow.
- formally, to give a meaning to (5), we only need to know position and tangent to curve γ.
- no second derivatives needed.

Towards weak solutions

A class of generalized curves that possess (only) position and tangents.

• Given any Lipschitz curve $\gamma: S^1 \to \mathbb{R}^3$, we can define an associated measure V_{γ} by

$$\int_{\mathbb{R}^3\times S^2} f(x,\xi) dV_{\gamma} = \int_{S^1} f(\gamma(s), \frac{\gamma'(s)}{|\gamma'(s)|}) |\gamma'(s)| \ ds$$

• For a measure V_{γ} associated as above to a closed Lipchitz curve,

$$\int_{\mathbb{R}^3 \times S^2} \nabla g(x) \cdot \xi \, V_{\gamma}(dx, d\xi) = 0 \quad \text{ for } g \in C^{\infty}_c(\mathbb{R}^3)$$

(6)

Proof: integration by parts. We interpret this as: " V_{γ} has no boundary."

More generally, we can view any measure V on ℝ³ × S² as a generalized curve. If A ⊂ ℝ³, B ⊂ S², then we interpret

 $V(A \times B) := \mathcal{H}^1 \Big(\{ x \in A : \text{ tangent at } x \text{ belongs to } B \} \Big).$

If (6) holds then we say that V has no boundary.

Definition

Let *I* be an interval of \mathbb{R} . A family of measures $(V_t)_{t \in I}$ on $\mathbb{R}^3 \times S^2$ is a *weak binormal curvature flow* of finite mass if

• V_t has no boundary for a.e. *t* in the sense of (6)

2 The map $t \mapsto V_t(\mathbb{R}^3 \times S^2)$ is finite and non-increasing on *I*.

• For every $\phi \in \mathcal{D}(\mathbb{R}^3, \mathbb{R}^3)$ the map $t \mapsto \int_{\mathbb{R}^3 \times S^2} \phi \cdot \xi V_t(dx, d\xi)$ is Lipschitz on *I* and for a.e. $t \in I$,

 $\frac{d}{dt}\int_{\mathbb{R}^3\times S^2} \phi \cdot \xi \, V_t(dx, d\xi) = -\int_{\mathbb{R}^3\times S^2} D(\operatorname{curl} \phi) : (\xi \otimes \xi) \, V_t(dx, d\xi).$

Facts stated earlier immediately imply that

Lemma

If $\gamma : I \times S^1 \to \mathbb{R}^3$ is a smooth binormal curvature flow, then the family of associated measures $(V_{\gamma(t,\cdot)})_{t \in I}$ is a weak binormal curvature flow.

- the definition of weak solutions is *linear* with respect to V
- weak flows may be useful for describing limits of sequences of solutions with rapid oscillations.
- it is easy to construct examples of weak solutions exhibiting change of topology.

Existence and (failure of) uniqueness

- Existence: For any lipschitz $\gamma^0 : S^1 \to \mathbb{R}^3$, there exists a weak solution $(V_t)_{t \in \mathbb{R}}$ such that
 - wklim $_{t\to 0} V_t = V_{\gamma^0}$
 - for $\Gamma_t(\phi) := \int_{S^2} \phi(x) \cdot \xi V_t(dx, d\xi)$,
 - $t \mapsto \Gamma_t$ is continuous in suitable weak norms
 - Γ_t is an integer multiplicity rectifiable 1-current for every t
 - $V_t(\mathbb{R}^3 \times S^2) = |\gamma^0|$ for all t.
- many sources/examples of nonuniqueness:
 - The definition of weak solution only involves $\int_{S^2} \xi V_t(\cdot, d\xi)$ and $\int_{S^2} \xi \otimes \xi V_t(\cdot, d\xi)$.
 - collisions and self-intersections.
 - definition of weak solution does not constrain evolution of second moments.
 - no possibility of uniqueness if mass is allowed to increase.

Existence and (failure of) uniqueness

- Existence: For any lipschitz $\gamma^0 : S^1 \to \mathbb{R}^3$, there exists a weak solution $(V_t)_{t \in \mathbb{R}}$ such that
 - wklim $_{t\to 0} V_t = V_{\gamma^0}$
 - for $\Gamma_t(\phi) := \int_{S^2} \phi(x) \cdot \xi V_t(dx, d\xi)$,
 - $t \mapsto \Gamma_t$ is continuous in suitable weak norms
 - Γ_t is an integer multiplicity rectifiable 1-current for every t
 - $V_t(\mathbb{R}^3 \times S^2) = |\gamma^0|$ for all t.
- many sources/examples of nonuniqueness:
 - The definition of weak solution only involves $\int_{S^2} \xi V_t(\cdot, d\xi)$ and $\int_{S^2} \xi \otimes \xi V_t(\cdot, d\xi)$.
 - collisions and self-intersections.
 - definition of weak solution does not constrain evolution of second moments.
 - no possibility of uniqueness if mass is allowed to increase.

results: weak-strong uniqueness

Nonetheless, we have the following

Theorem (J-Smets, 2012)

Let $\gamma \in C([0, T], W^{3,\infty}(S^1, \mathbb{R}^3))$ be a smooth binormal curvature flow without self-intersection.

Let $(V_t)_{t \in [0,T]}$ be a weak binormal curvature flow.

If $V_0 = V_{\gamma(0,\cdot)}$, then $V_t = V_{\gamma(t,\cdot)}$ for all t in [0, T].

- proof also shows that a WBCF that starts near a smooth flow remains close for some time. This can be seen in numerics if we believe that a simulation of (1) with rough data corresponds to a WBCF.
- elf-intersection should always lead to nonuniquenes.
- **③** uniqueness fails if $t \mapsto V_t(\mathbb{R}^3 \times S^2)$ is allowed to increase.
- regularity here is much weaker than in Banica-Vega work.

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Theorem (J-Smets, 2012)

Let $u \in C(I, H^3(T^1, S^2))$ be a solution of the Schrödinger map equation

u

$$u_t = u \times u_{ss}$$

on I = (-T, T) for some T > 0. Given any other solution $v \in L^{\infty}(I, H^{1/2}(T^1, S^2))$ of (7), there exists a continuous function $\sigma : I \to T^1$ such that for every $t \in I$,

$$\|v(t,\cdot) - u(t,\cdot + \sigma(t))\|_{L^{2}(T^{1},\mathbb{R}^{3})} \leqslant C \|v(0,\cdot) - u(0,\cdot)\|_{L^{2}(T^{1},\mathbb{R}^{3})},$$

where the constant $C \equiv C(\|\partial_{sss}u(0,\cdot)\|_{L^2}, T)$, in particular C does not depend on v.

- we do what never works: study SM1 by transforming to BCF.
- Note that here there is no "non-self-intersection" condition.
- the critical Sobolev space is $H^{1/2}$.

(7)

The above theorem is *not* true without the translation $\sigma(t)$:

Theorem (J-Smets, 2012)

For any given $t \neq 0$, the flow map for (7) at time *t* is not continuous as a map from $\mathbb{C}^{\infty}(T^1, S^2)$, equipped with the weak topology of $H^{1/2}$, to the space of distributions $(\mathbb{C}^{\infty}(T^1, \mathbb{R}^3))^*$. Indeed, for any $\sigma_0 \in \mathbb{R}$ there exist a sequence of smooth initial data $(u_{m,\sigma_0}(0, \cdot))_{m \in \mathbb{N}} \in \mathbb{C}^{\infty}(T^1, S^2)$ such that

$$u_{m,\sigma_0}(0,\cdot) \rightharpoonup u^*(0,\cdot) \qquad \qquad \text{in } H^{\frac{1}{2}}_{\mathrm{weak}}(T^1,\mathbb{R}^3),$$

where $u^*(0, s) := (\cos(s), \sin(s), 0)$ is a stationary solution of (7), and for any $t \in \mathbb{R}$

$$u_{m,\sigma_0}(t,\cdot) \rightharpoonup u^*(t,\cdot+\sigma_0 t)$$
 in $H^{\frac{1}{2}}_{\text{weak}}(T^1,\mathbb{R}^3)$.

Given smooth curve $\gamma(s)$, let r_{γ} :=injectivity radius, and

P(x) := nearest point projection onto Image(γ),

when dist(x, γ) < r_{γ} ;

 $\phi_{\gamma}(\boldsymbol{x}) := f(\operatorname{dist}(\boldsymbol{x}, \gamma(\cdot))) \gamma_{\boldsymbol{s}}(\boldsymbol{P}(\boldsymbol{x})).$

where *f* is smooth, $0 \leq f \leq 1$, $f' \leq 0$, and

$$f(r) := 1 - r^2$$
 for $r \leqslant r_{\gamma}/2$, $f(r) = 0$ if $r \geqslant r_{\gamma}$.

Finally, define

$$E(V;\gamma) := \int_{\mathbb{R}^3 \times S^2} (1 - \phi_{\gamma}(x) \cdot \xi) V(dx, d\xi)$$

Heuristically,

 $E(V; \gamma) \approx "H^1$ norm of V with respect to γ ."

In fact, near γ

$$\begin{aligned} E(V;\gamma) &= \int (1-\xi\cdot\tau_{\gamma}) + \int (1-f(\mathsf{dist}_{\gamma}))(\xi\cdot\tau_{\gamma}) \\ &= \int \frac{1}{2} |\xi-\tau_{\gamma}|^2 + \int \frac{1}{2} (\mathsf{dist}_{\gamma})^2 (\xi\cdot\tau_{\gamma}) \end{aligned}$$

Thus for V supported near γ ,

$$E(V;\gamma) \leqslant C \int \min\left(1, |\xi - \tau_{\gamma}|^2 + (\operatorname{dist}_{\gamma})^2(\xi \cdot \tau_{\gamma})\right) dV.$$

This leads to

Lemma

If **V** has no boundary and $E(V; \gamma) = 0$, then $V = cV_{\gamma}$ for some c.

Jerrard and Smets (Toronto and UPMC)

main estimate

Key Fact:

Under the hypotheses of Weak-Strong Uniqueness Theorem,

$$\frac{d}{dt} E(V_t; \gamma_t) \leqslant K E(V_t; \gamma_t)$$

for almost every $t \in [0, T]$, where K is a constant depending only on r_{γ} and $\|\gamma\|_{L^{\infty}(I, W^{3,\infty}(S^{1}))}$.

If we know that V is parametrized by a single Lipschitz curve, we can modify the definition of E, exploiting the parametrization to handle self-intersection of γ . A suitably modified version of the key fact still holds and is used for the Schrödinger map "orbital continuity" theorem.

The proof of the key fact is a computation..... it uses the equation twice:

- the weak form of the equation for V_{γ} ,
- the strong form of the equation to deduce properties of the vector field φ_{γ}

Given a smooth curve $\gamma_0: \boldsymbol{\mathcal{S}}^1 \to \mathbb{R}^3,$ define

$$\gamma_{k,\alpha}(s) = \gamma_0(s) + \frac{\alpha}{k} \Big(\cos(ks) n_0(s) + \sin(ks) b_0(s) \Big)$$

where $n_0(s)$ and $b_0(s)$ are the normal and binormal to γ_0 at *s*.

Question: behaviour of solution of binormal curvature flow with initial data γ_0 ? We do not know.....

- One possibility: extreme instability, due to very large curvature.
- Our framework suggests another possibility:
 - the measures V_{k,α} associated to γ_{k,α} converge as k → ∞ to a limiting measure V_{lim} supported on a set of the form

 $\{(x,\xi)\in\mathbb{R}^3\times S^2: x\in Image(\gamma_0), \quad \xi\cdot \vartheta_s\gamma_0=(1+\alpha^2)^{-1/2}\}$

- one can find an explicit weak binormal curvature (V_t^*) flow with data V_{lim} .
- V^{*}_t is supported on

 $\{(x,\xi)\in\mathbb{R}^3\times S^2: x\in Image(\gamma(\beta t,\cdot)), \quad \xi\cdot\partial_s\gamma_0=(1+\alpha^2)^{-1/2}\}$

where γ solves binormal curvature flow with initial data γ_0 and

$$\beta = \frac{2-\alpha^2}{2\sqrt{1+\alpha^2}} \in (-\infty,1).$$

- For this solution, oscillations slow (or reverse!) flow of time, compared to smooth solution.
- This is consistent with numerics. Does it in fact describe sequences of smooth solutions?

How would curves with corners evolve via the binormal curvature flow?

or stated differently:

How would maps with jump discontinuities evolve as Schrödinger maps?

or maybe:

How would data with Dirac delta functions evolve via cubic NLS?

All these questions should be harder for closed curves than for non compact curves.

Thank you for your attention!