New regularity estimates for transport equations

P-E Jabin

The compressible Navier-Stokes system reads

$$\begin{aligned} \partial_t \rho + \operatorname{div}(u \, \rho) &= 0, \\ \partial_t (\rho \, u) + \operatorname{div}(\rho \, u \otimes u) - \Delta u &= -\nabla p(\rho) \end{aligned}$$

for some barotropic pressure term $p(\rho) \sim \rho^{\gamma}$, in a bounded domain $\Omega \subset \mathbb{R}^d$ with for instance Dirichlet boundary conditions

$$u|_{\partial\Omega}=0.$$

The compressible Navier-Stokes system reads

$$\begin{aligned} \partial_t \rho + \operatorname{div}(u \, \rho) &= 0, \\ \partial_t (\rho \, u) + \operatorname{div}(\rho \, u \otimes u) - \mu \Delta u + \lambda \nabla \operatorname{div} u &= -\nabla p(\rho) \end{aligned}$$

for some barotropic pressure term $p(\rho) \sim \rho^{\gamma}$ Variants of course exist. Some mostly fit within the same theory:

• With more physical diffusion

The compressible Navier-Stokes system reads

$$\begin{split} &\partial_t \rho + \operatorname{div} \left(u \, \rho \right) = 0, \\ &\partial_t (\rho \, u) + \operatorname{div} \left(\rho \, u \otimes u \right) - \operatorname{div} \left(\mu(\theta) \, D \, u \right) + \nabla (\lambda(\theta) \operatorname{div} u) = - \nabla p(\rho, \theta) \\ &\partial_t (\rho \theta) + \operatorname{div} \left(\rho \, u \, \theta \right) + R \, \rho \theta \operatorname{div} u = \mu \, |D \, u|^2 + \lambda |\operatorname{div} u|^2 + \operatorname{div} \left(\kappa(\theta) \, \nabla \theta \right) \end{split}$$

for some barotropic pressure term $p(
ho) \sim
ho^{\gamma}$

Variants of course exist. Some mostly fit within the same theory:

- With more physical diffusion
- With temperature

The compressible Navier-Stokes system reads

$$\partial_t \rho + \operatorname{div}(u \, \rho) = 0,$$

 $\partial_t (\rho \, u) + \operatorname{div}(\rho \, u \otimes u) - \operatorname{div}(\mu(\rho) \, D \, u) + \nabla(\lambda(\rho) \operatorname{div} u) = -\nabla p(\rho)$

for some barotropic pressure term $p(\rho) \sim \rho^{\gamma}$

Variants of course exist. Some mostly fit within the same theory:

- With more physical diffusion
- With temperature or are inaccessible
- With density dependent viscosity (see nevertheless Bresch-Designations)

The compressible Navier-Stokes system reads

$$\begin{aligned} \partial_t \rho + \operatorname{div}(u \, \rho) &= 0, \\ \partial_t (\rho \, u) + \operatorname{div}(\rho \, u \otimes u) - \operatorname{div}(A(x) \, D \, u) + \nabla(A(x) \operatorname{div} u) &= - \nabla p(\rho) \end{aligned}$$

for some barotropic pressure term $p(\rho) \sim \rho^{\gamma}$

Variants of course exist. Some mostly fit within the same theory:

- With more physical diffusion
- With temperature or are inaccessible
- With density dependent viscosity (see nevertheless Bresch-Desjardins)
- With non homogeneous viscosity given by a matrix A, or non local $p(\rho)$.

The compressible Navier-Stokes system reads

$$\partial_t \rho + \operatorname{div}(u \, \rho) = 0,$$

 $\partial_t (\rho \, u) + \operatorname{div}(\rho \, u \otimes u) - \Delta u = -\nabla p(\rho)$

for some barotropic pressure term $p(\rho) \sim \rho^{\gamma}$ For simplicity this talk deals only with the first system.

The compressible Navier-Stokes system reads

$$\partial_t \rho + \operatorname{div}(u \, \rho) = 0,$$

 $\partial_t (\rho \, u) + \operatorname{div}(\rho \, u \otimes u) - \Delta u = -\nabla p(\rho)$

for some barotropic pressure term $p(\rho) \sim \rho^{\gamma}$ Goal: Revisit the classical compactness theory by obtaining quantitative regularity estimates.

Other similar models

The same theory applies to many other models, for instance

$$\partial_t \rho + \operatorname{div}(u \rho) = 0,$$

 $-\Delta u = -\nabla p(\rho) + S.$

In some applications to biology, $u = \nabla c$ with c the concentration of some chemical (or a sum of chemicals) used by the biological agents to interact.

Therefore, in some cases, $p(\rho)$ should include repulsive and attractive interactions.

State of the art: A priori estimates

Let us describe the available theory as developed first by P.L. Lions and extended by E. Feireisl. Start with the a priori estimates

Conservation of mass

$$\int \rho(t,x)\,dx=const.$$

Energy estimate For $P(\rho)$ s.t. $P' \rho - P = p(\rho)$, i.e. $P(\rho) \sim \rho^{\gamma}$

$$\int \left(P(\rho(t,x)) + \frac{1}{2} \rho u^2 \right) dx + \int_0^t \int |\nabla u|^2 = const.$$

State of the art: A priori estimates

Let us describe the available theory as developed first by P.L. Lions and extended by E. Feireisl. Start with the a priori estimates

Conservation of mass

$$\int \rho(t,x)\,dx=const.$$

Energy estimate For $P(\rho)$ s.t. $P' \rho - P = p(\rho)$, i.e. $P(\rho) \sim \rho^{\gamma}$

$$\int \left(P(\rho(t,x)) + \frac{1}{2} \rho u^2 \right) dx + \int_0^t \int |\nabla u|^2 = const.$$

Pressure estimates

$$\int_0^t \int \rho^{\theta} p(\rho) dx dt \leq C, \qquad \theta < \frac{2}{d} \gamma.$$

Take a sequence ρ_k , u_k of (approximate) solutions. u_k is compact and the only difficulty is the Compactness of ρ_k .

• P.L. Lions: Show that $w - \lim \rho_k^2 = A = (w - \lim \rho_k)^2 = \rho^2$.

$$\partial_t \rho_k^2 + \operatorname{div}\left(u_k \, \rho_k^2\right) = -\operatorname{div} u_k \, \rho_k^2.$$

But

$$\operatorname{div} u_k = p(\rho_k) + \Delta^{-1}(\partial_t(\rho_k u_k) + \operatorname{div}(\rho_k u_k \otimes u_k)).$$

So

$$w - \lim \rho_k^2 \operatorname{div} u_k \ge \rho B + A \Delta^{-1} (\partial_t (\rho u) + \operatorname{div} (\rho u \otimes u)),$$

where $B = w - \lim \rho p(\rho)$.

Take a sequence ρ_k , u_k of (approximate) solutions. u_k is compact and the only difficulty is the Compactness of ρ_k .

• P.L. Lions: Show that $w - \lim \rho_k^2 = A = (w - \lim \rho_k)^2 = \rho^2$. Hence

$$\partial_t A + \operatorname{div}(u A) \leq -\rho B - A \Delta^{-1}(\partial_t(\rho u) + \operatorname{div}(\rho u \otimes u)).$$

while recalling $B = w - \lim \rho p(\rho)$

$$\partial_t \rho^2 + \operatorname{div}(u \, \rho^2) = -\rho \, B - \rho^2 \, \Delta^{-1}(\partial_t(\rho u) + \operatorname{div}(\rho \, u \otimes u)).$$

Thus $A \leq \rho^2$ and then $A = \rho^2$.

Take a sequence ρ_k , u_k of (approximate) solutions. u_k is compact and the only difficulty is the Compactness of ρ_k .

- P.L. Lions: Show that $w \lim \rho_k^2 = A = (w \lim \rho_k)^2 = \rho^2$.
- Of course show instead $w \lim \beta(\rho_k) = \beta(w \lim \rho_k)$ for some convex β .

Take a sequence ρ_k , u_k of (approximate) solutions. u_k is compact and the only difficulty is the Compactness of ρ_k .

- P.L. Lions: Show that $w \lim \rho_k^2 = A = (w \lim \rho_k)^2 = \rho^2$.
- Of course show instead $w \lim \beta(\rho_k) = \beta(w \lim \rho_k)$ for some convex β .
- \bullet Only gives compactness at the limit: No regularity estimates on ρ_k .

Take a sequence ρ_k , u_k of (approximate) solutions. u_k is compact and the only difficulty is the Compactness of ρ_k .

- P.L. Lions: Show that $w \lim \rho_k^2 = A = (w \lim \rho_k)^2 = \rho^2$.
- Of course show instead $w \lim \beta(\rho_k) = \beta(w \lim \rho_k)$ for some convex β .
- Only gives compactness at the limit: No regularity estimates on ρ_k .
- The critical step is

$$w - \lim \rho_k^2 p(\rho_k) \ge \rho w - \lim \rho_k p(\rho_k),$$

which requires p increasing.

Take a sequence ρ_k , u_k of (approximate) solutions. u_k is compact and the only difficulty is the Compactness of ρ_k .

- P.L. Lions: Show that $w \lim \rho_k^2 = A = (w \lim \rho_k)^2 = \rho^2$.
- Of course show instead $w \lim \beta(\rho_k) = \beta(w \lim \rho_k)$ for some convex β .
- Only gives compactness at the limit: No regularity estimates on ρ_k .
- The critical step is

$$w - \lim \rho_k^2 p(\rho_k) \ge \rho w - \lim \rho_k p(\rho_k),$$

which requires p increasing.

• Feireisl uses Riesz operators and does not need $\rho \operatorname{div} u$.

Existence of weak solutions

The previous method yields

Theorem P.L. Lions

Assume $p(\rho) \sim \rho^{\gamma}$ with $\gamma > 9/5$ and p monotone.

Then there exists a weak solution to compressible Navier-Stokes.

While with refined techniques

Theorem E. Feireisl

Assume $p(\rho) \sim \rho^{\gamma}$ with $\gamma > 3/2$ and p monotone.

Then there exists a weak solution to compressible Navier-Stokes.

The idea

Propagate some explicit regularity on ρ by computing

$$\int \frac{|\rho(x) - \rho(y)|^a}{(|x - y| + h)^k} dx dy,$$

for some k > d.

However this corresponds to a Sobolev like regularity on ρ which cannot work. So instead...

The idea

Propagate some explicit regularity on ρ by computing

$$\int \frac{|\rho(x) - \rho(y)|^a}{(|x - y| + h)^k} W(x, y) dx dy,$$

for some k > d.

Where the weight W solves the same transport equation

$$\partial_t W + u(t,x) \cdot \nabla_x W + u(t,y) \cdot \nabla_y W = -P,$$

for a well chosen penalization P.

The idea

Propagate some explicit regularity on ρ by computing

$$\int \frac{|\rho(x) - \rho(y)|^a}{(|x - y| + h)^k} W(x, y) dx dy,$$

for some k > d.

Where the weight W solves the same transport equation

$$\partial_t W + u(t,x) \cdot \nabla_x W + u(t,y) \cdot \nabla_y W = -P,$$

for a well chosen penalization P.

Then explain that W cannot be too small, too often to bound

$$\int \frac{|\rho(x) - \rho(y)|^a}{(|x - y| + h)^k} dx dy,$$

in terms of h.

A new result

The main improvements are: No monotonicity assumption on p, explicit regularity.

Theorem

Assume $p(\rho) \sim \rho^{\gamma}$ with $\gamma > 9/5$.

Then there exists a weak solution to compressible Navier-Stokes. Moreover the solution satisfies for any k>d

$$\int_{\rho(x), \; \rho(y) > \eta} \frac{|\rho(x) - \rho(y)|^a}{(|x - y| + h)^k} \, dx \, dy \le C_\eta \, \frac{h^{-(k - d)}}{|\log h|^\mu},$$

with $\mu = 1$ if $\gamma > 3$.

Extensions

The new theory should also be applied to

• Non homogeneous viscosity for some given matrix A(t,x)

$$\partial_t \rho + \operatorname{div}(u \rho) = 0,$$

 $-\operatorname{div}(A(t, x) \nabla u) = -\nabla p(\rho) + S.$

Well posedness for the linear kinetic equations

$$\partial_t f + v \cdot \nabla_x f + E(t, x) \cdot \nabla_v f = 0,$$

with only $E \in L_t^2 H_x^{3/4}$.