< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Geometric evolution of interfaces in the functionalized Cahn-Hilliard equation

Gurgen (Greg) Hayrapetyan (with Keith Promislow)

CNA Seminar

September 20, 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- Background
- Formal Results
- Rigorous Results

Formal Results

Functionalization

- In Chemistry functionalization involves attachment of short, acid tipped sidechains to the chains of polymer backbones to modify soluability properties of the original polymer.
- We wish to model phase separation of functionalized polymer in a solvent.

K.-D. Kreuer, J. Memb. Sci. 185 (2001) 29.

Introduction

Formal Results

Rigorous Results

Energy Formulation

• The Canham-Helfrich free energy of an interface describes the most general energy that can be written as a quadratic symmetric polynomial of curvatures k_i . In d = 3, it is given in terms of the mean and Gaussian curvatures:

$$\mathcal{E}_{CH}(\Gamma) = \int_{\Gamma} \kappa_s K + \kappa_b (H - H_{\rm int})^2 + \sigma dS$$

- σ energy density per unit surface area,
- κ_b and κ_s energy densities attributed to deformations,
- $H = \frac{1}{2}(k_1 + k_2)$ mean curvature, $K = k_1k_2$ Gaussian curvature,
- Hint intrinsic (zero-energy) value of the mean curvature.
- Usefulness limited by difficulty in describing merging and pinch-off events.
- Does not easily couple to the physics outside of the interface.
- As an alternative, we consider a phase field model.

• Example: The Cahn-Hilliard energy

$$\mathcal{E}[u] = \int_{\Omega} \frac{\epsilon^2}{2} |\nabla u|^2 + W(u) dx,$$

where ε scales the interfacial width and W is a smooth, double-well potential with two equal minima at $u = \pm 1$.

- Interface evolution for gradient flows studied by Evans, Soner & Souganidis; de Mottoni & Schatzman; Pego; Alikakos, Bates & Chen, ...
- Γ-convergence is due to Modica and Mortola

$$\varepsilon^{-1}\mathcal{E} \to_{\Gamma} \int_{\Gamma} \sigma dS.$$

Formal Results

• Example: The modified De Giorgi functional

$$\mathcal{E}_{G}[u] = \int_{\Omega} \left(-\epsilon^{2} \Delta u + W'(u) \right)^{2} + \epsilon^{2} \left(\frac{\epsilon^{2}}{2} |\nabla u|^{2} + W(u) \right) dx.$$

The sharp interface limit was shown by M. Röger and R. Schätzle.

$$\varepsilon^{-3}\mathcal{E}_G \to_{\Gamma} \int_{\Gamma} \kappa_b H^2 + \sigma dS.$$

• Introduce the Functionalized Cahn-Hilliard energy as a model for interface evolution in functionalized polymer-solvent mixtures:

$$\mathcal{E}_{\mathcal{F}}[u] = \int_{\Omega} \frac{1}{2} \Big(-\epsilon^2 \Delta u + W'(u) \Big)^2 - \epsilon^2 \eta \Big(\frac{\epsilon^2}{2} |\nabla u|^2 + W(u) \Big).$$

This energy balances the elastic energy required to bend the interface and the associated polymer backbone against the solvation and electrostatic energy released by formation of water-acid interface.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Simplest mass preserving gradient flow is:

$$u_t = -\prod_0 \underbrace{\left((\epsilon^2 \Delta - W''(u) + \epsilon^2 \eta) (\epsilon^2 \Delta u - W'(u)) \right)}_{\frac{\delta \mathcal{E}_F}{\delta u}}.$$

where zero-mass projection subtracts the average value.

Question: What do steady-state solutions look like?

- 1) Heteroclinic front profiles seen in Cahn-Hilliard equation
- 2) New homoclinic solutions which correspond to bi-layer structures

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

For a general change of coordinates: $x = \varphi(y)$ Laplace-Beltrami formulation for the Laplacian is given by

$$\Delta_x = rac{1}{\sqrt{\det(\mathbf{G})}} \sum_{i=1}^d \sum_{j=1}^d rac{\partial}{\partial y_i} G^{ij} \sqrt{\det(\mathbf{G})} rac{\partial}{\partial y_j},$$

where $\boldsymbol{\mathsf{G}}$ is the metric tensor

$$G_{ij} = \left\langle \frac{\partial x}{\partial y_i}, \frac{\partial x}{\partial y_j} \right\rangle_{\mathbb{R}^d}$$

In the scaled whiskered coordinates y = [s, z] and

$$x = \varphi(y) = \gamma(s) + \varepsilon z \nu(s).$$

In whiskered coordinates G takes the form

$$\mathbf{G} = \begin{pmatrix} \mathbf{G}_{\mathbf{0}} & \mathbf{0} \\ \mathbf{0} & \varepsilon^2 \end{pmatrix},$$

Laplacian is

$$\Delta_x = \varepsilon^{-2} \partial_z^2 + \varepsilon^{-1} \kappa(s, z) \partial_z + \Delta_{G_0},$$

where κ and Δ_{G_0} are the extensions of mean curvature and Laplace-Beltrami operators off the interface Γ :

$$\kappa(s,z) = -\sum_{i=1}^{d-1} \frac{k_i}{1 - \varepsilon z k_i} = -H(s) + O(\varepsilon z),$$

and

$$\Delta_{G_0} = \Delta_s + \varepsilon z D_{s,2},$$

where Δ_s is the Laplace-Beltrami operator on Γ and $D_{s,2}$ is a second order differential operator.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ● ● ●

Heteroclinic Ansatz

Recall the FCH gradient flow

$$u_t = -\Pi_0 F(u).$$

At leading order, for u localized about a hypersurface Γ ,

 $F(u) \equiv (\epsilon^2 \Delta - W''(u) + \epsilon^2 \eta)(\epsilon^2 \Delta u - W'(u)) \sim (\partial_z^2 - W''(u))(\partial_z^2 u - W'(u)).$ For a symmetric well the gradient flow has front critical points $\phi(z)$ satisfying $\partial_z^2 \phi - W'(\phi) = 0.$

By incorporating curvature dependent terms into a perturbation
$$\phi_2$$
 we build an ansatz

$$\Phi(x;\Gamma,b) = \Phi(s,z) = \phi(z) - \epsilon^2 \underbrace{\left(\frac{1}{2}H^2 + tr(A^2)\right)L_{\phi}^{-1}(z\phi')}_{\phi} + b,$$

where H is the mean curvature and A is the Weingarten map whose eigenvalues are the curvatures of Γ . For a smooth hypersurface Γ , we have

$$||F(\Phi)||_{C^4(\Omega)} = O(\epsilon^3).$$

We refer to this as 'dressing' the interface Γ with the 1D profile.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Formal Results (Physica D, 2011, with N. Gavish, K. Promislow and L. Yang)

A formal slow manifold reduction, projecting the residual $F(\Phi)$ onto the neutral modes of the linearization yields a coupled evolution for the constant background state, $b = \varepsilon^3 b_3$, and the normal velocity V_n ,

$$egin{aligned} &V_n = -arepsilon^3 \Big[\Big(\Big(\Delta_s + \eta \Big) H - rac{H^3}{2} + Htr(A^2) \Big) + rac{2}{\sqrt{\det(\mathbf{g})}} ||\phi'||^2_{L^2(\mathbb{R})}} \Big(\mu_0^2 b_3 - \partial_t b_3 \Big) \Big], \ &\partial_t b_3 + arepsilon rac{4\mu_0^2 |\Gamma|}{\sqrt{\det(\mathbf{g})}} ||\phi'||^2_{L^2(\mathbb{R})} |\Omega|} b_3 = -rac{2arepsilon}{|\Omega|} \int \Big(\Delta_s + \eta - rac{H^2}{2} + tr(A^2) \Big) H ds. \end{aligned}$$

In the remainder of this presentation we address the rigorous derivation of these equations.

Rigorous Results - definition of admissible interfaces

Definition

Denote by \mathcal{G} the family of smooth compact oriented (d-1)-dimensional manifolds without boundary embedded in \mathbb{R}^d . For K > 0 denote by \mathcal{G}_K the set of manifolds $\Gamma \in \mathcal{G}$ satisfying the following assumptions:

(i) the principal curvatures and their derivatives up to the fourth order are bounded in $L^{\infty}(\Gamma)$ norm by K,

(ii) the whiskers of length $1/{\cal K}$ (in the unscaled distance) do not intersect each-other,

(iii) the volume $vol(\Gamma)$ of Γ is bounded by K.

Definition

We associate to each $\Gamma \in \mathcal{G}_{K}$, $b \in \mathbb{R}$ the corresponding single-layer dressed ansatz,

$$\Phi(x; \Gamma, b) := \eta_1(z)(\phi(z) + \varepsilon^2 \phi_2(s, z)) + b + \bar{\eta}_1(z).$$

Here $b = \varepsilon^3 b_3$ is an $O(\varepsilon^3)$ parameter that incorporates the small, spatially-constant variation of the background state of Φ away from the limiting values of ± 1 , η_1 is a smooth cutoff function which is equal to one near the interface and is zero away from it. Similarly, $\bar{\eta}_1(x)$ takes the values ± 1 away from the interface and is zero near the interface.

Definition

For each $K, \bar{b} > 0$, we define the single-layer dressed manifold

$$\mathcal{M}_{\mathcal{K},\bar{b}} := \{ \Phi(x;\Gamma,b) : \Gamma \in \mathcal{G}_{\mathcal{K}}, b \in (-\bar{b}\varepsilon^3, \bar{b}\varepsilon^3) \}.$$

The reduction of the FCH to a curvature driven flow requires a detailed analysis of the linearization

$$\mathcal{L}_{\phi} := (-arepsilon^2 \Delta + W^{\prime\prime}(\Phi) - arepsilon^2 \eta) (-arepsilon^2 \Delta + W^{\prime\prime}(\Phi)) - W^{\prime\prime\prime}(\Phi) (arepsilon^2 \Delta \Phi - W^\prime(\Phi)),$$

of *F* about the ansatz Φ .

- We utilize a decomposition Z_M ⊕ Z[⊥]_M that breaks L²(Ω) into two approximately-L_φ invariant subspaces, with the bilinear form associated with L_φ uniformly coercive when restricted to Z[⊥]_M.
- We show that a solution that starts in a sufficiently small neighborhood of $\mathcal{M}_{K,\bar{b}}$ may be decomposed as

$$u(x,t) = \Phi(x;\Gamma_t,b) + w(x,t),$$

where $w \in \mathcal{Z}_M^{\perp}$ and Γ_t denotes the interface at time *t*.

Reduction of slow flow to a normal velocity

- We project the residual $F(\Phi)$ onto the slow space of \mathcal{L}_{ϕ} .
- Assuming the continued smoothness of the interface, we show that there exists a choice of normal velocity

$$V_n = \varepsilon^4 V_n^0(h) + V_n^c(h, w),$$

with V_n^0 depending only upon the second fundamental form, h, of the interface, such that the remainder w will remain small, in an appropriate norm, for all $t \in [0, T_f \varepsilon^{-4}]$.

• In particular, after an $O(\varepsilon^{-1})$ transient associated to the relaxation of the background state, the normal velocity reduces to

$$V_n^0 = -\Pi_{0,\Gamma}\left((\Delta_s + \eta)H - \frac{H^3}{2} + H\operatorname{tr}(A^2)\right),$$

where *H* is the mean curvature, *A* is the Weingarten map whose eigenvalues are the curvatures of Γ , and $\Pi_{0,\Gamma}$ is the zero-mass projection associated to the surface integral over Γ .

Key Steps - Laplace-Beltrami Spectrum

 Consider the Laplace-Beltrami operator Δ_s : H²(Γ) → L²(Γ) given locally on Γ by

$$\Delta_{s} = \frac{1}{\sqrt{\det \mathbf{g}}} \sum_{i=1}^{d-1} \sum_{j=1}^{d-1} \frac{\partial}{\partial s_{i}} g^{ij} \sqrt{\det \mathbf{g}} \frac{\partial}{\partial s_{j}},$$

and denote the (nonnegative) eigenvalues of $-\Delta_s$ by $\{\beta_{j,\Gamma}\}$ and the corresponding eigenfunctions by $\{\Theta_{j,\Gamma}\}$,

$$-\Delta_s\Theta_{j,\Gamma}=\beta_{j,\Gamma}\Theta_{j,\Gamma}.$$

• The following is a key relation on the asymptotics of the large eigenvalues of the Laplace-Beltrami operator, first proved by Weyl

$$(eta_m)^{(d-1)/2}\sim rac{(2\pi)^{d-1}/\omega_d}{vol\Gamma}m, \quad ext{as } m
ightarrow\infty.$$

• Weyl asymptotic formula implies that for $M = [M_1 \varepsilon^{-(d-1)}]$

$$\beta_M \sim \frac{(2\pi)^2 M_1^{2/(d-1)}}{(\textit{vol}\Gamma\omega_d)^{2/(d-1)}} \varepsilon^{-2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Formal Results

Rigorous Results

Key Step - Analysis of Linearization

• In 'whiskered' variables, acting on functions localized about $\Gamma\in \mathcal{G}_{\mathcal{K}},$

$$\mathcal{L} = L^2 + \epsilon^4 \Delta_s^2 + \epsilon P_1(\partial_z) + \epsilon^2 P_2(\partial_z, \partial_{s_i}),$$

where L is a 1D operator on each whisker

$$L=\partial_z^2-W''(\phi).$$

• L is a Sturm-Liouville operator, so the spectrum on $\mathbb R$ is easy to establish.

Question: How does the 1D structure impact the spectrum of the full linearization on $\mathbb{R}^d?$

• For Allen-Cahn/Cahn-Hilliard linearizations about fronts shown by Alikakos and Fusco in 2D and Chen in higher dimensions.

Definition

For each M>0, the M+1 dimensional slow space associated to \mathcal{L}_{ϕ} is defined by

$$\mathcal{Z}_M := span(\{Z_i\}_{i=1...M} \cup \{1\}),$$

where

$$Z_i(x) := \eta_1 \Theta_{i,\Gamma}(s) \phi'(z);$$

 \mathcal{Z}_M^{\perp} is the orthogonal complement of \mathcal{Z}_M in $L^2(\Omega)$.

Remark: We will show that \mathcal{Z}_{M}^{\perp} corresponds to the fast eigenspace of \mathcal{L}_{ϕ} , in the sense that \mathcal{L}_{ϕ} is coercive on \mathcal{Z}_{M}^{\perp} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem: Spectrum of the Full Linear Operator

Coercivity Estimates for the Linear Operator. Fix $K, \bar{b} > 0$ and $\varepsilon > 0$ sufficiently small. There exists $M_{1-} > 0$ independent of ε , such that for all $M_1 \ge M_{1-}$ the following bounds hold for all w from the associated fast space, \mathcal{Z}_M^{\perp} , where $M = M_1 \varepsilon^{-(d-1)}$

$$egin{aligned} (\mathcal{L}w,w)_{L^2(\Omega)} &\geq rac{1}{32}arepsilon^4eta_{M+1}^2||w||_{L^2(\Omega)}, \ &||\mathcal{A}_{\phi}^2w||_{L^2(\Omega)} \geq rac{1}{32}arepsilon^4eta_{M+1}^2||w||_{L^2(\Omega)}, \ &||\mathcal{A}_{\phi}w||_{L^2(\Omega)} \geq rac{1}{8}arepsilon^2eta_{M+1}||w||_{L^2(\Omega)}, \ &||\mathcal{A}_{\phi}w||_{L^2(\Omega)} \geq Carepsilon^4eta_{M+1}||w||_{H^2(\Omega)}, \end{aligned}$$

where

$$\mathcal{A}_{\phi} := \varepsilon^{2} \Delta - W''(\Phi) + \varepsilon^{2} \eta,$$

Remark: This result is also extended to bi-layer dressings, when the linearization of the 1D operator has two asymptotically small eigenvalues.

Formal Results

Rigorous Results

Key Steps - Initial Value Decomposition

Any initial data u_0 which is close to the manifold $\mathcal{M}_{\mathcal{K},\bar{b}}$ can be (trivially) written as

$$u_0=\Phi(x;\Gamma_*,b_*)+w_*(x),$$

for some $\Gamma_* \in \mathcal{G}_K$ with w_* small in an appropriate norm. To obtain decay of w, we look for an orthogonal decomposition of the form

$$u_0=\Phi(x;\Gamma_0,b)+w_0(x,t),$$

with the additional condition that w_0 lie in the fast space, that is $w_0 \in \mathcal{Z}_M^{\perp}(\Gamma_0)$. We search for Γ_0 among interfaces Γ_p near Γ_* in the form

$$\gamma_p(s) = \gamma_*(s) + \nu_*(s)R(s),$$

where $\nu_*(s)$ is the normal to Γ_* at $\gamma_*(s)$. We take candidates for R as among the Galerkin sums on the first M Laplace-Beltrami eigenmodes, $\{\Theta_i\}_{i=1}^M$ of Γ_* ,

$$R=\sum_{i=1}^M p_i\Theta_i(s),$$

and determine the parameters $p = (p_1, \dots, p_M)$ to impose the orthogonality condition

$$w_0 := u_0 - \Phi_0 \in \mathcal{Z}_M^{\perp}(\Gamma_0). \tag{3.1}$$

Main Difficulties

• Loss of one derivative of spatial regularity when decomposing the initial data -

$$\gamma_p(s) = \gamma_*(s) + \nu_*(s)R(s).$$

- Smoothness of the interfaces under the normal velocity flow the analysis of interface evolution equation for Γ which is expressed as a curvature driven flow on the first and second fundamental forms of Γ is nontrivial.
- The higher order corrections V_n^c to the normal velocity enter into the curvature flow. We have control of this correction term in only relatively weak norms, such as L^2 and L^{∞} . We require estimates on higher-order derivatives of w to better control V_n^c .
- Even for d = 2, when the fundamental forms are scalar, the flow reduces, at leading order, to a generalized Kuramoto-Sivashinsky equation,

$$\partial_{\tau}H - (\partial_{s}H)\int_{0}^{s}V_{n}^{0}Hds = -\left(\partial_{s}^{2} + H^{2}\right)\Pi_{0,\Gamma}\left(\partial_{s}^{2} + \eta + \frac{H^{2}}{2}\right)H,$$

whose regularity is (just) outside the known results. Here $\Pi_{0,\Gamma}$ is the zero-mass projection associated to the surface integral over $\Gamma.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Main Assumption

The scaled normal velocity

$$\bar{V}_n := \varepsilon^{-4} V_n = V_n^0(h) + \varepsilon^{-4} V_n^c(h, w)$$

is equivalent (up to rigid body motions) to the curvature driven flow on the fundamental forms of the hypersurface $\Gamma,$

$$\partial_{\tau} g_{ij} = -2 \bar{V}_n h_{ij},$$

$$\partial_{\tau} h_{ij} = -\nabla_i \nabla_j \bar{V}_n + \sum_{l,m} \bar{V}_n h_{il} g^{lm} h_{mj}.$$
 (3.2)

Assumption (*)

We assume that the higher-order curvature driven flow (3.2) is well-posed in $H^4(\mathbf{S})$ for all scaled time $\tau \in [0, T_f]$, where $\mathbf{S} \subset \mathbf{R}^{d-1}$ is the reference set for the interface parameterization γ .

Interface Evolution Reduction

We recall that the dynamics are governed by the FCH gradient flow

$$\partial_t u(x,t) = -\Pi_0 F(u),$$

 $u(x,0) = u_0(x),$

Time-derivative of the ansatz Φ is

$$\partial_t \Phi(x; \Gamma_t; b) = \partial_z \Phi(z(x; t), s(x; t)) \frac{\partial z(x; t)}{\partial t} + \varepsilon^2 D_s \phi_2 \cdot \frac{\partial s(x; t)}{\partial t} + \partial_t b,$$

where

$$\frac{\partial z(x;t)}{\partial t} = -\frac{1}{\varepsilon} V_n(s(x;t)).$$

Substituting the decomposition $u(x, t) = \Phi(x; \Gamma_t; b(t)) + w(x, t)$ into the gradient flow, we obtain

$$\begin{aligned} -\frac{1}{\varepsilon}V_n(s,t)\partial_z\Phi + \varepsilon^2 D_s\phi_2 \cdot \frac{\partial s(x;t)}{\partial t} + \partial_t b + \partial_t w &= -\Pi_0 F(\Phi + w) \\ &= -\Pi_0 F(\Phi) - \Pi_0 \mathcal{L}_\phi w - \Pi_0 \mathcal{N}(w) \quad (**), \end{aligned}$$

where

$$\mathcal{N}(w) = F(\Phi + w) - F(\Phi) - \mathcal{L}_{\phi}w,$$

represents the nonlinear terms in w.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

A priori estimates on normal velocity

We define the $\mathcal A$ -norm of $u\in H^2(\Omega)$ as

$$||u||_{\mathcal{A}} := ||\Delta u||_{L^2(\Omega)} + \varepsilon^{-2} ||u||_{L^2(\Omega)}.$$

Projecting (**) onto the space Z_M and balancing the first terms on the left and right-hand sides, we obtain bounds on the normal velocity.

Proposition

The following estimates hold for the normal velocity

$$||V_n||_{L^{\infty}(\Gamma)} \leq M_1 C(K) \left(\varepsilon^{5-(d-1)} + \varepsilon^{7/2-(d-1)} ||w||_{\mathcal{A}} \right),$$

$$\left\|V_n^c\right\|_{L^2(\Gamma)} = \left\|V_n - \varepsilon^4 V_n^0\right\|_{L^2(\Gamma)} \le C(K)\sqrt{M_1} \left(\varepsilon^{(11-d)/2} + \varepsilon^{(8-d)/2}||w||_{\mathcal{A}}\right)$$

where

$$V_n^0 = -\left[\left(\Delta_s + \eta\right)H - \frac{H^3}{2} + Htr(A^2)\right] - \frac{2}{||\phi'||_{L^2(\mathbb{R})}^2} \left(\mu_0^2 b_3 - \partial_t b_3\right).$$

and M_1 is the slow-space dimension parameter.

Main Theorem - Part 1

b€

Let the space dimension d = 2 or 3 and assume that Assumption (*) is satisfied. Fix the admissible interface parameters $\bar{b}, K > 0$ and $\bar{b}_0 < \bar{b}, K_0 < K$. Fix the slow-space dimension parameter $M_1 > 0$. Then there exist $\frac{1}{2}\bar{B}_0 > \bar{B} > 0$ and $U, \varepsilon_0, T_f > 0$ such that for all $\varepsilon \in (0, \varepsilon_0)$ and for all u_0 satisfying

$$\inf_{\substack{\Gamma \in \mathcal{G}_{K_0}\\ \varepsilon(-\bar{k}_0\varepsilon^3, \bar{k}_0\varepsilon^3)}} \|u_0 - \Phi(\cdot, \Gamma, b)\|_{\mathcal{A}} < \bar{B}_0\varepsilon^{d-3/2},$$

then for $t < T_f \varepsilon^{-4}$ we have a decomposition of the solution u(x, t)

$$u(x,t) = \Phi(x,\Gamma_t,b(t)) + w(x,t)$$

where $b(t) = \varepsilon^3 b_3(t)$, w lies in the L^2 orthogonal complement of the slow space, $w \in \mathcal{Z}_M^{\perp}$, with the slow dimension $M = [M_1 \varepsilon^{-(d-1)}]$ and

$$||w||_{\mathcal{A}} \leq \bar{B}_0 \varepsilon^{d-3/2} e^{-\frac{U}{2}t} + \bar{B} \varepsilon^{3/2}.$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Main Theorem - Part 2

Moreover, the remainder term in the normal velocity $V_n=\epsilon^4 V_n^0+V_n^c$ of the interface Γ_t satisfies

$$\|V_n^c\|_{L^2(\Gamma)} = \left\|V_n - \varepsilon^4 V_n^0\right\|_{L^2(\Gamma)} \le C(\mathcal{K})\sqrt{M_1} \left(\varepsilon^{(11-d)/2} + ||w||_{\mathcal{A}}\varepsilon^{(8-d)/2}\right)$$

where V_n^0 takes the following form

$$V_n^0 = -\Big[\Big(\Delta_s + \eta\Big)H - \frac{H^3}{2} + Htr(A^2)\Big] - \frac{2}{\sqrt{\det(\mathbf{g})}||\phi'||_{L^2(\mathbb{R})}^2}\Big(\mu_0^2b_3 - \partial_t b_3\Big),$$

and the background state evolves according to

$$\begin{split} \partial_t b_3 + \varepsilon \frac{4\mu_0^2 |\Gamma|}{\sqrt{\det(\mathbf{g})} ||\phi'||_{L^2(\mathbb{R})}^2 |\Omega|} b_3 &= -\frac{2\varepsilon}{|\Omega|} \int_{\Gamma} \left(\Delta_s + \eta - \frac{H^2}{2} + tr(A^2) \right) H ds \\ &+ O\left(\sqrt{M_1} \varepsilon^{(8-d)/2} ||w||_{\mathcal{A}}, \sqrt{M_1} \varepsilon^{(11-d)/2} \right). \end{split}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Main Theorem - Part 3

The evolution equations result in a two time-scale system, which, after an $O(\varepsilon^{-1})$ time drives the background to its quasi-equilibrium, and V_n^0 relaxes to

$$V_n^0 = -\Pi_{0,\Gamma}\left(\Delta_s + \eta - \frac{H^2}{2} + tr(A^2)
ight)H.$$