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Introduction

Functionalization

@ In Chemistry functionalization involves attachment of short, acid tipped
sidechains to the chains of polymer backbones to modify soluability
properties of the original polymer.

@ We wish to model phase separation of functionalized polymer in a solvent.
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Introduction

Energy Formulation

@ The Canham-Helfrich free energy of an interface describes the most
general energy that can be written as a quadratic symmetric polynomial of
curvatures ki. In d = 3, it is given in terms of the mean and Gaussian
curvatures:

Een(T) = /KSK + ko(H — Hint)? + 0dS
r

e o - energy density per unit surface area,

o Kp and ks - energy densities attributed to deformations,

o H= %(kl + ko) - mean curvature, K = ki k» - Gaussian curvature,
o Hjy; intrinsic (zero-energy) value of the mean curvature.

o Usefulness limited by difficulty in describing merging and pinch-off events.
@ Does not easily couple to the physics outside of the interface.

@ As an alternative, we consider a phase field model.
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o Example: The Cahn-Hilliard energy

2
Eu] = / C\Vul + W(u)dx,
q 2
where ¢ scales the interfacial width and W is a smooth, double-well
potential with two equal minima at u = £1.

o Interface evolution for gradient flows studied by Evans, Soner &
Souganidis; de Mottoni & Schatzman; Pego; Alikakos, Bates & Chen, ...

@ [-convergence is due to Modica and Mortola

6715 —T /adS.
r
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@ Example: The modified De Giorgi functional
2 2
Ealul :/ (7 EAu+ W/(u)> + e2<i|vu|2 + W(u))dx.
Q 2
The sharp interface limit was shown by M. Réger and R. Schitzle.
%6 —r /l-@bH2 + odS.
r

@ Introduce the Functionalized Cahn-Hilliard energy as a model for interface
evolution in functionalized polymer-solvent mixtures:

1 2 2
Erlu] = / 5(7 EAu+ W/(u)> — 527](%\Vu\2 + W(u))
Q
This energy balances the elastic energy required to bend the interface and

the associated polymer backbone against the solvation and electrostatic
energy released by formation of water-acid interface.
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Simplest mass preserving gradient flow is:

ur = —To ((62A — W' (u) + €n)(€Au — W'(u))) .

SEF
Su

where zero-mass projection subtracts the average value.

Question: What do steady-state solutions look like?
1) Heteroclinic front profiles seen in Cahn-Hilliard equation
2) New homoclinic solutions which correspond to bi-layer structures
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normal
vector » Vis) To describe these solutions use a whiskered

) . coordinate system connected to the
Q, dentifies | jnterface I,
T e whisker

For a general change of coordinates: x = ¢(y) Laplace-Beltrami formulation
for the Laplacian is given by

X=7(s)+€zV(s)

1 9 )
A= —— — G"y/det(G)—,
\/det(G)ZZ dy; (6)3,,

where G is the metric tensor

Ox Ox
Gj = ,— .
’ < dy:’ Oy; >Rd

In the scaled whiskered coordinates y = [s, z] and

[ x = o(y) = 5(s) + ezv(s). |
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In whiskered coordinates G takes the form

Laplacian is

’ Ay =e%02+ s_lﬁ(s, z)0; + Ag,,

where k and Ag, are the extensions of mean curvature and Laplace-Beltrami
operators off the interface I':

(s,2) = Z T gzk —H(s) + O(ez),

and
AGO = As + EZDS,Za

where As is the Laplace-Beltrami operator on I and Ds» is a second order
differential operator.



Formal Results
Heteroclinic Ansatz

Recall the FCH gradient flow
uy = —MoF(u).
At leading order, for u localized about a hypersurface I,
F(u) = (€A — W (u) + €n)(€au — W (u)) ~ (82 — W (u))(92u — W (u)).
For a symmetric well the gradient flow has front critical points ¢(z) satisfying
026 — W'(9) = 0.

By incorporating curvature dependent terms into a perturbation ¢> we build
an ansatz

P2

O(x;T, b) = (s, 2) = ¢(z) — € (%H2 n tr(A2)> L;4(z¢') +b,

where H is the mean curvature and A is the Weingarten map whose
eigenvalues are the curvatures of . For a smooth hypersurface I, we have

IF(®)llcs@) = O(€).
We refer to this as ‘dressing’ the interface ' with the 1D profile.

[ >




Formal Results

Formal Results (Physica D, 2011, with N. Gavish, K. Promislow and L.

Yang)

A formal slow manifold reduction, projecting the residual F(®) onto the neutral
modes of the linearization yields a coupled evolution for the constant
background state, b = £%bs, and the normal velocity V,,

Vn:—g3[((As+n)H—Z + Htr(A ) MIWII (u§b3—6tb3)],

4131 2¢
b3 == TTAT As + n—
\/det(g)\lqﬁ'l\iz(mlﬂl € / (

In the remainder of this presentation we address the rigorous derivation of
these equations.

atb3 + ¢

H? 2
o tr(A )) Hds.



Rigorous Results

Rigorous Results - definition of admissible interfaces

Definition

Denote by G the family of smooth compact oriented (d-1)-dimensional
manifolds without boundary embedded in R?. For K > 0 denote by Gk the set
of manifolds I € G satisfying the following assumptions:

(i) the principal curvatures and their derivatives up to the fourth order are
bounded in L*°(T) norm by K,

(ii) the whiskers of length 1/K (in the unscaled distance) do not intersect
each-other,

(iii) the volume vol(I') of I is bounded by K.

150




Rigorous Results

Definition

We associate to each ' € Gk, b € R the corresponding single-layer dressed
ansatz,
O(x; T, b) i= m(2)(¢(2) + £°¢a(s, 2)) + b + M (2).

Here b = £%b3 is an O(e*) parameter that incorporates the small,
spatially-constant variation of the background state of ® away from the
limiting values of £1, 7; is a smooth cutoff function which is equal to one near
the interface and is zero away from it. Similarly, 771(x) takes the values +1
away from the interface and is zero near the interface.

Definition

For each K, b > 0, we define the single-layer dressed manifold

M5 = {®(x;T,b) : T € Gk, b € (—be, be®)}.




Rigorous Results

The reduction of the FCH to a curvature driven flow requires a detailed analysis
of the linearization

Lo = (—A+ WD) —en)(—*A+ W'(P)) — W () Ad — W (D)),
of F about the ansatz ®.

o We utilize a decomposition Zy @ Zi; that breaks L?(f) into two
approximately-L4 invariant subspaces, with the bilinear form associated
with L4 uniformly coercive when restricted to Zj;.

@ We show that a solution that starts in a sufficiently small neighborhood of
M 5 may be decomposed as

u(x, t) = ®(x; T, b) + w(x, t),

where w € Zj; and T'; denotes the interface at time t.



Rigorous Results

Reduction of slow flow to a normal velocity

@ We project the residual F(®) onto the slow space of L.
@ Assuming the continued smoothness of the interface, we show that there
exists a choice of normal velocity

V, = e*V2(h) + Vi(h,w),

with V2 depending only upon the second fundamental form, h, of the
interface, such that the remainder w will remain small, in an appropriate
norm, for all t € [0, Tre™*].

o In particular, after an O(¢™') transient associated to the relaxation of the
background state, the normal velocity reduces to

H3
Vo= —Mor ((As +mH =+ Htr(A2)> ,
where H is the mean curvature, A is the Weingarten map whose

eigenvalues are the curvatures of ', and [o r is the zero-mass projection
associated to the surface integral over I'.



Rigorous Results
Key Steps - Laplace-Beltrami Spectrum

o Consider the Laplace-Beltrami operator A : H*(I') — L?(T") given locally

on [ by
d—1d—1

1 0] 8
d tg
Vdetg ;le s,g € 85,

and denote the (nonnegative) eigenvalues of —A; by {8;,r} and the
corresponding eigenfunctions by {©;r},

—AsOjr = BrOr.

@ The following is a key relation on the asymptotics of the large eigenvalues
of the Laplace-Beltrami operator, first proved by Weyl

(Bm) /2 (2m) ™ Jwy

m, as m— oo.
voll’ ’

o Weyl asymptotic formula implies that for M = [Mye~(4=1)]

(271.)2 Mlz/(dfl) =

B ~ (volTwg)?/(d=1) c



Rigorous Results

Key Step - Analysis of Linearization

@ In ‘whiskered’ variables, acting on functions localized about ' € Gk,

L= L2 + E4A§ + EPl(az) + €2P2(8Z7 aSi)?
where L is a 1D operator on each whisker
L=2a—W'(¢).

o L is a Sturm-Liouville operator, so the spectrum on R is easy to establish.
o) o(A) (%)

Ao.9)

C

<

L=03?-W"(¢p) A=eA—-W'(p) L=A+0().
Question: How does the 1D structure impact the spectrum of the full
linearization on R%?

@ For Allen-Cahn/Cahn-Hilliard linearizations about fronts shown by
Alikakos and Fusco in 2D and Chen in higher dimensions.



Rigorous Results

Definition

For each M > 0, the M 4 1 dimensional slow space associated to Ly is defined
by

2w = span ({Z;}i=1.m U{1}),
where

Zi(x) :=mOir(s)¢'(2);

Zj; is the orthogonal complement of Zy in L?(Q).

Remark: We will show that Zj; corresponds to the fast eigenspace of Ly, in
the sense that L, is coercive on Zj;.



Theorem: Spectrum of the Full Linear Operator

Coercivity Estimates for the Linear Operator. Fix K,b > 0 and e > 0
sufficiently small. There exists Mi— > 0 independent of €, such that for all
M: > Mi_ the following bounds hold for all w from the associated fast space,
Z,ﬁ, where M = Mye— (@1

1
(Lw, w)2q) > §E4BI2\/I+1||W||L2(Q)7

2 1 4
[ AGwl|20) = §€4ﬁM+1||W| l2()»

1
[|Asw||2(q) > *52BM+1HW\L2(Q)a

[|Asw]|20) > C545M+1||W||H2(Q),

where

Ag = A — W () + &7,

Remark: This result is also extended to bi-layer dressings, when the
linearization of the 1D operator has two asymptotically small eigenvalues.



Rigorous Results
Key Steps - Initial Value Decomposition

Any initial data wo which is close to the manifold M 5 can be (trivially)
written as
up = ¢(X; r*a b*) + W*(X)a

for some I, € Gk with w, small in an appropriate norm. To obtain decay of w,
we look for an orthogonal decomposition of the form

up = ®(x; To, b) + wo(x, t),

with the additional condition that wp lie in the fast space, that is wo € Z3(To).
We search for o among interfaces ', near I', in the form

V() = 7+(s) + vu(s)R(s),

where v, (s) is the normal to I, at 7.(s). We take candidates for R as among
the Galerkin sums on the first M Laplace-Beltrami eigenmodes, {@i},’\il of ',

M
R = Zpi@;(s)7
i=1

and determine the parameters p = (p1, ..., pm) to impose the orthogonality
condition
wo :=up — Pp € Zﬁ(ro) (31)



Rigorous Results

Main Difficulties

Loss of one derivative of spatial regularity when decomposing the initial
data -

Ye(s) = 7=(s) + vu(s)R(s).
@ Smoothness of the interfaces under the normal velocity flow - the analysis

of interface evolution equation for ' which is expressed as a curvature
driven flow on the first and second fundamental forms of I' is nontrivial.

@ The higher order corrections Vi to the normal velocity enter into the
curvature flow. We have control of this correction term in only relatively
weak norms, such as L% and L>°. We require estimates on higher-order
derivatives of w to better control V.

@ Even for d = 2, when the fundamental forms are scalar, the flow reduces,
at leading order, to a generalized Kuramoto-Sivashinsky equation,

s 2
o, H— (asH)/ VPHds = — (af + HQ) Mor <a§ +n+ %) H,
0

whose regularity is (just) outside the known results. Here Mg is the
zero-mass projection associated to the surface integral over I'.



Rigorous Results
Main Assumption

The scaled normal velocity
Vo=V, = V2(h) + e *Vi(hw)

is equivalent (up to rigid body motions) to the curvature driven flow on the
fundamental forms of the hypersurface I',

0-gj = —2\_/,,h,'j7
a—rhij = -V,V; \_/n + Z \_/nh,'/glmhmj. (3'2)

I,m

Assumption (*)

We assume that the higher-order curvature driven flow (3.2) is well-posed in
H*(S) for all scaled time T € [0, T¢], where S C RY~! is the reference set for
the interface parameterization -y.




Rigorous Results
Interface Evolution Reduction

We recall that the dynamics are governed by the FCH gradient flow

Oeu(x,t) = —MoF(u),
u(x,0) = w(x),
Time-derivative of the ansatz @ is
0e0(x; T b) = 0.0(2(x; 1), s(x; ) 2058 4 2, P60 gy
where
82%’: £ _ févn(s(x; ).

Substituting the decomposition u(x, t) = ®(x; I'¢; b(t)) + w(x, t) into the
gradient flow, we obtain

as(x t)

féVn(s, )8, + > Doy - + 0tb 4 drw = —ToF(d + w)

= —ToF(P) — MoLyw — MoN(w) (%),
where
N(w) = F(®+w)— F(P) — Lyw,

represents the nonlinear terms in w.



Rigorous Results
A priori estimates on normal velocity

We define the A-norm of u € H*(Q) as
llulla = [|Aul|2@) + 572||U|IL2(Q)

Projecting (**) onto the space Zu and balancing the first terms on the left
and right-hand sides, we obtain bounds on the normal velocity.

Proposition

The following estimates hold for the normal velocity

[Vallesery < MyC(K) (277 4+ 727D w4

VC
H "2

:an—e“v,?

< C(K) oA (6(11—d)/2+€(8 d/QHWHA)

L2(r)

where

Ve = [(As + 17)H - H; + Htr(Az)] (u§b3 - atb3),

H(ZS/HLZ(R

and M, is the slow-space dimension parameter.




Rigorous Results

Main Theorem - Part 1

Let the space dimension d = 2 or 3 and assume that Assumption (*) is
satisfied. Fix the admissible interface parameters b, K > 0 and by < b,
Ko < K. Fix the slow-space dimension parameter My > 0. Then there exist
%Bo > B > 0 and U, eo, Tr > 0 such that for all € € (0, o) and for all uy
satisfying
inf  Jluo — (-, T, b)|| , < Boc?*?,
reg KO
be(—boe® boe)

then for t < Tre~* we have a decomposition of the solution u(x, t)
U(X, t) = ¢(X7 rtv b(t)) + W(X7 t)

where b(t) = &>bs(t), w lies in the L orthogonal complement of the slow
space, w € Zi;, with the slow dimension M = [Mls’(d’l)] and

— U -
llwl|la < Boe?3/2e™ 2t + B2,




Rigorous Results

Main Theorem - Part 2

Moreover, the remainder term in the normal velocity V,, = e*V? + V¢ of the
interface I'; satisfies

c _ _ 40
||VnHL2(r)—HV” eV 2()

SC(K)F( (11—d)/ +HWH (8- d/z)

where V takes the following form

H3
VY = —|(As +n)H— — + Htr(A%) wabs — ;b3 ),
ICEDLES: |- )
and the background state evolves according to
4 2 r 2
Oibs + ¢ &l by = — 25 (AS +1n— 'Z + tr(A2)) Hds

Vaet@)llo/ gl 191
+0 ( /Mlg(afd)/ZHWHA’ /*Mlg(nfd)/z) '




Rigorous Results

Main Theorem - Part 3

The evolution equations result in a two time-scale system, which, after an
O(e™?) time drives the background to its quasi-equilibrium, and V_ relaxes to

2
VO = —Mor (As +n— H7 + tr(A2)> H.




	Introduction
	Formal Results
	Rigorous Results

