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Functionalization

In Chemistry functionalization involves attachment of short, acid tipped
sidechains to the chains of polymer backbones to modify soluability
properties of the original polymer.

We wish to model phase separation of functionalized polymer in a solvent.

K.-D. Kreuer, J. Memb. Sci. 185 (2001) 29.
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Energy Formulation

The Canham-Helfrich free energy of an interface describes the most
general energy that can be written as a quadratic symmetric polynomial of
curvatures ki . In d = 3, it is given in terms of the mean and Gaussian
curvatures:

ECH(Γ) =

∫
Γ

κsK + κb(H − Hint)
2 + σdS

σ - energy density per unit surface area,
κb and κs - energy densities attributed to deformations,
H = 1

2
(k1 + k2) - mean curvature, K = k1k2 - Gaussian curvature,

Hint intrinsic (zero-energy) value of the mean curvature.

Usefulness limited by difficulty in describing merging and pinch-off events.

Does not easily couple to the physics outside of the interface.

As an alternative, we consider a phase field model.
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Example: The Cahn-Hilliard energy

E[u] =

∫
Ω

ε2

2
|∇u|2 + W (u)dx ,

where ε scales the interfacial width and W is a smooth, double-well
potential with two equal minima at u = ±1.

Interface evolution for gradient flows studied by Evans, Soner &
Souganidis; de Mottoni & Schatzman; Pego; Alikakos, Bates & Chen, ...

Γ-convergence is due to Modica and Mortola

ε−1E →Γ

∫
Γ

σdS .



Introduction Formal Results Rigorous Results

Example: The modified De Giorgi functional

EG [u] =

∫
Ω

(
− ε2∆u + W ′(u)

)2

+ ε2
( ε2

2
|∇u|2 + W (u)

)
dx .

The sharp interface limit was shown by M. Röger and R. Schätzle.

ε−3EG →Γ

∫
Γ

κbH2 + σdS .

Introduce the Functionalized Cahn-Hilliard energy as a model for interface
evolution in functionalized polymer-solvent mixtures:

EF [u] =

∫
Ω

1

2

(
− ε2∆u + W ′(u)

)2

− ε2η
( ε2

2
|∇u|2 + W (u)

)
.

This energy balances the elastic energy required to bend the interface and
the associated polymer backbone against the solvation and electrostatic
energy released by formation of water-acid interface.
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Simplest mass preserving gradient flow is:

ut = −Π0

(
(ε2∆−W ′′(u) + ε2η)(ε2∆u −W ′(u))

)
︸ ︷︷ ︸

δEF
δu

.

where zero-mass projection subtracts the average value.

Question: What do steady-state solutions look like?
1) Heteroclinic front profiles seen in Cahn-Hilliard equation
2) New homoclinic solutions which correspond to bi-layer structures
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identi�es 
the whisker

Ω− γ(s)

εz
x=γ(s)+εzν(s)

ν(s)

Γ

normal 
vector

Ω+

To describe these solutions use a whiskered
coordinate system connected to the 
interface Γ.

For a general change of coordinates: x = ϕ(y) Laplace-Beltrami formulation
for the Laplacian is given by

∆x =
1√

det(G)

d∑
i=1

d∑
j=1

∂

∂yi
G ij
√

det(G)
∂

∂yj
,

where G is the metric tensor

Gij =

〈
∂x

∂yi
,
∂x

∂yj

〉
Rd

.

In the scaled whiskered coordinates y = [s, z] and

x = ϕ(y) = γ(s) + εzν(s).
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In whiskered coordinates G takes the form

G =

(
G0 0
0 ε2

)
,

Laplacian is

∆x = ε−2∂2
z + ε−1κ(s, z)∂z + ∆G0 ,

where κ and ∆G0 are the extensions of mean curvature and Laplace-Beltrami
operators off the interface Γ:

κ(s, z) = −
d−1∑
i=1

ki

1− εzki
= −H(s) + O(εz),

and
∆G0 = ∆s + εzDs,2,

where ∆s is the Laplace-Beltrami operator on Γ and Ds,2 is a second order
differential operator.
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Heteroclinic Ansatz

Recall the FCH gradient flow

ut = −Π0F (u).

At leading order, for u localized about a hypersurface Γ,

F (u) ≡ (ε2∆−W ′′(u) + ε2η)(ε2∆u −W ′(u)) ∼ (∂2
z −W ′′(u))(∂2

z u −W ′(u)).

For a symmetric well the gradient flow has front critical points φ(z) satisfying

∂2
zφ−W ′(φ) = 0.

By incorporating curvature dependent terms into a perturbation φ2 we build
an ansatz

Φ(x ; Γ, b) = Φ(s, z) = φ(z)− ε2

φ2︷ ︸︸ ︷(1

2
H2 + tr(A2)

)
L−1
φ (zφ′) +b,

where H is the mean curvature and A is the Weingarten map whose
eigenvalues are the curvatures of Γ. For a smooth hypersurface Γ, we have

||F (Φ)||C4(Ω) = O(ε3).

We refer to this as ‘dressing’ the interface Γ with the 1D profile.
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Formal Results (Physica D, 2011, with N. Gavish, K. Promislow and L.
Yang)

A formal slow manifold reduction, projecting the residual F (Φ) onto the neutral
modes of the linearization yields a coupled evolution for the constant
background state, b = ε3b3, and the normal velocity Vn,

Vn = −ε3
[((

∆s + η
)

H − H3

2
+ Htr(A2)

)
+

2√
det(g)||φ′||2

L2(R)

(
µ2

0b3− ∂tb3

)]
,

∂tb3 + ε
4µ2

0|Γ|√
det(g)||φ′||2

L2(R)
|Ω|

b3 = − 2ε

|Ω|

∫
Γ

(
∆s + η − H2

2
+ tr(A2)

)
Hds.

In the remainder of this presentation we address the rigorous derivation of
these equations.
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Rigorous Results - definition of admissible interfaces

Definition

Denote by G the family of smooth compact oriented (d-1)-dimensional
manifolds without boundary embedded in Rd . For K > 0 denote by GK the set
of manifolds Γ ∈ G satisfying the following assumptions:
(i) the principal curvatures and their derivatives up to the fourth order are
bounded in L∞(Γ) norm by K ,
(ii) the whiskers of length 1/K (in the unscaled distance) do not intersect
each-other,
(iii) the volume vol(Γ) of Γ is bounded by K .
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Definition

We associate to each Γ ∈ GK , b ∈ R the corresponding single-layer dressed
ansatz,

Φ(x ; Γ, b) := η1(z)(φ(z) + ε2φ2(s, z)) + b + η̄1(z).

Here b = ε3b3 is an O(ε3) parameter that incorporates the small,
spatially-constant variation of the background state of Φ away from the
limiting values of ±1, η1 is a smooth cutoff function which is equal to one near
the interface and is zero away from it. Similarly, η̄1(x) takes the values ±1
away from the interface and is zero near the interface.

Definition

For each K , b̄ > 0, we define the single-layer dressed manifold

MK ,b̄ := {Φ(x ; Γ, b) : Γ ∈ GK , b ∈ (−b̄ε3, b̄ε3)}.
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The reduction of the FCH to a curvature driven flow requires a detailed analysis
of the linearization

Lφ := (−ε2∆ + W ′′(Φ)− ε2η)(−ε2∆ + W ′′(Φ))−W ′′′(Φ)(ε2∆Φ−W ′(Φ)),

of F about the ansatz Φ.

We utilize a decomposition ZM ⊕Z⊥M that breaks L2(Ω) into two
approximately-Lφ invariant subspaces, with the bilinear form associated
with Lφ uniformly coercive when restricted to Z⊥M .

We show that a solution that starts in a sufficiently small neighborhood of
MK ,b̄ may be decomposed as

u(x , t) = Φ(x ; Γt , b) + w(x , t),

where w ∈ Z⊥M and Γt denotes the interface at time t.



Introduction Formal Results Rigorous Results

Reduction of slow flow to a normal velocity

We project the residual F (Φ) onto the slow space of Lφ.

Assuming the continued smoothness of the interface, we show that there
exists a choice of normal velocity

Vn = ε4V 0
n (h) + V c

n (h,w),

with V 0
n depending only upon the second fundamental form, h, of the

interface, such that the remainder w will remain small, in an appropriate
norm, for all t ∈ [0,Tf ε

−4].

In particular, after an O(ε−1) transient associated to the relaxation of the
background state, the normal velocity reduces to

V 0
n = −Π0,Γ

(
(∆s + η)H − H3

2
+ H tr(A2)

)
,

where H is the mean curvature, A is the Weingarten map whose
eigenvalues are the curvatures of Γ, and Π0,Γ is the zero-mass projection
associated to the surface integral over Γ.
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Key Steps - Laplace-Beltrami Spectrum

Consider the Laplace-Beltrami operator ∆s : H2(Γ)→ L2(Γ) given locally
on Γ by

∆s =
1√

det g

d−1∑
i=1

d−1∑
j=1

∂

∂si
g ij
√

det g
∂

∂sj
,

and denote the (nonnegative) eigenvalues of −∆s by {βj,Γ} and the
corresponding eigenfunctions by {Θj,Γ},

−∆sΘj,Γ = βj,ΓΘj,Γ.

The following is a key relation on the asymptotics of the large eigenvalues
of the Laplace-Beltrami operator, first proved by Weyl

(βm)(d−1)/2 ∼ (2π)d−1/ωd

volΓ
m, as m→∞.

Weyl asymptotic formula implies that for M = [M1ε
−(d−1)]

βM ∼
(2π)2M

2/(d−1)
1

(volΓωd)2/(d−1)
ε−2.
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Key Step - Analysis of Linearization

In ‘whiskered’ variables, acting on functions localized about Γ ∈ GK ,

L = L2 + ε4∆2
s + εP1(∂z) + ε2P2(∂z , ∂si ),

where L is a 1D operator on each whisker

L = ∂2
z −W ′′(φ).

L is a Sturm-Liouville operator, so the spectrum on R is easy to establish.

L = ∂2
z −W ′′(φ) A = ε2∆−W ′′(φ) L = A2 + O(ε2).

Question: How does the 1D structure impact the spectrum of the full
linearization on Rd?

For Allen-Cahn/Cahn-Hilliard linearizations about fronts shown by
Alikakos and Fusco in 2D and Chen in higher dimensions.
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Definition

For each M > 0, the M + 1 dimensional slow space associated to Lφ is defined
by

ZM := span ({Zi}i=1...M ∪ {1}) ,

where
Zi (x) := η1Θi,Γ(s)φ′(z);

Z⊥M is the orthogonal complement of ZM in L2(Ω).

Remark: We will show that Z⊥M corresponds to the fast eigenspace of Lφ, in
the sense that Lφ is coercive on Z⊥M .
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Theorem: Spectrum of the Full Linear Operator

Coercivity Estimates for the Linear Operator. Fix K , b̄ > 0 and ε > 0
sufficiently small. There exists M1− > 0 independent of ε, such that for all
M1 ≥ M1− the following bounds hold for all w from the associated fast space,
Z⊥M , where M = M1ε

−(d−1)

(Lw ,w)L2(Ω) ≥
1

32
ε4β2

M+1||w ||L2(Ω),

||A2
φw ||L2(Ω) ≥

1

32
ε4β2

M+1||w ||L2(Ω),

||Aφw ||L2(Ω) ≥
1

8
ε2βM+1||w |L2(Ω),

||Aφw ||L2(Ω) ≥ Cε4βM+1||w ||H2(Ω),

where
Aφ := ε2∆−W ′′(Φ) + ε2η,

Remark: This result is also extended to bi-layer dressings, when the
linearization of the 1D operator has two asymptotically small eigenvalues.
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Key Steps - Initial Value Decomposition

Any initial data u0 which is close to the manifold MK ,b̄ can be (trivially)
written as

u0 = Φ(x ; Γ∗, b∗) + w∗(x),

for some Γ∗ ∈ GK with w∗ small in an appropriate norm. To obtain decay of w ,
we look for an orthogonal decomposition of the form

u0 = Φ(x ; Γ0, b) + w0(x , t),

with the additional condition that w0 lie in the fast space, that is w0 ∈ Z⊥M (Γ0).
We search for Γ0 among interfaces Γp near Γ∗ in the form

γp(s) = γ∗(s) + ν∗(s)R(s),

where ν∗(s) is the normal to Γ∗ at γ∗(s). We take candidates for R as among
the Galerkin sums on the first M Laplace-Beltrami eigenmodes, {Θi}Mi=1 of Γ∗,

R =
M∑
i=1

piΘi (s),

and determine the parameters p = (p1, . . . , pM) to impose the orthogonality
condition

w0 := u0 − Φ0 ∈ Z⊥M (Γ0). (3.1)
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Main Difficulties

Loss of one derivative of spatial regularity when decomposing the initial
data -

γp(s) = γ∗(s) + ν∗(s)R(s).

Smoothness of the interfaces under the normal velocity flow - the analysis
of interface evolution equation for Γ which is expressed as a curvature
driven flow on the first and second fundamental forms of Γ is nontrivial.

The higher order corrections V c
n to the normal velocity enter into the

curvature flow. We have control of this correction term in only relatively
weak norms, such as L2 and L∞. We require estimates on higher-order
derivatives of w to better control V c

n .

Even for d = 2, when the fundamental forms are scalar, the flow reduces,
at leading order, to a generalized Kuramoto-Sivashinsky equation,

∂τH − (∂sH)

∫ s

0

V 0
n Hds = −

(
∂2
s + H2

)
Π0,Γ

(
∂2
s + η +

H2

2

)
H,

whose regularity is (just) outside the known results. Here Π0,Γ is the
zero-mass projection associated to the surface integral over Γ.
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Main Assumption

The scaled normal velocity

V̄n := ε−4Vn = V 0
n (h) + ε−4V c

n (h,w)

is equivalent (up to rigid body motions) to the curvature driven flow on the
fundamental forms of the hypersurface Γ,

∂τgij = −2V̄nhij ,

∂τhij = −∇i∇j V̄n +
∑
l,m

V̄nhilg
lmhmj .

(3.2)

Assumption (*)

We assume that the higher-order curvature driven flow (3.2) is well-posed in
H4(S) for all scaled time τ ∈ [0,Tf ], where S ⊂ Rd−1 is the reference set for
the interface parameterization γ.
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Interface Evolution Reduction

We recall that the dynamics are governed by the FCH gradient flow

∂tu(x , t) = −Π0F (u),

u(x , 0) = u0(x),

Time-derivative of the ansatz Φ is

∂tΦ(x ; Γt ; b) = ∂zΦ(z(x ; t), s(x ; t))
∂z(x ; t)

∂t
+ ε2Dsφ2 ·

∂s(x ; t)

∂t
+ ∂tb,

where
∂z(x ; t)

∂t
= −1

ε
Vn(s(x ; t)).

Substituting the decomposition u(x , t) = Φ(x ; Γt ; b(t)) + w(x , t) into the
gradient flow, we obtain

−1

ε
Vn(s, t)∂zΦ + ε2Dsφ2 ·

∂s(x ; t)

∂t
+ ∂tb + ∂tw = −Π0F (Φ + w)

= −Π0F (Φ)− Π0Lφw − Π0N (w) (∗∗),

where
N (w) = F (Φ + w)− F (Φ)− Lφw ,

represents the nonlinear terms in w .
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A priori estimates on normal velocity

We define the A-norm of u ∈ H2(Ω) as

||u||A := ||∆u||L2(Ω) + ε−2||u||L2(Ω).

Projecting (**) onto the space ZM and balancing the first terms on the left
and right-hand sides, we obtain bounds on the normal velocity.

Proposition

The following estimates hold for the normal velocity

||Vn||L∞(Γ) ≤ M1C(K)
(
ε5−(d−1) + ε7/2−(d−1)||w ||A

)
,

∥∥∥V c
n

∥∥∥
L2(Γ)

=
∥∥∥Vn − ε4V 0

n

∥∥∥
L2(Γ)
≤ C(K)

√
M1

(
ε(11−d)/2 + ε(8−d)/2||w ||A

)
,

where

V 0
n = −

[(
∆s + η

)
H − H3

2
+ Htr(A2)

]
− 2

||φ′||2
L2(R)

(
µ2

0b3 − ∂tb3

)
.

and M1 is the slow-space dimension parameter.



Introduction Formal Results Rigorous Results

Main Theorem - Part 1

Let the space dimension d = 2 or 3 and assume that Assumption (*) is
satisfied. Fix the admissible interface parameters b̄,K > 0 and b̄0 < b̄,
K0 < K. Fix the slow-space dimension parameter M1 > 0. Then there exist
1
2
B̄0 > B̄ > 0 and U, ε0,Tf > 0 such that for all ε ∈ (0, ε0) and for all u0

satisfying
inf

Γ∈GK0

b∈(−b̄0ε
3,b̄0ε

3)

‖u0 − Φ(·, Γ, b)‖A < B̄0ε
d−3/2,

then for t < Tf ε
−4 we have a decomposition of the solution u(x , t)

u(x , t) = Φ(x , Γt , b(t)) + w(x , t)

where b(t) = ε3b3(t), w lies in the L2 orthogonal complement of the slow
space, w ∈ Z⊥M , with the slow dimension M = [M1ε

−(d−1)] and

||w ||A ≤ B̄0ε
d−3/2e−

U
2
t + B̄ε3/2.
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Main Theorem - Part 2

Moreover, the remainder term in the normal velocity Vn = ε4V 0
n + V c

n of the
interface Γt satisfies

‖V c
n ‖L2(Γ) =

∥∥∥Vn − ε4V 0
n

∥∥∥
L2(Γ)
≤ C(K)

√
M1

(
ε(11−d)/2 + ||w ||Aε(8−d)/2

)
where V 0

n takes the following form

V 0
n = −

[(
∆s + η

)
H − H3

2
+ Htr(A2)

]
− 2√

det(g)||φ′||2
L2(R)

(
µ2

0b3 − ∂tb3

)
,

and the background state evolves according to

∂tb3 + ε
4µ2

0|Γ|√
det(g)||φ′||2

L2(R)
|Ω|

b3 = − 2ε

|Ω|

∫
Γ

(
∆s + η − H2

2
+ tr(A2)

)
Hds

+ O
(√

M1ε
(8−d)/2||w ||A,

√
M1ε

(11−d)/2
)
.
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Main Theorem - Part 3

The evolution equations result in a two time-scale system, which, after an
O(ε−1) time drives the background to its quasi-equilibrium, and V 0

n relaxes to

V 0
n = −Π0,Γ

(
∆s + η − H2

2
+ tr(A2)

)
H.
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