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Leonardo vs. Kolmogorov

“Half a century after Kolmogorov’s work on the statistical theory of fully developed
turbulence, we still wonder how his work can be reconciled with Leonardo’s half a
millennium old drawings of eddy motion in the study for the elimination of rapids in
the river Arno.”

– U. Frisch, Turbulence, The Legacy of A.N. Kolmogorov, 1994
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Leonardo vs. Kolmogorov

what is the role of coherent vortex structures in the mathematical theory of
turbulence?

a ‘discrete’ statistical theory of 3D vortex filaments [Chorin, 1994]; lattice models

a ‘continuous’ statistical theory of 3D vortex filaments [P.-L. Lions and Majda, 2000]

...

a more specific question: what is the role of coherent vortex structures in the
mathematical theory of turbulent cascades?

zero-step = finding a mathematical framework suitable for encoding geometric
information on the flow in the theory of turbulent cascades
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ensemble averages; physical scales

R0 = the macro scale associated with the flow; B(0, 2R0) contained in Ω (the global
spatial domain)

x0 in B(0, R0)

0 < R ≤ R0

f = a locally integrable function (density) on B(x0, 2R)

a local physical scale R – associated to the point x0 – is realized via bounds on
distributional derivatives of f ,

|(Dαf, ψ)| ≤
∫
B(x0,2R)

|f ||Dαψ| ≤
(
c(α)

1

R|α|
|f |, ψδ(α)

)
for some c(α) > 0 and δ(α) in (0, 1)
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ensemble averages; physical scales

spatiotemporal cut-offs

φ = φx0,R,T = ψ η on B(x0, 2R)× (0, T )

where η = ηT (t) ∈ C∞(0, T ) and ψ = ψx0,R(x) ∈ D(B(x0, 2R)) satisfying

0 ≤ η ≤ 1, η = 0 on (0, T/3), η = 1 on (2T/3, T ),
|η′|
ηρ1
≤
C

T
(1)

and

0 ≤ ψ ≤ 1, ψ = 1 on B(x0, R),
|∇ψ|
ψρ2

≤
C

R
,

|4ψ|
ψ2ρ2−1

≤
C

R2
, (2)

for some 1
2
< ρ1, ρ2 < 1

the case x0 = 0 and R = R0 corresponds to the macro scale domain cut-off φ0,
φ0 = ηψ0
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ensemble averages; physical scales

for x0 near the boundary of the macro scale domain, S(0, R0), assume additional
conditions,

0 ≤ ψ ≤ ψ0 (3)

and, if B(x0, R) is not included in B(0, R0), then ψ ∈ D(B(0, 2R0)) with
ψ = 1 on B(x0, R) ∩B(0, R0) satisfying, in addition to (2), the following:

ψ = ψ0 on the part of the cone centered at zero and passing through

S(0, R0) ∩B(x0, R) between S(0, R0) and S(0, 2R0)
(4)

and
ψ = 0 on B(0, R0) \B(x0, 2R) and outside the part of the cone

centered at zero and passing through S(0, R0) ∩B(x0, 2R)

between S(0, R0) and S(0, 2R0)

(5)
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ensemble averages; physical scales

a physical scale R – associated to the macro scale domain B(0, R0) – is realized via
suitable ensemble-averaging of the localized quantities with respect to
‘(K1,K2)-covers at scale R’

let K1 and K2 be two positive integers, and 0 < R ≤ R0. a cover {B(xi, R)}ni=1 of
B(0, R0) is a (K1,K2)-cover at scale R if(

R0

R

)3

≤ n ≤ K1

(
R0

R

)3

,

and any point x in B(0, R0) is covered by at most K2 balls B(xi, 2R)

the parameters K1 and K2 represent the maximal global and local multiplicities,
respectively
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ensemble averages; physical scales

for a physical density of interest f , consider time-averaged, per unit mass – spatially
localized to the cover elements B(xi, R) – local quantities f̂xi,R,T ,

f̂xi,R,T =
1

T

∫ T

0

1

R3

∫
B(xi,2R)

f(x, t)φδxi,R,T (x, t) dx dt

for some 0 < δ ≤ 1, and denote by 〈F 〉R the ensemble average given by

〈F 〉R =
1

n

n∑
i=1

f̂xi,R,T
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ensemble averages; physical scales

the key feature of the ensemble averages {〈F 〉R}0<R≤R0
is that 〈F 〉R being stable,

i.e., nearly independent on a particular choice of the cover – with the fixed parameters
K1 and K2 – indicates there are no significant sign-fluctuations of the density f at
scales comparable or greater than R

on the other hand, if f does exhibit significant sign-fluctuations at scales comparable
or greater than R, suitable rearrangements of the cover elements up to the maximal
multiplicities will result in the range of 〈F 〉R containing an interval of the form
(−M,M) for a large M

consequently, for an a priori sign-varying density, the ensemble averaging process acts
as a coarse detector of the sign-fluctuations at scale R (the larger the maximal
multiplicities K1 and K2, the finer detection)
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ensemble averages; physical scales

as expected, for a non-negative density f , all the averages are comparable to each
other throughout the full range of scales R, 0 < R ≤ R0; in particular, they are all
comparable to the simple average over the macro scale domain

1

K∗
F0 ≤ 〈F 〉R ≤ K∗F0 (6)

for all 0 < R ≤ R0, where

F0 =
1

T

∫
1

R3
0

∫
f(x, t)φδ0(x, t) dx dt,

and K∗ = K∗(K1,K2) > 1

more generally, the bound (6) holds for any non-negative distribution (integration
replaced by duality); in fact, this was a key technical ingredient in the proof of
existence of 3D inviscid cascade presented in [Dascaliuc and G., 2011]
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geometric depletion of nonlinearity

rigorous study of geometric depletion of the nonlinearity in the 3D NSE was pioneered
by Constantin (cf. [Constantin, 1994])

based on a singular integral representation for the stretching factor in evolution of the
vorticity magnitude featuring a geometric kernel depleted by coherence of the vorticity
direction

(∂t + u · ∇ −4)|ω|2 + |∇ω|2 = α|ω|2

α(x) =
3

4π
P.V.

∫
D (ŷ, ξ(x+ y), ξ(x)) |ω(x+ y)|

1

|y|3
dy,

where ŷ is the unit vector in the y-direction, ξ is the vorticity direction and the
geometric kernel D is defined by

D(e1, e2, e3) = (e1 · e3) (e1 · (e2 × e3))

for any triple of unit vectors e1, e2 and e3
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geometric depletion of nonlinearity

note that

|D (ŷ, ξ(x+ y), ξ(x)) | ≤ | sinϕ
(
ξ(x+ y), ξ(x)

)
|

this was utilized in [Constantin and Fefferman, 1993] to show that as long as sinϕ is
Lipschitz (in the regions of intense vorticity), no finite-time blow up can occur

and later in [Beirao da Veiga and Berselli, 2002] where the Lipschitz condition was
replaced by 1

2
-Hölder
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localization

suppose that the solution in view is smooth in B(x0, 2R)× (0, T )

multiplying the vorticity-velocity formulation of the 3D NSE by φω (φ = ψη) and
integrating over B(x0, 2R)× (0, t) for some 2T/3 < t < T yields

∫
1

2
|ω(x, t)|2ψ(x) dx+

∫ t

0

∫
|∇ω|2φ dx ds

=

∫ t

0

∫
1

2
|ω|2(φt +4φ) dx ds

+

∫ t

0

∫
1

2
|ω|2(u · ∇φ) dx ds+

∫ t

0

∫
(ω · ∇)u · φω dx ds (7)
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localization

suppressing the time variable, the localized vortex-stretching term can be written as

(cf. [G., 2009])

(ω · ∇)u · φω (x) = φ
1
2 (x)

∂

∂xi
uj(x)φ

1
2 (x)ωi(x)ωj(x)

= −c P.V.
∫
B(x0,2r)

εjkl
∂2

∂xi∂yk

1

|x− y|
φ

1
2 ωl dy φ

1
2 (x)ωi(x)ωj(x) + LOT

= −c P.V.
∫
B(x0,2r)

(
ω(x)× ω(y)

)
·Gω(x, y)φ

1
2 (y)φ

1
2 (x) dy + LOT

= VST + LOT (8)

where εjkl is the Levi-Civita symbol,

(
Gω(x, y)

)
k

=
∂2

∂xi∂yk

1

|x− y|
ωi(x)

and LOT denotes the lower order terms
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localization

geometric cancelations in the highest order-term V ST were utilized in [G., 2009] to
obtain a spatiotemporal localization of 1

2
-Hölder coherence of the vorticity direction

regularity criterion

and later in [G. and Guberović, 2010] to introduce a family of scaling-invariant
regularity classes featuring a balance between coherence of the vorticity direction and
the vorticity magnitude

the following regularity class – a scaling-invariant improvement of 1
2

-Hölder coherence
– is included, ∫ t0

t0−(2R)2

∫
B(x0,2R)

|ω(x, t)|2 ρ21
2
,2R

(x, t)dx dt <∞; (9)

ργ,r(x, t) = sup
y∈B(x,r),y 6=x

| sinϕ
(
ξ(x, t), ξ(y, t)

)
|

|x− y|γ
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3D enstrophy cascade

let R be a region contained in the global spatial domain Ω. the inward enstrophy flux
through the boundary of the region is given by

−
∫
∂R

1

2
|ω|2(u · n) dσ = −

∫
R

(u · ∇)ω · ω dx

where n denotes the outward normal

localization of evolution of the enstrophy to cylinder B(x0, 2R)× (0, T ) leads to the
following version of the enstrophy flux,∫

1

2
|ω|2(u · ∇φ) dx = −

∫
(u · ∇)ω · φω dx (10)

since ∇φ = (∇ψ)η, and ψ can be constructed such that ∇ψ points inward, (10)
represents local inward enstrophy flux, at scale R (more precisely, through the layer
S(x0, R, 2R)) around the point x0
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3D enstrophy cascade

considering a (K1,K2)-cover {B(xi, R)}ni=1 at scale R, for some 0 < R ≤ R0, local
inward enstrophy fluxes at scale R – associated to the cover elements B(xi, R) – are
then given by ∫

1

2
|ω|2(u · ∇φi) dx, (11)

for 1 ≤ i ≤ n
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3D enstrophy cascade

assuming smoothness on (0, T ), the identity (7) written for B(xi, R) yields the
following expression for time-integrated local fluxes,

∫ t

0

∫
1

2
|ω|2(u · ∇φi) dx ds =

∫
1

2
|ω(x, t)|2ψi(x) dx+

∫ t

0

∫
|∇ω|2φi dx ds

−
∫ t

0

∫
1

2
|ω|2

(
(φi)s +4φi

)
dx ds

−
∫ t

0

∫
(ω · ∇)u · φi ω dx ds, (12)

for any t in (2T/3, T ) and 1 ≤ i ≤ n
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3D enstrophy cascade

denoting the time-averaged local fluxes per unit mass associated to the cover element
B(xi, R) by Φ̂xi,R,

Φ̂xi,R =
1

t

∫ t

0

1

R3

∫
1

2
|ω|2(u · ∇φi) dx, (13)

the main quantity of interest is the ensemble average of {Φ̂xi,R}ni=1,

〈Φ〉R =
1

n

n∑
i=1

Φ̂xi,R (14)

the goal is to formulate a set of physically reasonable conditions on the flow in
B(0, 2R0)× (0, T ) implying the strict positivity and stability of 〈Φ〉R across a suitable
range of scales – existence of the enstrophy cascade

Zoran Grujić University of Virginia Coherent structures, turbulent cascades and regularity theory



3D enstrophy cascade

denoting the time-averaged local fluxes per unit mass associated to the cover element
B(xi, R) by Φ̂xi,R,

Φ̂xi,R =
1

t

∫ t

0

1

R3

∫
1

2
|ω|2(u · ∇φi) dx, (13)

the main quantity of interest is the ensemble average of {Φ̂xi,R}ni=1,

〈Φ〉R =
1

n

n∑
i=1

Φ̂xi,R (14)

the goal is to formulate a set of physically reasonable conditions on the flow in
B(0, 2R0)× (0, T ) implying the strict positivity and stability of 〈Φ〉R across a suitable
range of scales – existence of the enstrophy cascade
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3D enstrophy cascade

(A1) Coherence Assumption

let M > 0 (large). assume that there exists a positive constant C1 such that

| sinϕ
(
ξ(x, t), ξ(y, t)

)
| ≤ C1|x− y|

1
2

for any (x, y, t) in
(
B(0, 2R0)×B(0, 2R0 +R

2
3
0 )× (0, T )

)
∩ {|∇u| > M}

note that the previous local regularity results [G. and Zhang, 2006, G., 2009] imply
that – under (A1) – the a priori weak solution in view is in fact smooth inside
B(0, 2R0)× (0, T ) and can, moreover, be smoothly continued (locally-in-space) past
t = T ; in particular, we can write (12) with t = T
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3D enstrophy cascade

(A2) Modified Kraichnan Scale

denote by E0 time-averaged enstrophy per unit mass associated with the integral
domain B(0, 2R0)× (0, T ),

E0 =
1

T

∫
1

R3
0

∫
1

2
|ω|2φ2ρ−1

0 dx dt,

by P0 a modified time-averaged palinstrophy per unit mass,

P0 =
1

T

∫
1

R3
0

∫
|∇ω|2φ0 dx dt+

1

T

1

R3
0

∫
1

2
|ω(x, T )|2ψ0(x) dx

and by σ0 a corresponding modified Kraichnan scale, σ0 =

(
E0

P0

) 1
2

(A2) is a requirement that the modified Kraichnan scale associated with the integral
domain B(0, 2R0)× (0, T ) be dominated by the integral scale,

σ0 < βR0,

for a suitable constant β = β(ρ,K1,K2,M,BT ), 0 < β < 1, where
BT = supt∈(0,T ) ‖ω(t)‖L1 ; this is finite provided, e.g., ω0 in L1 [Constantin, 1990]
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Zoran Grujić University of Virginia Coherent structures, turbulent cascades and regularity theory



3D enstrophy cascade

(A3) Localization of the Integral Domain and Modulation

the general set up considered is one of the Leray solutions satisfying (A1). as already
mentioned, (A1) implies smoothness; however, the control on regularity-type norms is
only local

on the other hand, the energy inequality on the global spatiotemporal domain

R3 × (0, T ) implies

∫ T

0

∫
R3
|ω|2 dx dt <∞; localization of the integral domain will be

determined by the condition∫ T

0

∫
B(0,2R0+R

2
3
0 )
|ω|2 dx dt ≤

1

C2
,

for a suitable constant C2 > 1

the modulation assumption on the evolution of local enstrophy on (0, T ) – consistent
with the choice of the temporal cut-off η – reads∫

|ω(x, T )|2ψ0(x) dx ≥
1

2
sup

t∈(0,T )

∫
|ω(x, t)|2ψ0(x) dx
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3D enstrophy cascade

Theorem

Let u be a Leray solution on R3 × (0, T ) satisfying (A1)-(A3) on the spatiotemporal

integral domain B(0, 2R0 +R
2
3
0 )× (0, T ), and suppose that ω0 is in L1(R3). Then,

1

4K∗
P0 ≤ 〈Φ〉R ≤ 4K∗ P0

for all R, 1
β
σ0 ≤ R ≤ R0.
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3D enstrophy cascade

the second theorem concerns locality of the flux

according to turbulence phenomenology, the average flux at scale R – throughout the
inertial range – is supposed to be well-correlated only with the average fluxes at
nearby scales

denoting the time-averaged local fluxes associated to the cover element B(xi, R) by

Ψ̂xi,R,

Ψ̂xi,R =
1

T

∫ T

0

∫
1

2
|ω|2(u · ∇φi) dx, (15)

the (time and ensemble) averaged flux is given by

〈Ψ〉R =
1

n

n∑
i=1

Ψ̂xi,R = R3 〈Φ〉R (16)

the following locality result is a simple consequence of the universality of the cascade
of the time and ensemble-averaged local fluxes per unit mass 〈Φ〉R presented in the
previous theorem
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3D enstrophy cascade

Theorem

Let u be a Leray solution on R3 × (0, T ) satisfying (A1)-(A3) on the spatiotemporal

integral domain B(0, 2R0 +R
2
3
0 )× (0, T ), and suppose that ω0 is in L1(R3). Let R

and r be two scales within the inertial range delineated in the previous theorem. Then

1

16K2
∗

(
r

R

)3

≤
〈Ψ〉r
〈Ψ〉R

≤ 16K2
∗

(
r

R

)3

.

In particular, if r = 2kR for some integer k, i.e., through the dyadic scale,

1

16K2
∗

23k ≤
〈Ψ〉2kR
〈Ψ〉R

≤ 16K2
∗ 23k.

previous locality results include locality of the filtered flux – via coarse graining
approach – presented in [Eyink, 2005] and [Eyink and Aluie, 2009], and locality of the
flux in the Littlewood-Paley setting obtained in [Cheskidov, Constantin, Friedlander
and Shvydkoy, 2008]
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harmonic measure in the complex plane

let Ω and K be an open and a closed set in the complex plane, respectively

ω = ω(·,Ω,K) = a unique bounded harmonic function on Ω \K such that ω = 1 on
K and ω = 0 on ∂Ω \K

the general harmonic measure majorization principle implies

(i) the harmonic measure is increasing (as a measure) with respect to both K and Ω

(ii) let f be analytic in Ω \K, |f | ≤M , and |f | ≤ m on K. then

|f(z)| ≤ mθM1−θ

for any z in Ω \K, where θ = ω(z,Ω,K) [this a refined form of the maximum
modulus principle for analytic functions in Ω \K (the log-convexity of the modulus of
f – sometimes referred to as “two-constants theorem”)]
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harmonic measure in the complex plane

two more properties

(i) the harmonic measure is invariant with respect to conformal mappings

(ii) a result on extremal properties of the harmonic measure in the unit disk D
obtained in [Solynin, 1999]

Theorem

Let K be a closed subset of [−1, 1] such that |K| = 2λ for some λ, 0 < λ < 1, and
suppose that 0 ∈ D \K. Then

ω(0,D,K) ≥ ω(0,D,Kλ) =
2

π
arcsin

1− (1− λ)2

1 + (1− λ)2

where Kλ = [−1,−1 + λ] ∪ [1− λ, 1].

the above theorem provides a generalization of the classical Beurling’s result from
1933 in which K is a finite union of intervals lying on one side of the origin. this was
conjectured in [Segawa, 1988], and the symmetric version was previously resolved in
[Essen and Haliste, 1989]
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spatial analyticity in L∞

a general method for deriving explicit local-in-time lower bounds on the uniform radius
of spatial analyticity of solutions to the NSE in Lp was introduced in [G. and
Kukavica, 1998]

we will make use of the following (sharp) estimate in L∞ [Guberović, 2010]

Theorem

Let u0 be in L∞(R3). Then, there exists an absolute constant c0 > 1 such that

setting T =
1

c20‖u0‖2∞
, a unique mild solution u = u(t) on [0, T ] has the analytic

extension U = U(t) to the region

Rt = {x+ iy ∈ C3 : |y| ≤
1

c0

√
t}

for any t in (0, T ]. In addition,

‖U(t)‖L∞(Rt) ≤ c0‖u0‖∞

for all t in [0, T ].
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spatial analyticity in L∞

the vorticity version of the above theorem is as follows (the proof is analogous;
utilizing the Biot-Savart law to close each iteration)

Theorem

Let ω0 be in L∞(R3). Then, there exists an absolute constant d0 > 1 such that

setting T =
1

d20‖ω0‖∞
, a unique mild solution ω = ω(t) on [0, T ] has the analytic

extension Ω = Ω(t) to the region

Rt = {x+ iy ∈ C3 : |y| ≤
1

d0

√
t}

for any t in (0, T ]. In addition,

‖Ω(t)‖L∞(Rt) ≤ d0‖ω0‖∞

for all t in [0, T ].
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geometric measure and regularity

since our main tool in the proof is the harmonic measure maximum principle, the
spatial regularity is recorded in L∞ = L∞(R3); starting from an initial value in L∞,
we consider the corresponding unique mild solution u on the maximal interval of
regularity (0, T ∗) (there is always ‘the first singular time’)

note that – due to the local-in-time well-posedness of the equations in L∞ – for an
arbitrary large L, there exists an ‘escape time’ tL; i.e., for any L > 0, there exists a
time tL in (0, T ∗), such that ‖u(t)‖∞ > L for all t in (tL, T

∗)

for M > 0, denote by ΩM (t) the super-level set at time t; more precisely,

ΩM (t) = {x ∈ R3 : |u(x, t)| > M}
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geometric measure and regularity

Definition

Let x0 be a point in R3, r > 0, S an open subset of R3 and δ in (0, 1).

The set S is linearly δ-sparse around x0 at scale r in weak sense if there exists a unit
vector d in S2 such that

|S ∩ (x0 − rd, x0 + rd)|
2r

≤ δ.

.
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geometric measure and regularity

the main result (for the velocity formulation) reads as follows

Theorem

Let u0 be in L∞, and consider the corresponding unique mild solution u on the
maximal interval of regularity [0, T ∗).

Let δ be in (0, 1), h = h(δ) = 2
π

arcsin 1−δ2
1+δ2

, α = α(δ) ≥ 1−h
h

, and

M = M(δ) = 1
cα0
‖u(te)‖∞ where c0 is the constant in the local-in-time analyticity

estimate. Assume that there exists an escape time te and a time t in[
te + 1

4c20‖u(te)‖2∞
, te + 1

c20‖u(te)‖2∞

]
such that for any spatial point x0, there exists a

scale r, 0 < r ≤ 1
2c20‖u(te)‖∞

, with the property that the super-level set Ωt(M) is

linearly δ-sparse around x0 at scale r in weak sense.

Then, T ∗ is in fact not a singular time, and the solution u can be smoothly continued
past T ∗.
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geometric measure and regularity

3D sparseness implies 1D sparseness in weak sense; more precisely

Lemma

Let x0 be a point in R3, ρ > 0, S an open subset of R3 and δ in (0, 1).

Suppose that

|S ∩B(x0, ρ)|
|B(x0, ρ)|

≤ (1− δ)3. (17)

Then, there exists a scale r, 0 < r ≤ ρ, such that S is linearly δ-sparse around x0 at
scale r in weak sense.
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geometric measure and regularity

recall that the distribution function of a function f – encoding virtually all information
on the size of f – is given by

λf (β) = |{x : |f(x)| > β}|

when interested in the behavior of the function f locally, e.g., in the vicinity of a
singularity, the main object of study is the decrease of λf as β tends to ∞

an amorphous regularity criterion – obtained from the previous theorem via the lemma
as a geometrically worst case scenario – is a requirement on the decrease of the
distribution function of the solution, uniformly in (T ∗ − ε, T ∗)
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geometric measure and regularity

Theorem

Let u0 be in L∞, and consider the corresponding unique mild solution u on the
maximal interval of regularity [0, T ∗).

Assume that there exists ε, 0 < ε < T ∗, such that

λu(s)(β) = o
( 1

β3

)
, β →∞,

uniformly in (T ∗ − ε, T ∗) (the same rate for all s in the interval).

Then, T ∗ is in fact not a singular time, and the solution u can be smoothly continued
past T ∗.
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geometric measure and regularity

it is instructive to compare this result with the well-known uniform-in-time
boundedness of the L3-norm of u-regularity criterion given in [Escauriaza, Seregin and
Sverak, 2003]

let f be a locally integrable function. it is plain that f in L3 implies λf (α) = o
(

1
α3

)
.

on the other hand, the converse is not true; a simple counterexample being a function
f for which λf (α) ∼ 1

α3 logα
for large α. hence, in a ‘frozen-in-time’ situation, being

L3 is a stronger condition

however, since the inclusion is not continuous, i.e., the size of the L3 norm provides
no information on the rate at which α3λf (α) decreases to 0, as α→∞, the two
regularity criteria are in fact not directly comparable
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Zoran Grujić University of Virginia Coherent structures, turbulent cascades and regularity theory



geometric measure and regularity

it is instructive to compare this result with the well-known uniform-in-time
boundedness of the L3-norm of u-regularity criterion given in [Escauriaza, Seregin and
Sverak, 2003]

let f be a locally integrable function. it is plain that f in L3 implies λf (α) = o
(

1
α3

)
.

on the other hand, the converse is not true; a simple counterexample being a function
f for which λf (α) ∼ 1

α3 logα
for large α. hence, in a ‘frozen-in-time’ situation, being

L3 is a stronger condition

however, since the inclusion is not continuous, i.e., the size of the L3 norm provides
no information on the rate at which α3λf (α) decreases to 0, as α→∞, the two
regularity criteria are in fact not directly comparable
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geometric measure and regularity

the vorticity version is completely analogous

Theorem

Let ω0 be in L∞, and consider the corresponding unique mild solution ω on the
maximal interval of regularity [0, T ∗).

Let δ be in (0, 1), h = h(δ) = 2
π

arcsin 1−δ2
1+δ2

, α = α(δ) ≥ 1−h
h

, and

M = M(δ) = 1
dα0
‖ω(te)‖∞ where d0 is the constant in the local-in-time analyticity

estimate. Assume that there exists an escape time te and a time t in[
te + 1

4d20‖ω(te)‖∞
, te + 1

d20‖ω(te)‖∞

]
such that for any spatial point x0, there exists a

scale r, 0 < r ≤ 1

2d20‖ω(te)‖
1
2∞

, with the property that the super-level set Ωt(M) is

linearly δ-sparse around x0 at scale r in weak sense.

Then, T ∗ is in fact not a singular time, and the solution ω can be smoothly continued
past T ∗.
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geometric scenario leading to closing the scaling gap
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geometric scenario leading to closing the scaling gap

theorem =⇒
as long as the diameters of the tubes are dominated by

1

C1

1

‖ω(t)‖
1
2∞

, for a suitable

constant C1 > 1, no blow up can occur

recall that if the initial vorticity is a finite Radon measure, the L1-norm of the vorticity
is bounded over any finite time-interval (0, T ) [Constantin, 1990]

Tchebyshev then implies the decrease of the distribution function of the vorticity of at
least 1

β
; consequently, the volume of the region of intense vorticity decreases at least

as C2
1

‖ω(t)‖∞

assuming that the length of a tube is comparable with the macro scale, this implies

the decrease of the tubes’ diameters of at least C3
1

‖ω(t)‖
1
2∞

, which is exactly the scale

needed for the application of the theorem
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geometric scenario leading to closing the scaling gap

assuming that the ‘shape’, i.e., the general geometry is correct, the big assumption is
that the length of a vortex tube is comparable to the macro scale; this was simply
borrowed from the picture painted by the numerical simulations

there may be hope.

back to (K1,K2)-covers and ensemble averages

∫ t

0

∫
(ω · ∇)u · φi ω dx ds =

∫
1

2
|ω(x, t)|2ψi(x) dx+

∫ t

0

∫
|∇ω|2φi dx ds

−
∫ t

0

∫
1

2
|ω|2

(
(φi)s +4φi

)
dx ds

−
∫ t

0

∫
1

2
|ω|2(u · ∇φi) dx ds, (18)

for any t in (2T/3, T ), and 1 ≤ i ≤ n

Zoran Grujić University of Virginia Coherent structures, turbulent cascades and regularity theory



geometric scenario leading to closing the scaling gap

assuming that the ‘shape’, i.e., the general geometry is correct, the big assumption is
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geometric scenario leading to closing the scaling gap

denote the time-averaged local vortex-stretching terms per unit mass associated to the
cover element B(xi, R) by V STxi,R,t,

V STxi,R,t =
1

t

∫ t

0

1

R3

∫
(ω · ∇)u · φi ω dx ds (19)

the quantity of interest is the ensemble average of {V STxi,R,t}ni=1; namely,

〈V ST 〉R,t =
1

n

n∑
i=1

V STxi,R,t (20)

’
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geometric scenario leading to closing the scaling gap

denote by E0,t time-averaged enstrophy per unit mass associated with the integral
domain B(0, 2R0)× (0, t),

E0,t =
1

t

∫ t

0

1

R3
0

∫
1

2
|ω|2φ2ρ−1

0 dx ds,

by P0,t a modified time-averaged palinstrophy per unit mass,

P0,t =
1

t

∫ t

0

1

R3
0

∫
|∇ω|2φ0 dx ds+

1

t

1

R3
0

∫
1

2
|ω(x, t)|2ψ0(x) dx

(the modification is due to the shape of the temporal cut-off η),

and by σ0,t a corresponding modified Kraichnan scale,

σ0,t =

(
E0,t

P0,t

) 1
2
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geometric scenario leading to closing the scaling gap

ensemble-averaging the local enstrophy equality yields the following result on the strict
positivity and stability of the averaged vortex-stretching term at time t

A DYNAMIC ESTIMATE ON V ST ACROSS A RANGE OF SCALES

let u be a Leray-Hopf solution on a global spatiotemporal domain Ω× (0, T ), smooth
on B(0, 2R0)× (0, T ), and let 0 < γ < 1. assume that 1

c∗γ
σ0,t < R0 for a suitable

constant c∗. then, there exist c1(γ) and c2(γ) such that c1(γ)→ 1−, as γ → 0+ and
c2(γ)→ 1+, as γ → 0+, and

c1(γ)
1

K1
P0,t ≤ 〈V ST 〉R,t ≤ c2(γ)K2 P0,t (21)

for all R within the range 1
c∗γ

σ0,t ≤ R ≤ R0
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