Transport Phenomena in Field Effect Transistors

${ }^{1}$ Ryan M. Evans, ${ }^{2}$ Arvind Balijepalli, ${ }^{2}$ Anthony Kearsley
${ }^{1}$ Just a guy, NOT affiliated with NIST rmevans135@gmail.com

2 National Institute for Standards and Technology
100 Bureau Drive Gaithersburg, MD 20899

Precision Medicine

- Precision medicine-the tailoring of therapies to individuals or specific subsets of a population to deliver personalized care.
- Personalized therapies can be safer and yield better outcomes at lower doses when treating diabetes, Alzheimer's disease, or certain kinds of cancers.
- This has led to the advent of a new portable detection tool known as a Field Effect Transistor (FET).

Field Effect Transistor (FET)

Experimental setup

Field Effect Transistor (FET)

- Measures current: $i(t)=\frac{s}{x_{\max }-x_{\min }} \int_{x_{\min }}^{x_{\max }} B(x, t) \mathrm{d} x$.

Modeling FET Dynamics

- FET experiments are complex systems involve: diffusion, reaction, and semiconductor physics.
- Previous modeling efforts have been devoted to understanding semiconductor physics, and assume the system is in a steady-state ${ }^{1,2,3}$.
- An accurate time-dependent mathematical model can provide theoretical predictions of the measured signal and is necessary for maximizing the sensitivity of FET-based measurements.

[^0]
Modeling FET Dynamics

- Uniform injection along top boundary.
- Sealed experiment with pulse injection at $t=0$.

Modeling FET Dynamics

- Uniform injection along top boundary.
- Sealed experiment with pulse injection at $t=0$.

Dimensional Equations (Uniform Injection)

$$
\begin{aligned}
& \frac{\partial \widetilde{C}}{\partial \widetilde{t}}=\widetilde{D} \tilde{\nabla}^{2} \tilde{C}, \\
& \tilde{C}(\widetilde{x}, \tilde{y}, 0)=0 \\
& \frac{\partial \widetilde{C}}{\partial \widetilde{x}}(0, \tilde{y}, \tilde{t})=\frac{\partial \widetilde{C}}{\partial \widetilde{x}}(\widetilde{L}, \tilde{y}, \tilde{t})=0 \\
& \widetilde{C}(\widetilde{x}, \tilde{H}, \tilde{t})=\widetilde{C}_{u} \\
& \widetilde{D} \frac{\partial \widetilde{C}}{\partial \widetilde{y}}(\widetilde{x}, 0, \widetilde{t})=\frac{\partial \widetilde{B}}{\partial \widetilde{t}} \chi_{s}(\widetilde{x}), \\
& \frac{\partial \widetilde{B}}{\partial \widetilde{t}}=\widetilde{k}_{a}\left(\widetilde{R}_{t}-\widetilde{B}\right) \widetilde{C}(\widetilde{x}, 0, \tilde{t})-\widetilde{k}_{d} \widetilde{B} \\
& \widetilde{B}(\widetilde{x}, 0)=0
\end{aligned}
$$

Dimensionless System (Uniform Injection)

$$
\begin{aligned}
& \frac{\partial C}{\partial t}=D\left(\frac{\partial^{2} C}{\partial x^{2}}+\frac{\partial^{2} C}{\partial y^{2}}\right) \\
& C(x, y, 0)=0 \\
& \frac{\partial C}{\partial x}\left(\pm 1 /\left(2 I_{s}\right), y, t\right)=0 \\
& C\left(x, \epsilon / I_{s}, t\right)=1 \\
& \frac{\partial C}{\partial y}(x, 0, t)=\operatorname{Da} \frac{\partial B}{\partial t} \chi_{\mathrm{s}}(x) \\
& \frac{\partial B}{\partial t}=(1-B) C(x, 0, t)-K B \\
& B(x, 0)=0 \\
& D=\frac{\widetilde{D} / \widetilde{I}_{s}^{2}}{\widetilde{k}_{a} \widetilde{C}_{u}}, I_{s}=\frac{\widetilde{I_{s}}}{\widetilde{L}}, \epsilon=\frac{\widetilde{H}}{\widetilde{L}}, \mathrm{Da}=\frac{\widetilde{k_{a}} \widetilde{R}_{t}}{\widetilde{D} \widetilde{I_{s}}}, K=\frac{\widetilde{k}_{d}}{\widetilde{k}_{a} \widetilde{C}_{u_{a}}}
\end{aligned}
$$

Dimensionless System (Uniform Injection)

$$
\begin{aligned}
& \frac{\partial C}{\partial t}=D\left(\frac{\partial^{2} C}{\partial x^{2}}+\frac{\partial^{2} C}{\partial y^{2}}\right) \\
& C(x, y, 0)=0 \\
& \frac{\partial C}{\partial x}\left(\pm 1 /\left(2 I_{s}\right), y, t\right)=0 \\
& C\left(x, \epsilon / I_{s}, t\right)=1 \\
& \frac{\partial C}{\partial y}(x, 0, t)=\mathrm{Da} \frac{\partial B}{\partial t} \chi_{\mathrm{s}}(x), \\
& \frac{\partial B}{\partial t}=(1-B) C(x, 0, t)-K B \\
& B(x, 0)=0 \\
& D \gg 1, I_{s} \ll 1, \epsilon=O(1), \mathrm{Da}=O(1), \\
& K \ll 1, K=O(1), \quad \text { or } K \gg 1
\end{aligned}
$$

Quasi-Steady Approximation

$$
\begin{aligned}
& 0=\frac{\partial^{2} C}{\partial x^{2}}+\frac{\partial^{2} C}{\partial y^{2}} \\
& C\left(x, \epsilon / I_{s}, t\right)=1 \\
& \frac{\partial C}{\partial y}(x, 0, t)=\operatorname{Da} \frac{\partial B}{\partial t} \chi_{s}(x) \\
& \frac{\partial B}{\partial t}=(1-B) C(x, 0, t)-K B \\
& B(x, 0)=0
\end{aligned}
$$

- Search for solutions of the form $C=1+C_{b}$.
- Only need $C(x, 0, t)$ in equation for B, so it is sufficient to solve for $\left.C(x, y, t)\right|_{y=0}$.

Quasi-Steady Approximation

- This reduces the problem to

$$
\begin{aligned}
& 0=\left(\frac{\partial^{2} C_{b}}{\partial x^{2}}+\frac{\partial^{2} C_{b}}{\partial y^{2}}\right) \\
& C_{b}\left(\bar{x}, \epsilon / I_{\mathrm{s}}, t\right)=0 \\
& \frac{\partial C_{b}}{\partial y}(x, 0, t)=\mathrm{Da} \frac{\partial B}{\partial t} \cdot \chi_{s}
\end{aligned}
$$

Take a Fourier transform in x, and evaluate at the surface to show:

$$
\widehat{C}_{b}(\omega, 0, t)=-\operatorname{Da} \frac{\tanh \left(\epsilon I_{\mathrm{s}} \omega\right)}{\omega} \frac{\partial \widehat{B}}{\partial t}(\omega, t) \star\left(\frac{\sin (\omega / 2)}{\omega / 2}\right) .
$$

How to go back?

- Applying convolution theorem to

$$
\widehat{C}_{\mathrm{b}}(\omega, 0, t)=-\mathrm{Da} \underbrace{\frac{\tanh \left(\epsilon l_{\mathrm{s}} \omega\right)}{\omega}}_{\mathcal{F}(\omega)} \frac{\partial \widehat{B}}{\partial t}(\omega, t) \star\left(\frac{\sin (\omega / 2)}{\omega / 2}\right)
$$

shows

$$
\begin{aligned}
C_{b}(x, 0, t) & =-\mathrm{Da} \int_{-\infty}^{\infty} \mathcal{F}^{-1}(x-\nu) \frac{\partial B}{\partial t}(\nu, t) \chi_{\mathrm{s}}(\nu) \mathrm{d} \nu \\
\Rightarrow C_{b}(x, 0, t) & =-\mathrm{Da} \int_{-1 / 2}^{1 / 2} \mathcal{F}^{-1}(x-\nu) \frac{\partial B}{\partial t}(\nu, t) \mathrm{d} \nu,
\end{aligned}
$$

where

$$
\mathcal{F}^{-1}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\tanh \left(\epsilon I_{\mathrm{s}} \omega\right)}{\omega} \mathrm{e}^{-i \omega x} \mathrm{~d} \omega
$$

Residue Theorem

Apply residue theorem to show

$$
\mathcal{F}^{-1}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\tanh \left(\epsilon I_{\mathrm{s}} \omega\right)}{\omega} \mathrm{e}^{-i \omega x} \mathrm{~d} \omega=\tanh ^{-1}\left(\mathrm{e}^{-|x| \pi I_{\mathrm{s}} /(2 \epsilon)}\right)
$$

Integral Equation for $C(x, 0, t)$

- Putting these facts together leads to the conclusion:

$$
C(x, 0, t)=1-\frac{2 \mathrm{Da}}{\pi} \int_{-1 / 2}^{1 / 2} \tanh ^{-1}\left(\mathrm{e}^{-|x-\nu| \pi I_{\mathrm{s}} /(2 \epsilon)}\right) \frac{\partial B}{\partial t}(\nu, t) \mathrm{d} \nu .
$$

- First term 1 is the uniform injection concentration.
- Second term captures the effect of diffusion into the surface.

Convolution Kernel

- Convolution kernal $\tanh ^{-1}\left(\mathrm{e}^{-|x-\nu| \pi I_{\mathrm{s}} /(2 \epsilon)}\right)$ centered at $x=0$, and $x=-1 / 2$.
- Kernal captures the effect of ligand molecules spreading out and diffusing into the surface.

Integrodifferential Equation (IDE)

- Substituting our formula for C into the equation for B we find:

$$
\begin{aligned}
& \frac{\partial B}{\partial t}=(1-B) \underbrace{\left(1-\frac{2 \mathrm{Da}}{\pi} \int_{-1 / 2}^{1 / 2} \tanh ^{-1}\left(\mathrm{e}^{-|x-\nu| \pi I_{\mathrm{s}} /(2 \epsilon)}\right) \frac{\partial B}{\partial t}(\nu, t) \mathrm{d} \nu\right)}_{C(x, 0, t)}-K B \\
& B(x, 0)=0
\end{aligned}
$$

Numerical Solution

- How to solve

$$
\begin{aligned}
& \frac{\partial B}{\partial t}=(1-B)\left(1-\frac{2 \mathrm{Da}}{\pi} \int_{-1 / 2}^{1 / 2} \tanh ^{-1}\left(\mathrm{e}^{-|x-\nu| \pi I_{\mathrm{s}} /(2 \epsilon)}\right) \frac{\partial B}{\partial t}(\nu, t) \mathrm{d} \nu\right)-K B, \\
& B(x, 0)=0 ?
\end{aligned}
$$

- Since $\tanh ^{-1}(x)=(\ln (x+1)-\ln (x-1)) / 2$, kernal is singular at $x=\nu$.
- Use method of lines $B(x, t) \approx \sum_{i=1}^{N} \phi_{i}(x) h_{i}(t)$, where $\phi_{i}(x)$ are locally-defined hat functions.

Numerical Solution

- This requires computing

$$
\int_{-1 / 2}^{1 / 2} \tanh ^{-1}\left(\mathrm{e}^{-\left|x_{j}-\nu\right| \pi I_{\mathrm{s}} /(2 \epsilon)}\right) \phi_{i}(\nu) \mathrm{d} \nu
$$

where x_{j} is one of our discretization nodes. Fortunately, we are able to compute the exact value of this integral in terms of polylogarithms.

Convergence

- Error \|\| \| $B_{\text {ref }}(x, t)-B(x, t)\left\|_{2, x}\right\|_{\infty, t}$. We get first-order convergence, despite logarithmic singularity.

Results

Concentration

- Evolution of $B(x, t)$. Here we took $\mathrm{Da}=66, I_{\mathrm{s}}=10^{-3}$, $\epsilon=1$, and $K=1$.

Results

Concentration

- Evolution of $B(x, t)$. Here we took $\mathrm{Da}=66, I_{\mathrm{s}}=10^{-3}$, $\epsilon=1$, and $K=1$.

Results: Depletion Region for Small t

Concentration

- Evolution of $B(x, t)$. Here we took $\mathrm{Da}=66, I_{\mathrm{s}}=10^{-3}$, $\epsilon=1$, and $K=1$.

Results: Depletion Region for Small t

Concentration

- Evolution of $B(x, t)$. Here we took $\mathrm{Da}=66, I_{\mathrm{s}}=10^{-3}$, $\epsilon=1$, and $K=1$.

Results: Measured Signal Prediction

- Depicted: average concentration $\bar{B}(t)=\int_{-1 / 2}^{1 / 2} B(x, t) \mathrm{d} x$ (which is proportional to measured signal) for $\widetilde{k}_{\mathrm{a}}=10^{11}, 5 \times 10^{11}, 10^{12} \mathrm{~mol} /\left(\mathrm{cm}^{3} \cdot \mathrm{~s}\right)$
- This corresponded to $\mathrm{Da}=6.64,33.21$, and 66.42; and $K=1.67,0.33$ and 0.17 .

Modeling FET Dynamics

- Uniform injection along top boundary.
- Sealed experiment with pulse injection at $t=0$.

Dimensionless System (Pulse Injection)

$$
\begin{aligned}
& \frac{\partial C}{\partial t}=D\left(\frac{\partial^{2} C}{\partial x^{2}}+\frac{\partial^{2} C}{\partial y^{2}}\right) \\
& C(x, y, 0)=f(x, y) \\
& \frac{\partial C}{\partial x}\left(\pm 1 /\left(2 I_{s}\right), y, t\right)=0 \\
& \frac{\partial C}{\partial y}\left(x, \epsilon / I_{s}, t\right)=0 \\
& \frac{\partial C}{\partial y}(x, 0, t)=\operatorname{Da} \frac{\partial B}{\partial t} \chi_{s}(x), \\
& \frac{\partial B}{\partial t}=(1-B) C(x, 0, t)-K B \\
& B(x, 0)=0
\end{aligned}
$$

Quasi-Steady Approximation?

$$
\begin{aligned}
& 0=\frac{\partial^{2} C}{\partial x^{2}}+\frac{\partial^{2} C}{\partial y^{2}} \\
& \frac{\partial C}{\partial x}\left(\pm 1 /\left(2 I_{s}\right), y, t\right)=0 \\
& \frac{\partial C}{\partial y}\left(x, \epsilon / I_{s}, t\right)=0 \\
& \frac{\partial C}{\partial y}(x, 0, t)=\mathrm{Da} \frac{\partial B}{\partial t} \chi_{\mathrm{s}}(x), \\
& \frac{\partial B}{\partial t}=(1-B) C(x, 0, t)-K B \\
& B(x, 0)=0
\end{aligned}
$$

- The equation for C is now elliptic, and we can't enforce the initial condition.

Existence issues?

- It is not clear whether a solution to this set of equations even exists.

$$
\begin{aligned}
0 & =\nabla^{2} C \\
\Rightarrow 0 & =\int_{\Omega} \nabla \cdot(\nabla C) \mathrm{d} \mathbf{x} \\
\Rightarrow 0 & =\int_{\partial \Omega} \nabla C \cdot \mathbf{n} \mathrm{~d} \sigma \\
\Rightarrow 0 & =\int_{-1 / 2}^{1 / 2} \frac{\partial B}{\partial t}(x, t) \mathrm{d} x
\end{aligned}
$$

- Physically, we expect $\frac{\partial B}{\partial t}$ to be positive for all x and t.
- Must deal with full parabolic system.

Dimensionless System (Pulse Injection)

$$
\begin{aligned}
& \frac{\partial C}{\partial t}=D\left(\frac{\partial^{2} C}{\partial x^{2}}+\frac{\partial^{2} C}{\partial y^{2}}\right) \\
& C(x, y, 0)=f(x, y) \\
& \frac{\partial C}{\partial x}\left(\pm 1 /\left(2 I_{s}\right), y, t\right)=0 \\
& \frac{\partial C}{\partial y}\left(x, \epsilon / I_{s}, t\right)=0 \\
& \frac{\partial C}{\partial y}(x, 0, t)=\operatorname{Da} \frac{\partial B}{\partial t} \chi_{s}(x), \\
& \frac{\partial B}{\partial t}=(1-B) C(x, 0, t)-K B \\
& B(x, 0)=0
\end{aligned}
$$

How to solve for $C(x, 0, t)$?

- Decompose C into $C=C_{i}+C_{b}$.
- C_{i}-satisfies associated system with homogeneous boundary conditions.
- C_{b}-satisfies associated system with homogeneous initial condition.
- Once we find C_{i} and C_{b}, it follows that $C(x, 0, t)=C_{i}(x, 0, t)+C_{b}(x, 0, t)$.

Equation for C_{i}

- The function C_{i} is governed by:

$$
\begin{aligned}
& \frac{\partial C_{i}}{\partial t}=D \nabla^{2} C_{i} \\
& C_{i}(x, y, 0)=f(x, y) \\
& \nabla C_{i} \cdot \mathbf{n}=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

- One can find the Green's function via separation of variables to show:

$$
C_{i}(x, 0, t)=\int_{\Omega} \mathcal{G}(x, 0, t ; \mathbf{w}) f(\mathbf{w}) \mathrm{d} \mathbf{w}
$$

Equation for C_{b}

- The function C_{b} is governed by:

$$
\begin{aligned}
& \frac{\partial C_{b}}{\partial t}=D \nabla^{2} C_{b} \\
& C_{b}(x, 0, t)=0 \\
& \frac{\partial C_{b}}{\partial y}\left(-1 /\left(2 I_{\mathrm{s}}\right), y, t\right)=\frac{\partial C_{b}}{\partial y}\left(1 /\left(2 I_{\mathrm{s}}\right), 0, t\right)=\frac{\partial C_{b}}{\partial y}\left(x, \epsilon / I_{\mathrm{s}}, t\right)=0, \\
& \frac{\partial C_{b}}{\partial y}(x, 0, t)=\text { Da } \frac{\partial B}{\partial t} \chi_{\mathrm{s}} .
\end{aligned}
$$

- One can find $C_{b}(x, y, t)$ via a Laplace transform.

Equation for \widehat{C}_{b}

- Introducing a Laplace transform, we have:

$$
\begin{aligned}
& s \widehat{C}_{b}=D \nabla^{2} \widehat{C}_{b}, \\
& \frac{\partial \widehat{C}_{b}}{\partial y}\left(-1 /\left(2 I_{\mathrm{s}}\right), y, t\right)=\frac{\partial \widehat{C}_{b}}{\partial y}\left(1 /\left(2 I_{\mathrm{s}}\right), 0, t\right)=\frac{\partial \widehat{C}_{b}}{\partial y}\left(x, \epsilon / I_{\mathrm{s}}, t\right)=0, \\
& \frac{\partial \widehat{C}_{b}}{\partial y}(x, 0, t)=\mathrm{Da}(s \widehat{B}) \chi_{\mathrm{s}}
\end{aligned}
$$

- Search for separable solutions $\widehat{C}_{b}(x, y ; s)=\phi(x) h(y ; s)$.
- This yields

$$
\widehat{C}_{b}(x, y, t)=\sum_{n \geq 0} \alpha_{n}(s) \cos \left(\lambda_{n}\left(x+\frac{1}{2 I_{s}}\right)\right) \cosh \left(\left(y-\epsilon / I_{s}\right) \sqrt{s / D+\lambda_{n}}\right)
$$

Determining $\alpha_{n}(s)$

- How to determine $\alpha_{n}(s)$? Use the relations

$$
\begin{aligned}
& \widehat{C}_{b}(x, y, t)=\sum_{n \geq 0} \alpha_{n}(s) \cos \left(\lambda_{n}\left(x+\frac{1}{2 I_{s}}\right)\right) \cosh \left(\left(y-\epsilon / I_{s}\right) \sqrt{s / D+\lambda_{n}}\right) \\
& \frac{\partial \widehat{C}_{b}}{\partial y}(x, 0, t)=\mathrm{Da}(s \widehat{B}) \chi_{s}
\end{aligned}
$$

and orthogonality of the cosines to show

$$
\alpha_{n}(s)=-\operatorname{Da} b_{n} \frac{\int_{-1 / 2}^{1 / 2}(s \widehat{B}) \cos \left(\lambda_{n}\left(\nu+1 /\left(2 l_{s}\right)\right)\right) \mathrm{d} \nu}{\sqrt{s / D+\lambda_{n}} \sinh \left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right)}
$$

where $b_{0}=I_{s}$, and $b_{n}=1 /\left(2 I_{s}\right)$ for $n \geq 1$.

Putting it Together

- Putting this information together we have.

$$
\begin{aligned}
\widehat{C}_{b}(x, 0, t)=\sum_{n \geq 0} & -\operatorname{Dab} b_{n} \int_{-1 / 2}^{1 / 2} \frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right)(s \widehat{B})}{\sqrt{s / D+\lambda_{n}}} \cos \left(\lambda_{n}\left(\nu+1 /\left(2 I_{s}\right)\right)\right) \mathrm{d} \nu \\
& \times \cos \left(\lambda_{n}\left(x+1 /\left(2 I_{s}\right)\right)\right)
\end{aligned}
$$

- How to invert?

Putting it Together

- Putting this information together we have.

$$
\begin{aligned}
\widehat{C}_{b}(x, 0, t)=\sum_{n \geq 0} & -\operatorname{Dab} b_{n} \int_{-1 / 2}^{1 / 2} \frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right)(s \widehat{B})}{\sqrt{s / D+\lambda_{n}}} \cos \left(\lambda_{n}\left(\nu+1 /\left(2 I_{s}\right)\right)\right) \mathrm{d} \nu \\
& \times \cos \left(\lambda_{n}\left(x+1 /\left(2 I_{s}\right)\right)\right)
\end{aligned}
$$

- How to invert?

Mapping Back

- Apply the convolution theorem

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right)(s \widehat{B})}{\sqrt{s / D+\lambda_{n}}}\right\} & =\mathcal{L}^{-1}\left\{\frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right)}{\sqrt{s / D+\lambda_{n}}}\right\} \star \mathcal{L}^{-1}\{s \widehat{B}\} \\
& =\mathcal{L}^{-1}\left\{\frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right)}{\sqrt{s / D+\lambda_{n}}}\right\} \star \frac{\partial B}{\partial t}(x, t)
\end{aligned}
$$

- Must evaluate
$\mathcal{L}^{-1}\left\{\frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right)}{\sqrt{s / D+\lambda_{n}}}\right\}=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right) e^{s t}}{\sqrt{s / D+\lambda_{n}}} \mathrm{~d} s$

Mapping Back

- Applying residue theorem shows

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right) e^{s t}}{\sqrt{s / D+\lambda_{n}}} \mathrm{~d} s=\frac{D I_{s} e^{-\lambda_{n} D t}}{\epsilon} \theta_{3}\left(\mathrm{e}^{-\left(\pi I_{s} / \epsilon\right)^{2} D t}\right)
$$

- A change of variables and term-by-term series inversion shows

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\operatorname{coth}\left(\epsilon / l_{s} \sqrt{s / D+\lambda_{n}}\right) e^{s t}}{\sqrt{s / D+\lambda_{n}}} \mathrm{~d} s=\frac{\sqrt{D} e^{-\lambda_{n} D t}}{\sqrt{\pi t}} \theta_{3}\left(\mathrm{e}^{-\epsilon^{2} /\left(l_{s}^{2} D t\right)}\right)
$$

where

$$
\theta_{3}(q)=1+2 \sum_{n=1}^{\infty} q^{n^{2}}
$$

Mapping back

- Thus since

$$
\mathcal{L}^{-1}\left\{\frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right)}{\sqrt{s / D+\lambda_{n}}}\right\}=\frac{\sqrt{D} e^{-\lambda_{n} D t}}{\sqrt{\pi t}} \theta_{3}\left(\mathrm{e}^{-\epsilon^{2} /\left(l_{s}^{2} D t\right)}\right)
$$

we have

$$
\mathcal{L}^{-1}\left\{\frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right)(s \widehat{B})}{\sqrt{s / D+\lambda_{n}}}\right\}=\frac{\sqrt{D} e^{-\lambda_{n} D t}}{\sqrt{\pi t}} \theta_{3}\left(\mathrm{e}^{-\epsilon^{2} /\left(l_{s}^{2} D t\right)}\right) \star \frac{\partial B}{\partial t}(x, t)
$$

Putting it Together

- Thus since

$$
\begin{aligned}
\widehat{C}_{b}(x, 0, t)=\sum_{n \geq 0} & -\operatorname{Dab} b_{n} \int_{-1 / 2}^{1 / 2} \frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right)(s \widehat{B})}{\sqrt{s / D+\lambda_{n}}} \cos \left(\lambda_{n}\left(\nu+1 /\left(2 I_{s}\right)\right)\right) \mathrm{d} \nu \\
& \times \cos \left(\lambda_{n}\left(x+1 /\left(2 I_{s}\right)\right)\right)
\end{aligned}
$$

and

$$
\mathcal{L}^{-1}\left\{\frac{\operatorname{coth}\left(\epsilon / I_{s} \sqrt{s / D+\lambda_{n}}\right)(s \widehat{B})}{\sqrt{s / D+\lambda_{n}}}\right\}=\frac{\sqrt{D} e^{-\lambda_{n} D t}}{\sqrt{\pi t}} \theta_{3}\left(\mathrm{e}^{-\epsilon^{2} /\left(I_{s}^{2} D t\right)}\right) \star \frac{\partial B}{\partial t}(x, t)
$$

we have

$$
\begin{aligned}
C_{b}(x, 0, t)=\sum_{n \geq 0} & -\frac{\sqrt{D} \mathrm{Da} b_{n}}{\sqrt{\pi}} \int_{-1 / 2}^{1 / 2} \frac{e^{-\lambda_{n} D t} \theta_{3}\left(\mathrm{e}^{-\epsilon^{2} /\left(s_{s}^{2} D t\right)}\right)}{\sqrt{t}} \star \frac{\partial B}{\partial t}(\nu, t) \cos \left(\lambda_{n}\left(\nu+1 /\left(2 /_{s}\right)\right)\right) \mathrm{d} \nu \\
& \times \cos \left(\lambda_{n}\left(x+1 /\left(2 /_{s}\right)\right)\right)
\end{aligned}
$$

Integrodifferential Equation Reduction

- Laplace transform \rightarrow eigenvalue problem \rightarrow separable solutions \rightarrow inversion \rightarrow integrodifferential equation

$$
\frac{\partial B}{\partial t}=(1-B) C(x, 0, t)-K B
$$

where

$$
\begin{aligned}
& C(x, 0, t)=\int_{\Omega} \mathcal{G}(x, 0, t ; \mathbf{w}) f(\mathbf{w}) \mathrm{d} \mathbf{w} \\
& -\sum_{n=0}^{\infty} \frac{\alpha_{n} \mathrm{Da} \sqrt{D}}{\sqrt{\pi}} \int_{-1 / 2}^{1 / 2} \int_{0}^{t} \frac{\mathrm{e}^{-\lambda_{n} D \tau} \theta_{3}\left(0, \mathrm{e}^{-\left(\epsilon^{2} / I_{\mathrm{s}}^{2} D \tau\right)}\right)}{\sqrt{\tau}} \frac{\partial B}{\partial \tau}(\nu, t-\tau) \mathrm{d} \tau \cos \left(n \pi I_{s}\left(\nu+1 / 2 I_{s}\right)\right) \mathrm{d} \nu \\
& \quad \times \cos \left(n \pi I_{s}\left(x+1 /\left(2 I_{\mathrm{s}}\right)\right)\right)
\end{aligned}
$$

Numerics Overview

(1) consider semi-implicit system

$$
\frac{\partial B}{\partial t}\left(x, t_{n+1}\right)=\left(1-B\left(x, t_{n}\right)\right) C\left(x, 0, t_{n+1}\right)-K B\left(x, t_{n}\right)
$$

(2) singularity handling
(3) method of lines discretization $B(x, t) \approx \sum_{i=1}^{n} \phi_{i}(x) h_{i}(t)$
(9) discretize temporal integral with the trapezoidal rule
(6) write $h_{i}^{\prime}\left(t_{m}\right) \approx \Delta h_{i}^{(m)} / \Delta t$
(0) solve resulting linear system for $\Delta h_{i}^{(m)}$
(1) update h_{i} with $h_{i}^{(m+1)}=h_{i}^{(m)}+\frac{3}{2} \Delta h_{i}^{(m+1)}-\frac{1}{2} \Delta h_{i}^{(m)}$

Results

Concentration

- Evolution of $B(x, t)$. Parameter values of $D=8 \times 10^{4}$, $\mathrm{Da}=3.3210, I_{\mathrm{s}}=10^{-3}, \epsilon=0.4$, and $K=1$ were used.

Results

Concentration

- Evolution of $B(x, t)$. Parameter values of $D=8 \times 10^{4}$, $\mathrm{Da}=3.3210, I_{\mathrm{s}}=10^{-3}, \epsilon=0.4$, and $K=1$ were used.

Results: Depletion Region for Small t

Concentration

- Evolution of $B(x, t)$. Parameter values of $D=8 \times 10^{4}$, $\mathrm{Da}=3.3210, I_{\mathrm{s}}=10^{-3}, \epsilon=0.4$, and $K=1$ were used.

Results: Measured Signal Prediction

- Depicted: average concentration $\bar{B}(t)=\int_{-1 / 2}^{1 / 2} B(x, t) \mathrm{d} x$ (proportional to signal) for $D=4 \times 10^{4}, 8 \times 10^{4}$ and 4×10^{5}.
- Correspondingly $\mathrm{Da}=6.6420,3.321,0.6642$.

Conclusions

- Personalized therapies have the potential to fundamentally improve treatment of diseases such as diabetes, Alzheimer's disease, and certain kinds of cancers.
- This has led to the development of FETs, and we have developed the first time-dependent model for FET experiments.
- Our model predicts an unexpected depletion region. This effect is not directly observable experimentally and provide insight into the origin of the measured signal.

Future Work

- Develop small time asymptotic approximation.
- Separate signal from noise in experimental data using stochastic regression techniques.
- Identify key model parameters, such as the dissociation rate constant.

[^0]: ${ }^{1}$ Heitzinger, SIAM Journal on Applied Mathematics, 2010.
 ${ }^{2}$ Khodadadian, Journal of Computational Electronics, 2016.
 ${ }^{3}$ Landheer, Journal of Applied Physics, 2005.

