
Transport Phenomena in Field Effect Transistors

1 Ryan M. Evans, 2 Arvind Balijepalli, 2 Anthony Kearsley

1 Just a guy, NOT affiliated with NIST
rmevans135@gmail.com

2 National Institute for Standards and Technology
100 Bureau Drive

Gaithersburg, MD 20899



Precision Medicine

Precision medicine–the tailoring of therapies to individuals or
specific subsets of a population to deliver personalized care.
Personalized therapies can be safer and yield better outcomes
at lower doses when treating diabetes, Alzheimer’s disease, or
certain kinds of cancers.
This has led to the advent of a new portable detection tool
known as a Field Effect Transistor (FET).



Field Effect Transistor (FET)



Field Effect Transistor (FET)

Source Drain

Semiconductor channel

Biochemical gate

Measures current: i(t) = s
xmax−xmin

∫ xmax

xmin
B(x , t) dx .



Modeling FET Dynamics

FET experiments are complex systems involve: diffusion,
reaction, and semiconductor physics.
Previous modeling efforts have been devoted to understanding
semiconductor physics, and assume the system is in a
steady-state 1, 2, 3.
An accurate time-dependent mathematical model can provide
theoretical predictions of the measured signal and is necessary
for maximizing the sensitivity of FET-based measurements.

1Heitzinger, SIAM Journal on Applied Mathematics, 2010.
2Khodadadian, Journal of Computational Electronics, 2016.
3Landheer, Journal of Applied Physics, 2005.



Modeling FET Dynamics

Uniform injection along top boundary.
Sealed experiment with pulse injection at t = 0.
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Dimensional Equations (Uniform Injection)

∂C̃
∂ t̃

= D̃ ∇̃2C̃ ,

C̃(x̃ , ỹ , 0) = 0
∂C̃
∂x̃ (0, ỹ , t̃) = ∂C̃

∂x̃ (L̃, ỹ , t̃) = 0

C̃(x̃ , H̃, t̃) = C̃u

D̃ ∂C̃
∂ỹ (x̃ , 0, t̃) = ∂B̃

∂ t̃
χs(x̃),

∂B̃
∂ t̃

= k̃a(R̃t − B̃)C̃(x̃ , 0, t̃)− k̃d B̃

B̃(x̃ , 0) = 0
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Dimensionless System (Uniform Injection)

∂C
∂t = D

(
∂2C
∂x2 + ∂2C

∂y2

)
C(x , y , 0) = 0
∂C
∂x (±1/(2ls), y , t) = 0

C(x , ε/ls , t) = 1
∂C
∂y (x , 0, t) = Da∂B

∂t χs(x)

∂B
∂t = (1− B)C(x , 0, t)− KB

B(x , 0) = 0

D = D̃/̃l2
s

k̃aC̃u
, ls = l̃s

L̃
, ε = H̃

L̃
,Da = k̃aR̃t

D̃/̃ls
,K = k̃d

k̃aC̃u
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Dimensionless System (Uniform Injection)

∂C
∂t = D

(
∂2C
∂x2 + ∂2C

∂y2

)
C(x , y , 0) = 0
∂C
∂x (±1/(2ls), y , t) = 0

C(x , ε/ls , t) = 1
∂C
∂y (x , 0, t) = Da∂B

∂t χs(x),

∂B
∂t = (1− B)C(x , 0, t)− KB

B(x , 0) = 0
D � 1, ls � 1, ε = O(1), Da = O(1),
K � 1, K = O(1), or K � 1
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Quasi-Steady Approximation

0 = ∂2C
∂x2 + ∂2C

∂y2

C(x , ε/ls , t) = 1
∂C
∂y (x , 0, t) = Da∂B

∂t χs(x)

∂B
∂t = (1− B)C(x , 0, t)− KB

B(x , 0) = 0

Source Drain

Semiconductor channel

Biochemical gate

Search for solutions of the form C = 1 + Cb.
Only need C(x , 0, t) in equation for B, so it is sufficient to
solve for C(x , y , t)|y=0.



Quasi-Steady Approximation

This reduces the problem to

0 =
(
∂2Cb
∂x2 + ∂2Cb

∂y 2

)
Cb(x , ε/ls, t) = 0
∂Cb
∂y (x , 0, t) = Da∂B

∂t · χs

Take a Fourier transform in x , and evaluate at the surface to show:

Ĉb(ω, 0, t) = −Datanh(εlsω)
ω

∂B̂
∂t (ω, t) ?

(sin(ω/2)
ω/2

)
.



How to go back?

Applying convolution theorem to

Ĉb(ω, 0, t) = −Da tanh(εlsω)
ω︸ ︷︷ ︸
F(ω)

∂B̂
∂t (ω, t) ?

(sin(ω/2)
ω/2

)

shows

Cb(x , 0, t) = −Da
∫ ∞
−∞
F−1(x − ν)∂B

∂t (ν, t)χs(ν) dν

⇒Cb(x , 0, t) = −Da
∫ 1/2

−1/2
F−1(x − ν)∂B

∂t (ν, t) dν,

where
F−1(x) = 1

2π

∫ ∞
−∞

tanh(εlsω)
ω

e−iωx dω.



Residue Theorem
Apply residue theorem to show

F−1(x) = 1
2π

∫ ∞
−∞

tanh(εlsω)
ω

e−iωx dω = tanh−1(e−|x |πls/(2ε)).

Re ω

Im ω

ρn−ρn Rn−Rn

C (n)
2

C (n)
4

C (n)
1 C (n)

3



Integral Equation for C(x , 0, t)

Putting these facts together leads to the conclusion:

C(x , 0, t) = 1− 2 Da
π

∫ 1/2

−1/2
tanh−1(e−|x−ν|πls/(2ε))∂B

∂t (ν, t) dν.

First term 1 is the uniform injection concentration.
Second term captures the effect of diffusion into the surface.



Convolution Kernel
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Convolution Kernal

x = 0

x = −1/2

Convolution kernal tanh−1(e−|x−ν|πls/(2ε)) centered at x = 0,
and x = −1/2.
Kernal captures the effect of ligand molecules spreading out
and diffusing into the surface.



Integrodifferential Equation (IDE)

Substituting our formula for C into the equation for B we find:

∂B
∂t = (1− B)

(
1− 2 Da

π

∫ 1/2

−1/2
tanh−1(e−|x−ν|πls/(2ε))∂B

∂t (ν, t) dν
)

︸ ︷︷ ︸
C(x ,0,t)

−KB,

B(x , 0) = 0.



Numerical Solution

How to solve

∂B
∂t = (1− B)

(
1− 2 Da

π

∫ 1/2

−1/2
tanh−1(e−|x−ν|πls/(2ε))∂B

∂t (ν, t) dν
)
− KB,

B(x , 0) = 0?

Since tanh−1(x) = (ln(x + 1)− ln(x − 1))/2, kernal is singular
at x = ν.
Use method of lines B(x , t) ≈

∑N
i=1 φi (x)hi (t), where φi (x)

are locally-defined hat functions.



Numerical Solution

This requires computing

∫ 1/2

−1/2
tanh−1(e−|xj−ν|πls/(2ε))φi (ν) dν

where xj is one of our discretization nodes. Fortunately, we are able to
compute the exact value of this integral in terms of polylogarithms.



Convergence
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Error || ||Bref(x , t)− B(x , t)||2,x ||∞,t . We get first-order
convergence, despite logarithmic singularity.



Results

Evolution of B(x , t). Here we took Da = 66, ls = 10−3,
ε = 1, and K = 1.
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Results: Depletion Region for Small t
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Results: Measured Signal Prediction
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Depicted: average concentration B(t) =
∫ 1/2
−1/2 B(x , t) dx

(which is proportional to measured signal) for
k̃a = 1011, 5× 1011, 1012 mol/(cm3 · s)
This corresponded to Da = 6.64, 33.21, and 66.42; and
K = 1.67, 0.33 and 0.17.



Modeling FET Dynamics

Uniform injection along top boundary.
Sealed experiment with pulse injection at t = 0.



Dimensionless System (Pulse Injection)

∂C
∂t = D

(
∂2C
∂x2 + ∂2C

∂y2

)
C(x , y , 0) = f (x , y)
∂C
∂x (±1/(2ls), y , t) = 0

∂C
∂y (x , ε/ls , t) = 0

∂C
∂y (x , 0, t) = Da∂B

∂t χs(x),

∂B
∂t = (1− B)C(x , 0, t)− KB

B(x , 0) = 0
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Quasi-Steady Approximation?

0 = ∂2C
∂x2 + ∂2C

∂y2

∂C
∂x (±1/(2ls), y , t) = 0

∂C
∂y (x , ε/ls , t) = 0

∂C
∂y (x , 0, t) = Da∂B

∂t χs(x),

∂B
∂t = (1− B)C(x , 0, t)− KB

B(x , 0) = 0

The equation for C is now elliptic, and we can’t enforce the
initial condition.



Existence issues?

It is not clear whether a solution to this set of equations even
exists.

0 = ∇2C

⇒0 =
∫

Ω
∇ · (∇C) dx

⇒0 =
∫
∂Ω
∇C · n dσ

⇒0 =
∫ 1/2

−1/2

∂B
∂t (x , t) dx

Physically, we expect ∂B
∂t to be positive for all x and t.

Must deal with full parabolic system.



Dimensionless System (Pulse Injection)

∂C
∂t = D

(
∂2C
∂x2 + ∂2C

∂y2

)
C(x , y , 0) = f (x , y)
∂C
∂x (±1/(2ls), y , t) = 0

∂C
∂y (x , ε/ls , t) = 0

∂C
∂y (x , 0, t) = Da∂B

∂t χs(x),

∂B
∂t = (1− B)C(x , 0, t)− KB

B(x , 0) = 0

Source Drain

Semiconductor channel

Biochemical gate



How to solve for C(x , 0, t)?

Decompose C into C = Ci + Cb.

Ci –satisfies associated system with homogeneous boundary
conditions.
Cb–satisfies associated system with homogeneous initial
condition.
Once we find Ci and Cb, it follows that
C(x , 0, t) = Ci (x , 0, t) + Cb(x , 0, t).



Equation for Ci

The function Ci is governed by:

∂Ci
∂t = D ∇2Ci ,

Ci (x , y , 0) = f (x , y),
∇Ci · n = 0 on ∂Ω.

One can find the Green’s function via separation of variables
to show:

Ci (x , 0, t) =
∫

Ω
G(x , 0, t; w)f (w) dw.



Equation for Cb

The function Cb is governed by:

∂Cb
∂t = D ∇2Cb,

Cb(x , 0, t) = 0,
∂Cb
∂y (−1/(2ls), y , t) = ∂Cb

∂y (1/(2ls), 0, t) = ∂Cb
∂y (x , ε/ls, t) = 0,

∂Cb
∂y (x , 0, t) = Da ∂B

∂t χs.

One can find Cb(x , y , t) via a Laplace transform.



Equation for Ĉb

Introducing a Laplace transform, we have:

sĈb = D ∇2Ĉb,

∂Ĉb
∂y (−1/(2ls), y , t) = ∂Ĉb

∂y (1/(2ls), 0, t) = ∂Ĉb
∂y (x , ε/ls, t) = 0,

∂Ĉb
∂y (x , 0, t) = Da (sB̂) χs.

Search for separable solutions Ĉb(x , y ; s) = φ(x)h(y ; s).
This yields

Ĉb(x , y , t) =
∑
n≥0

αn(s) cos
(
λn

(
x + 1

2ls

))
cosh((y−ε/ls)

√
s/D + λn)



Determining αn(s)

How to determine αn(s)? Use the relations

Ĉb(x , y , t) =
∑
n≥0

αn(s) cos
(
λn

(
x + 1

2ls

))
cosh((y − ε/ls)

√
s/D + λn),

∂Ĉb
∂y (x , 0, t) = Da(sB̂)χs ,

and orthogonality of the cosines to show

αn(s) = −Da bn

∫ 1/2
−1/2(sB̂) cos(λn(ν + 1/(2ls))) dν√

s/D + λn sinh(ε/ls
√

s/D + λn)
,

where b0 = ls , and bn = 1/(2ls) for n ≥ 1.



Putting it Together

Putting this information together we have.

Ĉb(x , 0, t) =
∑
n≥0

−Dabn

∫ 1/2

−1/2

coth(ε/ls
√

s/D + λn)(sB̂)√
s/D + λn

cos(λn(ν + 1/(2ls)))dν

× cos(λn(x + 1/(2ls)))

How to invert?
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Mapping Back

Apply the convolution theorem

L−1

{
coth(ε/ls

√
s/D + λn)(sB̂)√

s/D + λn

}
= L−1

{
coth(ε/ls

√
s/D + λn)√

s/D + λn

}
? L−1{sB̂}

= L−1

{
coth(ε/ls

√
s/D + λn)√

s/D + λn

}
?
∂B
∂t (x , t)

Must evaluate

L−1

{
coth(ε/ls

√
s/D + λn)√

s/D + λn

}
= 1

2πi

∫ c+i∞

c−i∞

coth(ε/ls
√

s/D + λn)est√
s/D + λn

ds



Mapping Back

Applying residue theorem shows
1

2πi

∫ c+i∞

c−i∞

coth(ε/ls
√

s/D + λn)est√
s/D + λn

ds = Dlse−λnDt

ε
θ3(e−(πls/ε)2Dt)

A change of variables and term-by-term series inversion shows
1

2πi

∫ c+i∞

c−i∞

coth(ε/ls
√

s/D + λn)est√
s/D + λn

ds =
√

De−λnDt
√
πt

θ3(e−ε
2/(l2

s Dt))

where
θ3(q) = 1 + 2

∞∑
n=1

qn2



Mapping back

Thus since

L−1

{
coth(ε/ls

√
s/D + λn)√

s/D + λn

}
=
√

De−λnDt
√
πt

θ3(e−ε
2/(l2

s Dt))

we have

L−1

{
coth(ε/ls

√
s/D + λn)(sB̂)√

s/D + λn

}
=
√

De−λnDt
√
πt

θ3(e−ε
2/(l2

s Dt))?∂B
∂t (x , t)



Putting it Together

Thus since

Ĉb(x , 0, t) =
∑
n≥0

−Dabn

∫ 1/2

−1/2

coth(ε/ls
√

s/D + λn)(sB̂)√
s/D + λn

cos(λn(ν + 1/(2ls)))dν

× cos(λn(x + 1/(2ls)))

and

L−1

{
coth(ε/ls

√
s/D + λn)(sB̂)√

s/D + λn

}
=
√

De−λnDt
√
πt

θ3(e−ε
2/(l2

s Dt)) ? ∂B
∂t (x , t)

we have

Cb(x , 0, t) =
∑
n≥0

−
√

DDabn√
π

∫ 1/2

−1/2

e−λnDtθ3(e−ε2/(l2
s Dt))

√
t

?
∂B
∂t

(ν, t) cos(λn(ν + 1/(2ls )))dν

× cos(λn(x + 1/(2ls )))



Integrodifferential Equation Reduction

Laplace transform → eigenvalue problem → separable
solutions → inversion → integrodifferential equation

∂B
∂t = (1− B)C(x , 0, t)− KB

where

C(x , 0, t) =
∫

Ω
G(x , 0, t; w)f (w) dw

−
∞∑

n=0

αnDa
√

D
√
π

∫ 1/2

−1/2

∫ t

0

e−λnDτ θ3(0, e−(ε2/l2
s Dτ))

√
τ

∂B
∂τ

(ν, t − τ)dτ cos(nπls (ν + 1/2ls ))dν

× cos(nπls (x + 1/(2ls)))



Numerics Overview

1 consider semi-implicit system

∂B
∂t (x , tn+1) = (1− B(x , tn))C(x , 0, tn+1)− KB(x , tn)

2 singularity handling
3 method of lines discretization B(x , t) ≈

∑n
i=1 φi (x)hi (t)

4 discretize temporal integral with the trapezoidal rule
5 write h′i (tm) ≈ ∆h(m)

i /∆t
6 solve resulting linear system for ∆h(m)

i

7 update hi with h(m+1)
i = h(m)

i + 3
2 ∆h(m+1)

i − 1
2 ∆h(m)

i



Results

Evolution of B(x , t). Parameter values of D = 8× 104,
Da = 3.3210, ls = 10−3, ε = 0.4, and K = 1 were used.
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Results: Depletion Region for Small t

Evolution of B(x , t). Parameter values of D = 8× 104,
Da = 3.3210, ls = 10−3, ε = 0.4, and K = 1 were used.



Results: Measured Signal Prediction
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B

B vs t

K = 1.67

K = 0.33

K = 0.17

Depicted: average concentration B(t) =
∫ 1/2
−1/2 B(x , t) dx

(proportional to signal) for D = 4× 104, 8× 104 and 4× 105.
Correspondingly Da = 6.6420, 3.321, 0.6642.



Conclusions

Personalized therapies have the potential to fundamentally
improve treatment of diseases such as diabetes, Alzheimer’s
disease, and certain kinds of cancers.
This has led to the development of FETs, and we have
developed the first time-dependent model for FET
experiments.
Our model predicts an unexpected depletion region. This
effect is not directly observable experimentally and provide
insight into the origin of the measured signal.



Future Work

Develop small time asymptotic approximation.
Separate signal from noise in experimental data using
stochastic regression techniques.
Identify key model parameters, such as the dissociation rate
constant.


