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Precision Medicine

@ Precision medicine—the tailoring of therapies to individuals or
specific subsets of a population to deliver personalized care.
@ Personalized therapies can be safer and yield better outcomes

at lower doses when treating diabetes, Alzheimer's disease, or
certain kinds of cancers.

@ This has led to the advent of a new portable detection tool
known as a Field Effect Transistor (FET).



Field Effect Transistor (FET)

Experimental setup



Field Effect Transistor (FET)

Semiconductor channel

@ Measures current: i(t)
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Modeling FET Dynamics

@ FET experiments are complex systems involve: diffusion,
reaction, and semiconductor physics.

@ Previous modeling efforts have been devoted to understanding
semiconductor physics, and assume the system is in a
steady-state 1» 2 3,

@ An accurate time-dependent mathematical model can provide
theoretical predictions of the measured signal and is necessary
for maximizing the sensitivity of FET-based measurements.

'Heitzinger, SIAM Journal on Applied Mathematics, 2010.
2Khodadadian, Journal of Computational Electronics, 2016.
3Landheer, Journal of Applied Physics, 2005.
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@ Uniform injection along top boundary.

@ Sealed experiment with pulse injection at t = 0.
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Dimensional Equations (Uniform Injection)
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Dimensionless System (Uniform Injection)
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Dimensionless System (Uniform Injection)
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Quasi-Steady Approximation
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@ Search for solutions of the form C =1 + Cp.

@ Only need C(x,0,t) in equation for B, so it is sufficient to
solve for C(x,y,t)|y—o-



Quasi-Steady Approximation

@ This reduces the problem to
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Take a Fourier transform in x, and evaluate at the surface to show:
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How to go back?

@ Applying convolution theorem to
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Residue Theorem

Apply residue theorem to show
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Integral Equation for C(x,0, t)

@ Putting these facts together leads to the conclusion:
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@ First term 1 is the uniform injection concentration.

@ Second term captures the effect of diffusion into the surface.



Convolution Kernel

Convolution Kernal

o Convolution kernal tanh~1(e~1x=¥I75/(2€)) centered at x = 0,
and x = —1/2.

@ Kernal captures the effect of ligand molecules spreading out
and diffusing into the surface.



Integrodifferential Equation (IDE)

@ Substituting our formula for C into the equation for B we find:
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Numerical Solution

@ How to solve
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e Since tanh™1(x) = (In(x +1) — In(x — 1)) /2, kernal is singular
at x = v.

o Use method of lines B(x, t) ~ YN | ¢;(x)hi(t), where ¢;(x)
are locally-defined hat functions.



Numerical Solution

@ This requires computing
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where x; is one of our discretization nodes. Fortunately, we are able to
compute the exact value of this integral in terms of polylogarithms.



Convergence
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@ Error || ||Bret(x, t) — B(x, t)||2.x||cc,t - We get first-order
convergence, despite logarithmic singularity.



Results

Concentration

e Evolution of B(x, t). Here we took Da = 66, s = 1073,
e=1 and K=1.
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Results: Depletion Region for Small t
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Results: Measured Signal Prediction

Average Concentration
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e Depicted: average concentration B(t) = f_lﬁz B(x, t) dx
(which is proportional to measured signal) for

k. = 101, 5 x 101, 10'2 mol/(cm? - s)

@ This corresponded to Da = 6.64, 33.21, and 66.42; and
K = 1.67, 0.33 and 0.17.



Modeling FET Dynamics

@ Uniform injection along top boundary.

@ Sealed experiment with pulse injection at t = 0.



Dimensionless System (Pulse Injection)
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Quasi-Steady Approximation?
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@ The equation for C is now elliptic, and we can't enforce the
initial condition.



Existence issues?

@ It is not clear whether a solution to this set of equations even
exists.
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@ Physically, we expect 83 to be positive for all x and t.
@ Must deal with full parabollc system.



Dimensionless System (Pulse Injection)
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How to solve for C(x,0, t)?

@ Decompose C into C = C; + Cp.

o (;—satisfies associated system with homogeneous boundary
conditions.

o Cp—satisfies associated system with homogeneous initial
condition.

@ Once we find C; and Gy, it follows that
C(x,0,t) = Ci(x,0,t) + Cp(x,0, t).



Equation for C;

@ The function C; is governed by:
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ot
Ci(Xva 0) = f(va)a

VG- -n=0 on 0Q.

= D VG,

@ One can find the Green's function via separation of variables
to show:

Ci(x,0,t) = /QQ(X,O, £ w)f (w) dw.



Equation for C,

@ The function Cp is governed by:
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@ One can find Cp(x, y,t) via a Laplace transform.



Equation for Cp

@ Introducing a Laplace transform, we have:
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o Search for separable solutions Cp(x, y;s) = ¢(x)h(y; s).
@ This yields
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Determining a,(s)

@ How to determine a(s)? Use the relations
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and orthogonality of the cosines to show
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Putting it Together

@ Putting this information together we have.

- B 172 coth(e/lsy/s/D + Mn)(sB)
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n>0

x cos(An(x +1/(25)))

@ How to invert?



Putting it Together

@ Putting this information together we have.
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Mapping Back

@ Apply the convolution theorem
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Mapping Back

@ Applying residue theorem shows
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Mapping back

@ Thus since
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Putting it Together

@ Thus since
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Integrodifferential Equation Reduction

o Laplace transform — eigenvalue problem — separable
solutions — inversion — integrodifferential equation
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Numerics Overview

@ consider semi-implicit system

%—f(x, thr1) = (1 — B(x, tn))C(x,0, thtr1) — KB(x, tn)
@ singularity handling
© method of lines discretization B(x, t) ~ > 1 ¢i(x)hi(t)
© discretize temporal integral with the trapezoidal rule
@ write h(tm) ~ AW™ /At
O solve resulting linear system for Ah,(m)
@ update h; with A1 = A L 3ARTTD I ApM)



Results

Concentration

e Evolution of B(x,t). Parameter values of D = 8 x 10%,
Da =3.3210, /s = 1073, e = 0.4, and K = 1 were used.
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Results: Depletion Region for Small t
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Results: Measured Signal Prediction
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e Depicted: average concentration B(t) = fiﬁz B(x, t) dx
(proportional to signal) for D = 4 x 10%, 8 x 10* and 4 x 10°.
@ Correspondingly Da = 6.6420, 3.321, 0.6642.



Conclusions

@ Personalized therapies have the potential to fundamentally
improve treatment of diseases such as diabetes, Alzheimer’s
disease, and certain kinds of cancers.

@ This has led to the development of FETs, and we have
developed the first time-dependent model for FET
experiments.

@ Our model predicts an unexpected depletion region. This

effect is not directly observable experimentally and provide
insight into the origin of the measured signal.



Future Work

@ Develop small time asymptotic approximation.

@ Separate signal from noise in experimental data using
stochastic regression techniques.

o Identify key model parameters, such as the dissociation rate
constant.



