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Goals:
to use multiscale geometry (structured deformations) to provide a
continuum description of elastic aggregates

to identify compact and loose phases for a broad class of elastic
aggregates

to describe moving interfaces that separate loose and compact phases
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Examples:
paperback book

"powder snow"

sand

roll of paper towels

Features:

Aggregate in loose phase
deforms easily (absence of
friction between pieces)

Aggregate in compact
phase is stiff (presence of
friction between pieces)

Interfaces between the
phases are easily produced

Loose phase often appears
in narrow bands in
constrained aggregates
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Tools for modelling aggregates/granular materials such as sand:

classical continuum mechanics: aggregate is a "(visco)-plastic body"
(stability, flow)

statistical mechanics: aggregate consists of colliding particles
(dynamics, avalanches)

discrete mechanics: aggregate is a deterministic system of deformable
bodies (submacroscopic texture)

continua with microstructure: aggregate is a continuum with
additional fields reflecting submacroscopic structure

Capriz, G., Giovine, P., Mariano, P.M. (editors) Models of Granular
Materials, Lecture Notes in Mathematics, No. 1937, Springer, Berlin,
Heidelberg (2008)
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Continuum mechanics based on multiscale geometry
Structured motions: (g ,G ) : B ×R −→ E × LinV
B ⊂ E ...reference configuration of the body

g(·, t) ... macroscopic deformation at time t (smooth, injective)
G (·, t)... deformation without disarrangements at time t (smooth)
0 < detG (X , t) ≤ det∇g(X , t) ... Accomodation Inequality
M(·, t) := ∇g(·, t)− G (·, t) ... deformation due to disarrangements
at time t (submacroscopic slips and void formation)

Approximation Theorem: (Del Piero & Owen-1993) For each t there
exists n 7−→ fn(·, t) injective and piecewise smooth such that

lim
n−→∞

fn(·, t) = g(·, t), lim
n−→∞

∇fn(·, t) = G (·, t).

Corollary: M(·, t) is a limit of averages of [fn ](·, t)⊗ ν.
[fn ]...jump in fn
Choksi & Fonseca (1997)... SBV versions (without Accomodation
Inequality and injectivity)
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(Classical) Elasticity: ψ(X , t) = Ψc (∇g(X , t))...Helmholtz free energy
M := ∇g − G = 0 (no deformation due to disarrangements)

S = DΨc ...stress

Elasticity with disarrangements: (Deseri & Owen - 2003)
ψ(X , t) = Ψ(G (X , t),M(X , t))

S = DGΨ+DMΨ
ρ0g̈ = div(DGΨ+DMΨ) + b ...balance of linear momentum

DGΨMT +DMΨ (∇g)T = 0 ...consistency relation

DGΨ · Ṁ +DMΨ · Ġ ≥ 0 ...dissipation inequality

sk(DGΨMT +DMΨGT ) = 0 ...frame-indifference

0 < detG ≤ det∇g ...Accomodation Inequality
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DGΨ · Ṁ +DMΨ · Ġ ≥ 0 ...dissipation inequality

sk(DGΨMT +DMΨGT ) = 0 ...frame-indifference

0 < detG ≤ det∇g ...Accomodation Inequality

() September 15, 2011 6 / 23



Elasticity with purely dissipative disarrangements
ψ(X , t) = Ψ(G (X , t))
↔"Disarrangements do not contribute to the energy stored in the body."

S = DGΨ

ρ0g̈ = div(DGΨ) + b ...balance of linear momentum

DGΨMT = 0 ...consistency relation (cr)

DGΨ · Ṁ ≥ 0 ...dissipation inequality (di)

sk(DGΨMT ) = 0 ...frame-indifference (fi) —redundant!—

0 < detG ≤ det∇g ...Accomodation Inequality (ai)

NOTE: "S = 0" is a solution of (cr), (di), (fi)
"M = 0" is a solution of (cr), (di), (fi), (ai)
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Elasticity with purely dissipative disarrangements
As above: ψ(X , t) = Ψ(G (X , t))
Assumptions on the Helmholtz free energy response Ψ:

Ψ is of class C 2 on Lin+ (smoothness)

Ψ(QG ) = Ψ(G ) = Ψ(GQ) for all G ∈ Lin+ and Q ∈ Orth ...
frame-indifference and isotropy

DGΨ(A) · (u ⊗ v) ≤ Ψ(A+ u ⊗ v)−Ψ(A) for all A ∈ Lin+,
u, v ∈ V ...rank-one convexity

lim|G |−→∞ Ψ(G ) = limdetG−→0 Ψ(G ) = +∞ ...growth

Consequence of a Theorem of Mizel -1999: There exists ζmin > 0 such that

min
G∈Lin+

Ψ(G ) = min
ζ>0

Ψ(ζI ) = Ψ(ζminI ).
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g ... given macroscopic deformation with ζ3min ≤ det∇g
Q ... any rotation-valued field
Loose phase for g : (g , ζminQ)

minG∈Lin+ Ψ(G ) = minζ>0 Ψ(ζI ) = Ψ(ζminI ) = Ψ(ζminQ)

S = DGΨ(ζminQ) = 0
M = ∇g − ζminQ does not vanish identically in the loose phase, in
general.

Submacroscopic view via the Approximation Theorem: Each
injective, piecewise smooth fn (with fn ≈ g , ∇fn ≈ ζminQ) divides B into
non-overlapping pieces that undergo approximately

pure dilatations of amount ζmin,

rotations corresponding to the field Q, and

translations that do not cause interpenetration of the pieces.

We may think of the body in the loose phase for g as an aggregate
that deforms according to g with pieces that deform according to fn.
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g .... given macroscopic deformation
Compact phase for g : (g ,∇g)

Whether or not the macroscopic deformation g satisfies
ζ3min ≤ det∇g , the classical deformation (g ,∇g) satisfies the
Accomodation Inequality

S = DGΨ(∇g) 6= 0, in general.
M = ∇g −∇g = 0 in the compact phase: no submacroscopic slips
or formation of voids arise via (g ,∇g).

Submacroscopic view of (g ,∇g) via the Approximation Theorem:
Take fn = g for every n. Submacroscopic and macroscopic views agree at
all stages of approximation.
We may think of the body in the compact phase for g as an
aggregate in which both the pieces and the aggregate deform
according to g .
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g .... given macroscopic deformation
Compact phase for g : (g ,∇g)...no disarrangements; available for every
g
Field relations all are satisfied identically (with equality) except for:

ρ0g̈ = div(DGΨ(∇g)) + b ...balance of linear momentum

NOTE: ψ̇ = S · ∇ġ ...no internal dissipation.

Loose phase for g : (g , ζminQ) ... energy minimizer; disarrangements;
phase is available if volume change for g is large enough
Field relations all are satisfied identically (with equality) except for:

ρ0g̈ = b ...balance of linear momentum

ζ3min ≤ det∇g ...Accomodation Inequality

NOTE: ψ̇ = 0 = S · ∇ġ ...no internal dissipation
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GOAL: To study moving interfaces that separate the loose and compact
phases of elastic aggregates.
A first step:

for special deformations in the compact phase, chosen so that shock
waves are absent, identify planar interfaces t = t̂(X ) in B ×R that
can separate the loose and compact phases

find suffi cient conditions on the free energy response in order that
"loose-to-compact" transitions occur, or that "compact-to-loose"
transitions occur, or that "reversible" transitions occur.

compare the deformations and velocities in the contiguous phases

This step is best carried out by broadening the field equations to include
the First and Second Laws of Thermodynamics and by allowing material
response functions to depend on the temperature field as well as the
deformation fields.
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(g ,G ) : B ×R −→ E × LinV ... structured motion

θ : B ×R −→ R+ ...temperature

ε : B ×R −→ R ... internal energy (per unit volume in B)
η : B ×R −→ R ... entropy (per unit volume in B)
ψ : B ×R −→ R ... Helmholtz free energy (per unit volume in B)
with ψ = ε− θη

q : B ×R −→ V ... heat flux

r : B ×R −→ R ... external radiation field (per unit volume in B)

standard form divergence form (ḃ = 0)
ρ0g̈ = div S + b div4(S , −ρ0ġ) = b

ε̇ = S · ∇ġ − div q + r div4(−ST ġ + q , ε+ 1
2ρ0 |ġ |

2 − b · g) = r
η̇ ≥ −div( qθ ) +

r
θ div4( qθ , η) ≥

r
θ
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ε̇ = S · ∇ġ − div q + r div4(−ST ġ + q , ε+ 1
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2ρ0 |ġ |
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Constitutive assumptions:

ψ, ε are functions of G , θ, and so therefore is η = (ε− ψ)/θ

q is a function of G , θ, ∇θ that vanishes when ∇θ vanishes

S = DGΨ, η = −DθΨ where Ψ is the response function for ψ

NOTE:

1 Second Law is equivalent to DGΨ · Ṁ − q·∇θ

θ2
≥ 0.

2 ε = Ψ− θDθΨ , so that Ψ and the heat-flux response function
determine all the others.

In what follows, we’ll assume the temperature field is constant, so that

∇θ = 0 = q, θ̇ = 0,

and, consequently, the Second Law becomes DGΨ · Ṁ ≥ 0, which is
satisfied with equality in both the loose and compact phases.
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θ2
≥ 0.

2 ε = Ψ− θDθΨ , so that Ψ and the heat-flux response function
determine all the others.

In what follows, we’ll assume the temperature field is constant, so that

∇θ = 0 = q, θ̇ = 0,

and, consequently, the Second Law becomes DGΨ · Ṁ ≥ 0, which is
satisfied with equality in both the loose and compact phases.

() September 15, 2011 14 / 23



Constitutive assumptions:

ψ, ε are functions of G , θ, and so therefore is η = (ε− ψ)/θ

q is a function of G , θ, ∇θ that vanishes when ∇θ vanishes

S = DGΨ, η = −DθΨ where Ψ is the response function for ψ

NOTE:

1 Second Law is equivalent to DGΨ · Ṁ − q·∇θ
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Jump conditions on a parametric space-time hypersurface I :
X 7→ (X , t̂(X )) with orientation given by the space-time normal field
X 7→ (−∇t̂(X ), 1).
Assume that the motion

is determined by the compact phase (gc ,∇gc ) for a macroscopic
motion gc on one side of I

is determined by the loose phase (g`, ζminI ) for a macroscopic motion
g` on the opposite side, so that

[S ](X , t̂(X ))(−∇t̂(X ))− ρ0[ġ ](X , t̂(X )) = 0

[(−ST ġ)](X , t̂(X )) · (−∇t̂(X )) + [ε+ 1
2ρ0 |ġ |

2 − b · g ](X , t̂(X )) = 0
[η](X , t̂(X )) ≥ 0
[g ](X , t̂(X )) = 0.

(Terms involving q drop out, since q = 0 = [q] from assumption that θ is
a constant field.)
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Special assumptions on gc and g`: both are homogeneous motions
composed with a (time-dependent) translation:

g`(X , t) = X0 + F (I + ξ`a⊗ n)(X − X0) + tv` + t2
2ρ0
b

gc (X , t) = X0 + F (I + ξca⊗ n)(X − X0) + tvc + t2
2ρ0
b

Additional assumptions:

Radiation r vanishes; temperature θ and body force b are constants.

Conclusions:

All the field relations (including 1st and 2nd laws) are satisfied in
compact phase

All the field relations (including 1st and 2nd laws) are satisfied in the
loose phase except for the Accomodation Inequality:

ζ3min ≤ det∇g` = detF (1+ ξ` a · n).

The only possible source of dissipation is the motion of the phase
boundary It = {X ∈ B | t̂(X ) = t} in the reference configuration.
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Implications of the jump conditions
Among the implications of the jump conditions when t̂ is affi ne are:

The phase boundary It in the reference configuration has normal n,
and, if b 6= 0, the traction DGΨ(F (I + ξca⊗ n), θ)n on the phase
boundary is a linear combination of Fa and Fa× b.

Let Na,n be the bounded, possibly singleton interval of numbers ξc
such that DGΨ(F (I + ξca⊗ n), θ)n · Fa = 0. For ξc /∈ Na,n , ξc
determines ξ`, Ξ = |∇t̂|−1, and vc − v`, e.g.,

ξ` = ξc −
2(Ψc − θ(DθΨ)c )− 2(Ψ` − θ(DθΨ)`)

(DGΨ)c n · Fa
,

where Ψc := Ψ(F (I + ξca⊗ n), θ), etc. and Ψ` = Ψ(ζminI , θ), etc.
If a loose-to-compact transition occurs, i.e, (−∇t̂(X ), 1) points into
the compact phase, then (DθΨ)c ≤ (DθΨ)` (reverse for
compact-to-loose transition; equality for a "reversible" transition).
The Accomodation Inequality in the loose phase takes the form:

ζ3min
detF

− 1 ≤ a · n
{

ξc −
2(Ψc − θ(DθΨ)c )− 2(Ψ` − θ(DθΨ)`)

(DGΨ )c n · Fa

}
.
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.
Suffi cient conditions for a loose-to-compact transition
Assume

The closed interval
Na,n := {ξc | DGΨ(F (I + ξca⊗ n), θ)n · Fa = 0 } is a singleton
{ξ0} .

DθΨ(F (I + ξ0a⊗ n), θ) < DθΨ(ζminI , θ)
b = 0

Then there exists an open interval I of the form (ξ0 − δ, ξ0) or
(ξ0, ξ0 + δ) such that for every ξc ∈ I the body admits a moving planar
interface that transforms material in the loose phase (g`, ζminI ), with

ξ` = ξc −
2(Ψc − θ(DθΨ)c )− 2(Ψ` − θ(DθΨ)`)

(DGΨc )n · Fa
,

into the compact phase (gc ,∇gc ). Moreover, lim
ξc−→ξ0

|ξ`| = ∞, so that

there is a drastic reduction in the level of deformation as a material point
is transformed from the loose phase to the compact phase.
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Suffi cient conditions for a compact-to-loose transition
Assume

The closed interval
Na,n := {ξc | DGΨ(F (I + ξca⊗ n), θ)n · Fa = 0 } is a singleton
{ξ0} .

DθΨ(ζminI , θ) < DθΨ(F (I + ξ0a⊗ n), θ) and
θDθΨ(F (I + ξ0a⊗ n), θ)− θDθΨ(ζminI , θ) <
Ψ(F (I + ξ0a⊗ n), θ)−Ψ(ζminI , θ)
b = 0

Then there exists an open interval I of the form (ξ0 − δ, ξ0) or
(ξ0, ξ0 + δ) such that for every ξc ∈ I the body admits a moving planar
interface that transforms material in the compact phase (gc ,∇gc ) into the
loose phase (g`, ζminI ), with

ξ` = ξc −
2(Ψc − θ(DθΨ)c )− 2(Ψ` − θ(DθΨ)`)

(DGΨ)c n · Fa
.

Moreover, lim
ξc−→ξ0

|ξ`| = ∞, so that deformation drastically increases from

the compact phase to the loose phase.
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Suffi cient conditions for a reversible transition
Assume b = 0 and there exists ξ̂c /∈ Na,n such that
DθΨ(F (I + ξ̂ca⊗ n), θ) = DθΨ(ζminI , θ) and
ζ3min
det F −1 ≤ a · n{ξ̂c−

2(Ψc−Ψ`)
(DGΨ )cn·Fa |ξc=ξ̂c

}.Then both the compact-to-loose
and the loose-to-compact transitions corresponding to the structured
deformations (gc ,∇gc ) and (g`, ζminQ) are available to the body for ξc =

ξ̂c and for ξ`= ξ̂c −
2(Ψc−Ψ`)
(DGΨ )cn·Fa |ξc=ξ̂c

.
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Other issues addressed in present research:

Illustrative example: Ψ(G , θ) =
α(θ)

2
(detG )−2 +

β(θ)

2
G · G

Simple shears in each phase: F = I , a · n = 0:

gc (X , t) = X0 + (I + ξca⊗ n)(X − X0) + tvc +
t2

2ρ0
b

g`(X , t) = X0 + (I + ξ`a⊗ n)(X − X0) + tvc +
t2

2ρ0
b

e.g.: Suffi cient conditions for loose-to-compact transition stated
earlier become:

b · n = 0, α(θ) < β(θ), α′(θ) + 3β′(θ) > 0

Plane progressive waves with small associated deformations in the
compact phase

gc (X , t) = X0 + Fc (X − X0) + ϕ((X − X0) · n+ st) e + t2
2ρ0
b

g`(X , t) = X0 + F`(X − X0) + tv` + t2
2ρ0
b
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Future, related research topics:

Special solutions involving cavitation

Study initial-boundary value problems without special choices of gc
Study the case where "isotropy" is replaced by "transverse isotropy"
(e.g., pages of a book)

Statics: min(g ,G )
∫
B Ψ(G (X ))dVX subject to g |∂B= g0,

0 < detG (X ) ≤ det∇g(X ), G (X ) =
{

ζminQ(X )
∇g(X ) .

Same as above, while admitting other phases:
DGΨ(G (X )) (∇g(X )− G (X ))T = 0...consistency.
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Supplementary relations:

|v` − vc | = {2(Ψc−θ(DθΨ)c )/ρ0−2(Ψ`−θ(DθΨ)`)/ρ0}
1/2

...relative speed of phases

Ξ =
|(DGΨ)c n · Fa| / |Fa|

{2ρ0(Ψc−θ(DθΨ)c )− 2ρ0(Ψ`−θ(DθΨ)`)}
1/2

... speed of interface

D = Ξ |(DθΨ)c − (DθΨ)`|
.... rate of dissipation by interface
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