Isoperimetric sets inside almost-convex cones

Eric Baer
CMU
(joint work with Alessio Figalli, ETH Zurich)

November 6, 2018
Center for Nonlinear Analysis Seminar

Outline

1) Formulation of the problem.
2) A result of Lions-Pacella (1990) on the isoperimetric inequality in convex cones:

Under suitable hypotheses, cone convex \Rightarrow isoperimetric regions are balls centered at the origin.
3) Stability forms of isoperimetric results.
4) Statement of our main theorem:

The characterization of isoperimetric regions as balls centered at the origin persists for some almost-convex cones.
5) Some ideas of the proof: Compactness arguments, Stability for isoperimetric inequalities, Sharp Poincaré estimate.

Formulation of the problem

A open subset of the sphere $S^{N-1}\left(\subset \mathbb{R}^{N}\right)$

$$
\mathcal{C}_{A}=\{t x: x \in A, t>0\} \ldots \text { cone over } A
$$

Fix $m>0$. We look for measurable $E \subset \mathcal{C}_{A}$ minimizing the relative perimeter

$$
P\left(E ; \mathcal{C}_{A}\right)
$$

among all such sets satisfying the volume constraint $|E|=m$.
These sets are called isoperimetric sets inside the cone.

Theorem: (P.L. Lions and F. Pacella '90) $N \geq 2, A$ open $\subset S^{N-1} \subset \mathbb{R}^{N}, \mathcal{C}_{A}$ cone over A. Suppose \mathcal{C}_{A} is convex. Then

$$
\frac{P\left(E ; \mathcal{C}_{A}\right)}{|E|^{\frac{N-1}{N}}} \geq \frac{P\left(B ; \mathcal{C}_{A}\right)}{\left|B_{1} \cap \mathcal{C}_{A}\right|^{\frac{N-1}{N}}}
$$

for all $E \subset \mathcal{C}_{A}$ measurable with $|E|<\infty$.
Moreover, if A is smooth, equality holds if and only if $E=B_{R} \cap \mathcal{C}_{A}$ for suitable $R>0$.

Note: $P\left(B_{1} ; \mathcal{C}_{A}\right)=N\left|B_{1} \cap \mathcal{C}_{A}\right|$, so the right-hand side is $N\left|B_{1} \cap \mathcal{C}_{A}\right|^{1 / N}$.

- Lions-Pacella:

Via Brunn-Minkowski inequality $|A+B|^{1 / N} \geq|A|^{1 / N}+|B|^{1 / N}$. They also show: without convexity, the result fails in general.

- M. Ritoré, C. Rosales ('03):

Existence of isoperimetric regions in smooth cones strictly contained in the upper hemisphere; characterization of isoperimetric regions in convex cones via second variation arguments.

- Figalli-E. Indrei ('12):

Stability form of the Lions-Pacella result, characterization also valid for non-smooth convex cones.

$$
\begin{aligned}
& \text { Define } \alpha(E)=\frac{P\left(E ; \mathcal{C}_{A}\right)}{N\left|B_{1} \cap \mathcal{C}_{A}\right|^{1 / N}|E|^{(N-1) / N}}-1 \text {. Then } \mathcal{C}_{A} \text { open } \\
& \text { convex cone containing no lines, } K=B_{1} \cap \mathcal{C}_{A}, 0<|E|<\infty \\
& \text { implies } \\
& \qquad \frac{|E \Delta s K|}{|E|} \lesssim \sqrt{\alpha(E)} \text { with } s \text { chosen s.t. }|E|=|s K|
\end{aligned}
$$

- X. Cabré, X. Ros-Oton, J. Serra: "ABP method."

We discuss an extension of the Lions-Pacella characterization to a certain class of "almost-convex" cones. Let $d_{L^{\infty}}(\partial X, \partial Y)$ denote Hausdorff distance between ∂X and ∂Y in the sphere.
Definition: $\eta>0, r>0, S_{+}(\eta):=\left\{\xi \in S^{N-1}: \xi_{N}>\eta\right\}$,

$$
\begin{gathered}
\Pi_{+}(\eta, r):=\left\{A \text { open } \subset \subset S_{+}(\eta): \text { for } x \in \partial A\right. \text { there exist balls } \\
B_{r}^{+}, B_{r}^{-} \text {of radius } r \text { with } B_{r}^{+} \subset A, B_{r}^{-} \subset S^{N-1} \backslash A, \text { and } \\
\left.x \in \partial B_{r}^{+} \cap \partial B_{r}^{-}\right\}
\end{gathered}
$$

Theorem: (B., Figalli) Fix $N \geq 3, \eta>0, r>0$. Then there exists $\epsilon>0$ such that if

$$
A, A^{\prime} \in \Pi_{+}(\eta, r) \text { are s.t. } \mathcal{C}_{A} \text { is convex, } d_{L^{\infty}}\left(\partial A^{\prime}, \partial A\right)<\epsilon
$$

then for all $m>0$ the unique minimizer E_{*}^{\prime} of $E \mapsto P\left(E ; \mathcal{C}_{A^{\prime}}\right)$ among sets of finite perimeter with $\left|E_{*}^{\prime}\right|=m$ is given by

$$
E_{*}^{\prime}=B \cap \mathcal{C}_{A^{\prime}}, \quad B \text { ball centered at the origin, suitable radius. }
$$

Strategy: Compactness arguments, inspired by results on stability for isoperimetric problems.

Some approaches for stability results for isoperimetric inequalities on \mathbb{R}^{N} (estimating isop. deficit from below by notions of asymmetry):
(i) Symmetrization (N. Fusco, F. Maggi, A. Pratelli, Annals '06)
(ii) Optimal transport (Figalli, Maggi, Pratelli '07)
(iii) Regularity theory of "almost minimizers" for perimeter / "selection principle" (M. Cicalesi, G.P. Leonardi '10)
(Note: The ABP method also leads to a stability form of the Lions-Pacella result.)

An important step in (iii) is a "restricted" stability result due to Fuglede, which applies to nearly spherical sets.

Theorem: (Fuglede, '89) $D \subset \mathbb{R}^{N}$. Set

$$
\mu(D)=\frac{P(D)-P(B)}{P(B)}
$$

Then D nearly spherical (star-shaped wrt. barycenter $(=0)$ so $\partial D=\left\{(1+u(\xi), \xi)\right.$ in polar coordinates: $\left.\xi \in S^{N-1}\right\}$ with $\|u\|_{L^{\infty}}$, $\left.\|\nabla u\|_{L^{\infty}} \leq \epsilon\right)$ implies

$$
\|u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2} \lesssim \mu(D) .
$$

Remarks:

- Fuglede estimate is a sharpening of Bonnesen type inequalities

$$
D \subset \mathbb{R}^{2}, B_{r_{1}} \subset D \subset B_{r_{2}} \quad \rightsquigarrow \quad\left(r_{2}-r_{1}\right)^{2} \leq \frac{|\partial D|^{2}}{4 \pi}-|D|
$$

Paper of Fuglede also has an estimate for convex sets.

- A few words about the proof: Taylor expansion of the "area integral" and expansion by spherical harmonics.

Fuglede, continued:
Set $d \sigma=d \mathcal{H}^{N-1}\left(S^{N-1}\right)$. Without loss of generality, assume
$|D|=|B|=\omega_{N}$, and that the barycenter of D is at the origin, i.e.

$$
\int(1+u)^{N+1} x d \sigma=0
$$

Then

$$
\begin{aligned}
\frac{P(D)}{P(B)}= & \int(1+u)^{N-1} \sqrt{1+\frac{|\nabla u|^{2}}{(1+u)^{2}}} d \sigma \\
= & \int 1+\frac{|\nabla u|^{2}}{2}+(N-1) u+\frac{(N-1)(N-2)}{2} u^{2} d \sigma \\
& \quad+O(\epsilon)\left(\|u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2}\right)
\end{aligned}
$$

Now, $|D|=|B|$ implies $\int u d \sigma=-\left(\frac{N-1}{2}+O(\epsilon)\right)\|u\|_{L^{2}}^{2}$, so
$\frac{P(D)-P(B)}{P(B)}=\frac{1}{2} \int|\nabla u|^{2}-(N-1) u^{2} d \sigma+O(\epsilon)\left(\mid u\left\|_{L^{2}}^{2}+\right\| \nabla u \|_{L^{2}}^{2}\right)$,
and it is enough to show that for $\eta>0$, if $\epsilon>0$ is small enough,

$$
(1-\eta)\|u\|_{L^{2}}^{2}+\frac{1}{2}\|\nabla u\|_{L^{2}}^{2} \leq\|\nabla u\|_{L^{2}}^{2}-(N-1)\|u\|_{L^{2}}^{2} .
$$

For this, expand by spherical harmonics and use the spectral gap (uses that barycenter is the origin!).

Our approach is inspired by this, combined with compactness properties of minimizers.

Step 1: Suppose the claim fails. Then there exist sequences $\left(A_{*, n}\right)$, $\left(A_{n}\right) \subset \Pi_{+}(\eta, r)$ s.t. $\mathcal{C}_{A_{*, n}}$ convex,

$$
d\left(\partial A_{n}, \partial A_{*, n}\right) \rightarrow 0
$$

and the cone over A_{n} has a minimizer which is not a section of a ball.

By rescaling and compactness: there is a limiting convex cone $\mathcal{C}_{A_{*}}$ and a limiting set E_{*} with (after extracting a subsequence) $\left|E_{n} \Delta E_{*}\right| \rightarrow 0$ as $n \rightarrow \infty$ and E_{*} is a minimizer for $\mathcal{C}_{A_{*}}$.

Now, the Lions-Pacella result implies $E_{*}=\mathcal{C}_{A_{*}} \cap B$.

By the regularity theory for minimizers/almost minimizers of perimeter (in the interior and up to the boundary, c.f. G. De Philippis and F. Maggi '15), for n sufficiently large, ∂E_{n} can be written as a graph over A_{n} :

$$
\begin{aligned}
& u_{n}(\xi)=\sup \left\{t>-1:(1+t) \xi \in E_{n}\right\} \\
\rightsquigarrow & \partial E_{n} \cap \mathcal{C}_{A_{n}}=\left\{\left(1+u_{n}(\xi)\right) \xi: \xi \in A_{n}\right\} .
\end{aligned}
$$

A first variation argument now implies that $\left(\nabla u_{n}\right) \cdot \nu=0$ on ∂A_{n}, so that $\left|E_{n} \Delta E\right| \rightarrow 0$ and the almost minimizing property imply

$$
\left\|u_{n}\right\|_{L^{\infty}} \rightarrow 0, \quad\left\|\nabla u_{n}\right\|_{L^{\infty}} \rightarrow 0
$$

as $n \rightarrow \infty$.
This gives

$$
\begin{aligned}
P\left(E_{n} ; \mathcal{C}_{A_{n}}\right) \geq \mathcal{H}^{N-1} & \left(A_{n}\right) \\
+ & \frac{1-\delta}{2}\left(\left\|\nabla u_{n}\right\|_{L^{2}}^{2}-(N-1)\left\|u_{n}\right\|_{L^{2}}^{2}\right) \\
& -\frac{\delta}{2}\left\|u_{n}\right\| L^{2}
\end{aligned}
$$

for fixed $\delta>0$, when n is sufficiently large.

Step 2: Uniform Poincaré inequality on $\Pi_{+}(\eta, r)$.

Proposition: For fix $N \geq 3, \eta>0, r>0$, there exists $\epsilon>0$ and $C_{1}>\sqrt{N-1}$ s.t. for $A, A^{\prime} \in \Pi_{+}(\eta, r)$ with \mathcal{C}_{A} convex, $d_{L^{\infty}}\left(\partial A, \partial A^{\prime}\right)<\epsilon$,

$$
\|u-\bar{u}\|_{L^{2}\left(A^{\prime}\right)} \leq \frac{1}{C_{1}}\|\nabla u\|_{L^{2}\left(A^{\prime}\right)}
$$

with

$$
\bar{u}=\frac{1}{\mathcal{H}^{N-1}\left(A^{\prime}\right)} \int_{A^{\prime}} u d \mathcal{H}^{N-1} .
$$

Key idea for the uniform Poincaré inequality:

The sharp constant is determined by

$$
\mu_{1}(A)=\inf \left\{\frac{\|\nabla u\|_{L^{2}(A)}}{\|u\|_{L^{2}(A)}}: u \in W^{1,2}(A), \int_{A} u d \mathcal{H}^{N-1}=0, u \not \equiv 0\right\}
$$

which is stable under $d_{L^{\infty}}$ convergence for sets in $\Pi_{+}(\eta, r)$ (this is related to the existence of a uniformly bounded extension operator;
D. Chenais). Moreover, $\Pi_{+}(\eta, r)$ has "good" compactness properties.

Claim: For suitable $\epsilon>0$, there exists $c_{0}>\sqrt{N-1}$ s.t. $\mu_{1}(A) \geq c_{0}$ for all $A \in \Pi_{+}^{\text {conv }}(\eta, r)=\left\{A \in \Pi_{+}(\eta, r): \mathcal{C}_{A}\right.$ is convex $\}$.
If not, there is a sequence $\left(A_{n}\right)$ in $\Pi_{+}^{\text {conv }}$ s.t.

$$
\limsup _{n \rightarrow \infty} \mu_{1}\left(A_{n}\right) \leq \sqrt{N-1}
$$

Now, compactness in the class of convex sets implies we can find

$$
A_{*} \in \Pi_{+}^{\mathrm{conv}}
$$

s.t. $\mu_{1}\left(A_{*}\right) \leq \sqrt{N-1}$.

But: results of J.F. Escobar ('90) and Y. Alkhutov and V.G. Maz'ya ('09, '13) imply
for convex domains A_{*} in the sphere, $\mu_{1}\left(A_{*}\right) \geq \sqrt{N-1}$, with equality for smooth cones if and only if A_{*} is the hemisphere!

In particular, $A_{*} \in \Pi_{+}^{\text {conv }} \Rightarrow \mu_{1}\left(A_{*}\right)>\sqrt{N-1}$. This gives the desired contradiction.

Step 3: Recalling from the area integral computation as in Fuglede, for fixed $\delta>0, \epsilon>0$,

$$
\begin{aligned}
& P\left(E_{n} ; \mathcal{C}_{A_{n}}\right)-\mathcal{H}^{N-1}\left(A_{n}\right) \\
& \geq \frac{1-\delta}{2}\left\|\nabla u_{n}\right\|_{L^{2}}^{2}-\left(\frac{(N-1)(1-\delta)}{2}+\frac{\delta}{2}\right) \\
& \cdot\left(\left\|u_{n}-\overline{u_{n}}\right\|_{L^{2}}+\left|\overline{u_{n}}\right| \mathcal{H}^{N-1}\left(A_{n}\right)^{1 / 2}\right)^{2} .
\end{aligned}
$$

By Cauchy-Schwarz, volume normalization, and our smallness assumptions,

$$
\left|\overline{u_{n}}\right| \leq \frac{C \epsilon}{(1-C \epsilon) \mathcal{H}^{N-1}\left(A_{n}\right)^{1 / 2}}\left\|u_{n}-\overline{u_{n}}\right\|_{L^{2}}
$$

for all n sufficiently large (depending on ϵ).

This gives, for n sufficiently large (depending on ϵ and δ),

$$
\begin{aligned}
& P\left(E_{n} ; \mathcal{C}_{A_{n}}\right)-\mathcal{H}^{N-1}\left(A_{n}\right) \\
& \quad \geq \frac{1-\delta}{2}\left\|\nabla u_{n}\right\|_{L^{2}}^{2}-\left(\frac{(N-1)(1-\delta)}{2}+\frac{\delta}{2}\right) \\
& \quad \cdot\left(1+\frac{C \epsilon}{1-C \epsilon}\right)^{2}\left\|u_{n}-\overline{u_{n}}\right\|_{L^{2} .}^{2} .
\end{aligned}
$$

Now, note that the L^{2} norm of $u_{n}-\overline{u_{n}}$ is bounded by $\left(1 / c_{1}\right)\|\nabla u\|_{L^{2}}$.

Thus, choosing $\delta>0$ and $\epsilon>0$ small enough, we obtain

$$
P\left(E_{n} ; \mathcal{C}_{A_{n}}\right)-\mathcal{H}^{N-1}\left(A_{n}\right) \geq C(N, \eta)\left\|\nabla u_{n}\right\|_{L^{2}\left(A_{n}\right)}^{2}
$$

On the other hand, E_{n} minimizing $E \mapsto P\left(E ; \mathcal{C}_{A_{n}}\right)$ among finite perimeter sets with $|E|=\mathcal{H}^{N-1}\left(A_{n}\right) / N$ implies

$$
P\left(E_{n} ; \mathcal{C}_{A_{n}}\right)-\mathcal{H}^{n-1}\left(A_{n}\right) \leq P\left(B ; \mathcal{C}_{A_{n}}\right)-\mathcal{H}^{n-1}\left(A_{n}\right)=0
$$

where B is the unit ball centered at the origin.

Thus, for n sufficiently large, $\left\|\nabla u_{n}\right\|_{L^{2}}=0$, and u_{n} is constant. This contradicts the original choice of the sequences (the sets E_{n} were non-ball minimizers!).

Thank you!

