
Isoperimetric sets inside almost-convex cones

Eric Baer

CMU

(joint work with Alessio Figalli, ETH Zurich)

November 6, 2018

Center for Nonlinear Analysis Seminar

1



Outline

1) Formulation of the problem.

2) A result of Lions-Pacella (1990) on the isoperimetric inequality

in convex cones:

Under suitable hypotheses, cone convex ⇒ isoperimetric

regions are balls centered at the origin.

3) Stability forms of isoperimetric results.

4) Statement of our main theorem:

The characterization of isoperimetric regions as balls centered

at the origin persists for some almost-convex cones.

5) Some ideas of the proof: Compactness arguments, Stability for

isoperimetric inequalities, Sharp Poincaré estimate.
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Formulation of the problem

A open subset of the sphere SN−1(⊂ RN )

CA = {tx : x ∈ A, t > 0}...cone over A.

Fix m > 0. We look for measurable E ⊂ CA minimizing the relative

perimeter

P (E; CA)

among all such sets satisfying the volume constraint |E| = m.

These sets are called isoperimetric sets inside the cone.
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Theorem: (P.L. Lions and F. Pacella ’90) N ≥ 2, A open

⊂ SN−1 ⊂ RN , CA cone over A. Suppose CA is convex. Then

P (E; CA)

|E|N−1
N

≥ P (B; CA)

|B1 ∩ CA|
N−1
N

for all E ⊂ CA measurable with |E| <∞.

Moreover, if A is smooth, equality holds if and only if E = BR ∩ CA
for suitable R > 0.

Note: P (B1; CA) = N |B1 ∩ CA|, so the right-hand side is

N |B1 ∩ CA|1/N .
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• Lions-Pacella:

Via Brunn-Minkowski inequality |A+B|1/N ≥ |A|1/N + |B|1/N .

They also show: without convexity, the result fails in general.

• M. Ritoré, C. Rosales (’03):

Existence of isoperimetric regions in smooth cones strictly

contained in the upper hemisphere; characterization of

isoperimetric regions in convex cones via second variation

arguments.
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• Figalli-E. Indrei (’12):

Stability form of the Lions-Pacella result, characterization also

valid for non-smooth convex cones.

Define α(E) =
P (E;CA)

N|B1∩CA|1/N |E|(N−1)/N − 1. Then CA open

convex cone containing no lines, K = B1 ∩ CA, 0 < |E| < ∞
implies

|E∆sK|
|E| .

√
α(E) with s chosen s.t. |E| = |sK|.

• X. Cabré, X. Ros-Oton, J. Serra: “ABP method.”
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We discuss an extension of the Lions-Pacella characterization to a

certain class of “almost-convex” cones. Let dL∞(∂X, ∂Y ) denote

Hausdorff distance between ∂X and ∂Y in the sphere.

Definition: η > 0, r > 0, S+(η) := {ξ ∈ SN−1 : ξN > η},

Π+(η, r) :=

{
A open ⊂⊂ S+(η) : for x ∈ ∂A there exist balls

B+
r , B

−
r of radius r with B+

r ⊂ A, B−r ⊂ SN−1 \A, and

x ∈ ∂B+
r ∩ ∂B−r

}
.

Theorem: (B., Figalli) Fix N ≥ 3, η > 0, r > 0. Then there exists

ε > 0 such that if

A,A′ ∈ Π+(η, r) are s.t. CA is convex, dL∞(∂A′, ∂A) < ε,

then for all m > 0 the unique minimizer E′∗ of E 7→ P (E; CA′)
among sets of finite perimeter with |E′∗| = m is given by

E′∗ = B ∩ CA′ , B ball centered at the origin, suitable radius.
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Strategy: Compactness arguments, inspired by results on stability

for isoperimetric problems.

Some approaches for stability results for isoperimetric inequalities

on RN (estimating isop. deficit from below by notions of

asymmetry):

(i) Symmetrization (N. Fusco, F. Maggi, A. Pratelli, Annals ’06)

(ii) Optimal transport (Figalli, Maggi, Pratelli ’07)

(iii) Regularity theory of “almost minimizers” for perimeter /

“selection principle” (M. Cicalesi, G.P. Leonardi ’10)

(Note: The ABP method also leads to a stability form of the

Lions-Pacella result.)

An important step in (iii) is a “restricted” stability result due to

Fuglede, which applies to nearly spherical sets.
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Theorem: (Fuglede, ’89) D ⊂ RN . Set

µ(D) =
P (D)− P (B)

P (B)
.

Then D nearly spherical (star-shaped wrt. barycenter(= 0) so

∂D = {(1 + u(ξ), ξ) in polar coordinates: ξ ∈ SN−1} with ‖u‖L∞ ,

‖∇u‖L∞ ≤ ε) implies

‖u‖2L2 + ‖∇u‖2L2 . µ(D).

Remarks:

• Fuglede estimate is a sharpening of Bonnesen type inequalities

D ⊂ R2, Br1 ⊂ D ⊂ Br2  (r2 − r1)2 ≤ |∂D|
2

4π
− |D|

Paper of Fuglede also has an estimate for convex sets.

• A few words about the proof: Taylor expansion of the “area

integral” and expansion by spherical harmonics.
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Fuglede, continued:

Set dσ = dHN−1(SN−1). Without loss of generality, assume

|D| = |B| = ωN , and that the barycenter of D is at the origin, i.e.∫
(1 + u)N+1xdσ = 0.

Then

P (D)

P (B)
=

∫
(1 + u)N−1

√
1 +

|∇u|2
(1 + u)2

dσ

=

∫
1 +
|∇u|2

2
+ (N − 1)u+

(N − 1)(N − 2)

2
u2dσ

+O(ε)(‖u‖2L2 + ‖∇u‖2L2)
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Now, |D| = |B| implies
∫
udσ = −(N−1

2 +O(ε))‖u‖2L2 , so

P (D)− P (B)

P (B)
=

1

2

∫
|∇u|2 − (N − 1)u2dσ +O(ε)(|u‖2L2 + ‖∇u‖2L2),

and it is enough to show that for η > 0, if ε > 0 is small enough,

(1− η)‖u‖2L2 +
1

2
‖∇u‖2L2 ≤ ‖∇u‖2L2 − (N − 1)‖u‖2L2 .

For this, expand by spherical harmonics and use the spectral gap

(uses that barycenter is the origin!).

11



Our approach is inspired by this, combined with compactness

properties of minimizers.

Step 1: Suppose the claim fails. Then there exist sequences (A∗,n),

(An) ⊂ Π+(η, r) s.t. CA∗,n convex,

d(∂An, ∂A∗,n)→ 0

and the cone over An has a minimizer which is not a section of a

ball.

By rescaling and compactness: there is a limiting convex cone CA∗
and a limiting set E∗ with (after extracting a subsequence)

|En∆E∗| → 0 as n→∞ and E∗ is a minimizer for CA∗ .

Now, the Lions-Pacella result implies E∗ = CA∗ ∩B.
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By the regularity theory for minimizers/almost minimizers of

perimeter (in the interior and up to the boundary, c.f. G. De

Philippis and F. Maggi ’15), for n sufficiently large, ∂En can be

written as a graph over An:

un(ξ) = sup{t > −1 : (1 + t)ξ ∈ En}

 ∂En ∩ CAn
=

{
(1 + un(ξ))ξ : ξ ∈ An

}
.
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A first variation argument now implies that (∇un) · ν = 0 on ∂An,

so that |En∆E| → 0 and the almost minimizing property imply

‖un‖L∞ → 0, ‖∇un‖L∞ → 0

as n→∞.

This gives

P (En; CAn) ≥ HN−1(An)

+
1− δ

2
(‖∇un‖2L2 − (N − 1)‖un‖2L2)

− δ

2
‖un‖L2

for fixed δ > 0, when n is sufficiently large.
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Step 2: Uniform Poincaré inequality on Π+(η, r).

Proposition: For fix N ≥ 3, η > 0, r > 0, there exists ε > 0 and

C1 >
√
N − 1 s.t. for A,A′ ∈ Π+(η, r) with CA convex,

dL∞(∂A, ∂A′) < ε,

‖u− u‖L2(A′) ≤
1

C1
‖∇u‖L2(A′),

with

u =
1

HN−1(A′)

∫
A′
udHN−1.
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Key idea for the uniform Poincaré inequality:

The sharp constant is determined by

µ1(A) = inf

{‖∇u‖L2(A)

‖u‖L2(A)
: u ∈W 1,2(A),

∫
A

udHN−1 = 0, u 6≡ 0

}
,

which is stable under dL∞ convergence for sets in Π+(η, r) (this is

related to the existence of a uniformly bounded extension operator;

D. Chenais). Moreover, Π+(η, r) has “good” compactness

properties.
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Claim: For suitable ε > 0, there exists c0 >
√
N − 1 s.t. µ1(A) ≥ c0

for all A ∈ Πconv
+ (η, r) = {A ∈ Π+(η, r) : CA is convex}.

If not, there is a sequence (An) in Πconv
+ s.t.

lim sup
n→∞

µ1(An) ≤
√
N − 1.

Now, compactness in the class of convex sets implies we can find

A∗ ∈ Πconv
+

s.t. µ1(A∗) ≤
√
N − 1.

But: results of J.F. Escobar (’90) and Y. Alkhutov and V.G. Maz’ya

(’09, ’13) imply

for convex domains A∗ in the sphere, µ1(A∗) ≥
√
N − 1, with

equality for smooth cones if and only if A∗ is the hemisphere!

In particular, A∗ ∈ Πconv
+ ⇒ µ1(A∗) >

√
N − 1. This gives the

desired contradiction.
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Step 3: Recalling from the area integral computation as in Fuglede,

for fixed δ > 0, ε > 0,

P (En; CAn)−HN−1(An)

≥ 1− δ
2
‖∇un‖2L2 −

(
(N − 1)(1− δ)

2
+
δ

2

)
·
(
‖un − un‖L2 + |un|HN−1(An)1/2

)2
.

By Cauchy-Schwarz, volume normalization, and our smallness

assumptions,

|un| ≤
Cε

(1− Cε)HN−1(An)1/2
‖un − un‖L2

for all n sufficiently large (depending on ε).
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This gives, for n sufficiently large (depending on ε and δ),

P (En; CAn
)−HN−1(An)

≥ 1− δ
2
‖∇un‖2L2 −

(
(N − 1)(1− δ)

2
+
δ

2

)
·
(

1 +
Cε

1− Cε

)2
‖un − un‖2L2 .

Now, note that the L2 norm of un − un is bounded by

(1/c1)‖∇u‖L2 .
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Thus, choosing δ > 0 and ε > 0 small enough, we obtain

P (En; CAn
)−HN−1(An) ≥ C(N, η)‖∇un‖2L2(An)

.

On the other hand, En minimizing E 7→ P (E; CAn
) among finite

perimeter sets with |E| = HN−1(An)/N implies

P (En; CAn)−Hn−1(An) ≤ P (B; CAn)−Hn−1(An) = 0

where B is the unit ball centered at the origin.

Thus, for n sufficiently large, ‖∇un‖L2 = 0, and un is constant.

This contradicts the original choice of the sequences (the sets En

were non-ball minimizers!).
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Thank you!
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