The typical area-minimizing Current is unique and has Multiplicity One

Simone Steinbrüchel

joint work with G. Caldini, A. Marchese and A. Merlo

Center for Nonlinear Analysis Seminar

Carnegie Mellon University

February 27, 2024

Outline

(1) Plateau Problem
(2) Integral Currents
(3) Integral Currents: Regularity
(4) Main Theorem: Generic Uniqueness and Multiplicity One
(5) Banach-Mazur Game
(6) Winning Strategy

Plateau Problem

- Joseph Plateau (1801-1883)
- Experiments with soap bubbles/films
- Minimal surface

Problem

For a fixed boundary Γ, find the surface Σ of least area among those with $\partial \Sigma=\Gamma$.

For graph (u) minimizer and $\phi: D^{2} \rightarrow \mathbb{R}$ with compact support, we have

$$
0=\left.\frac{d}{d t}\right|_{t=0} \mathcal{H}^{2}(\operatorname{graph}(u+t \phi))=-\int_{D^{2}} \underbrace{\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)}_{=0 \text { Minimal Surface Equation }} \phi \mathrm{d} \mathcal{L}^{2} .
$$

Theorem (Douglas, Radó)

Fix $b: \mathbb{S}^{1} \rightarrow \mathbb{R}$. Then there exists a minimizer u with $\left.u\right|_{\mathbb{S}^{1}}=b$.

- Douglas showed equivalence to minimizing the Dirichlet functional, only works in \mathbb{R}^{3}
- Fields medal 1936
- the set of graphs is not compact

Currents - "Sobolev surfaces"

Definition

An m-dim current is a continuous linear functional $T: \mathcal{D}^{m}\left(\mathbb{R}^{m+n}\right) \rightarrow \mathbb{R}$.

- 0-dimensional currents are distributions.
- For Σ an oriented surface,

$$
T_{\Sigma}(\omega)=\int_{\Sigma} \omega
$$

- Stokes Theorem

$$
T_{\partial \Sigma}(\omega)=\int_{\partial \Sigma} \omega=\int_{\Sigma} \mathrm{d} \omega=T_{\Sigma}(\mathrm{d} \omega)
$$

Definition (Boundary)

The boundary of a current T is the ($m-1$)-current

$$
\partial T: \mathcal{D}^{m-1}\left(\mathbb{R}^{m+n}\right) \rightarrow \mathbb{R}, \omega \mapsto T(\mathrm{~d} \omega)
$$

Integral Currents

Definition (Integer Rectifiable Current)

An integer rectifiable m-current T is given by

$$
T(\omega)=\int_{E} \theta(x)\langle\omega(x), \tau(x)\rangle \mathrm{d} \mathcal{H}^{m}(x),
$$

where E is m-rectifiable, τ is an orientation of E and $\theta(x) \in \mathbb{Z}$ for a.e. x (multiplicity). T is denoted by $[E, \tau, \theta]$.

Definition (Mass)

The mass of a current T is given by

$$
\mathbf{M}(T):=\sup _{|\omega| \leq 1, \omega \in \mathcal{D}^{m}} T(\omega) .
$$

Compactness

Theorem (Federer-Fleming (1960))

Let $\left\{T_{i}\right\}_{i \in \mathbb{N}}$ be a sequence of integral currents with $\mathbf{M}\left(T_{i}\right)+\mathbf{M}\left(\partial T_{i}\right) \leq C$ for all i, then there is a subsequence converging to an integer rectifiable current T.

Definition (Area-minimzing)

An integral current T is called area-minimzing if for all integral currents S with $\partial S=\partial T$, we have

$$
\mathbf{M}(T) \leq \mathbf{M}(S)
$$

Regularity Theorems

Theorem (Almgren, De Lellis-Spadaro)

Let $T \in \mathbf{I}_{m}\left(\mathbb{R}^{n+m}\right)$ be area-minimizing with $\partial T=T_{\Gamma}$ regular. Then the set of interior points $p \in \operatorname{supp}(T) \backslash \operatorname{supp}(\partial T)$ for which $B_{r}(p) \cap \operatorname{supp}(T)$ is not a smooth mfld for any $r>0$, is a set of \mathcal{H}-dimension $\leq m-2$.

Theorem (De Lellis-De Philippis-Hirsch-Massaccesi)

Let $T \in \mathbf{I}_{m}\left(\mathbb{R}^{n+m}\right)$ be area-minimizing with $\partial T=T_{\Gamma}$ regular. Then the set of boundary points $p \in \operatorname{supp}(\partial T)$ for which there is an $r>0$ such that $B_{r}(p) \cap \operatorname{supp}(T)$ is a regular mfld with boundary, is open dense in supp (∂T).

Two-sided boundaries

Definition

A boundary point $p \in \Gamma$ is called two-sided if

$$
\liminf _{r \rightarrow 0} \frac{\|T\|\left(B_{r}(p)\right)}{\omega_{m} r^{m}} \geq \frac{3}{2}
$$

Otherwise p is called one-sided.

Main Theorem

Theorem (Caldini-Marchese-Merlo-S.)

The typical $(m-1)$-dim $C^{3, \alpha}$-boundary $\Gamma \subset \mathbb{R}^{n+m}$ has a unique area-minimzing current T with $\partial T=T_{\Gamma}$ and moreover, T has multiplicity $\theta \equiv 1$.

Definition (Space of boundaries)

Let Γ be an oriented, closed submanifold of dimension $m-1$. Let $U \subset \mathbb{R}^{n+m}$ be open and $f: \Omega \subset \mathbb{R}^{m-1} \rightarrow \mathbb{R}^{n+1}$ a $C^{3, \alpha}$-map s.t. $\Gamma \cap U=\operatorname{graph}(f)$. Then we define the space of boundaries as

$$
X_{\varepsilon}:=\left\{u \in C^{3, \alpha}(\Omega): f-u \equiv 0 \text { on } \Omega \backslash \Omega^{\prime},\|f-u\|_{C^{3, \alpha}}<\varepsilon\right\} .
$$

Claim: The set of $u \in X_{\varepsilon}$ such that $\operatorname{graph}(u) \cap \mathcal{M}$ has empty interior (relative to $\operatorname{graph}(u))$ for any m-dim $\operatorname{mfld} \mathcal{M}$ of class $C^{3, \beta}, \beta>\alpha$, is residual (wrt $C^{3, \alpha}$-norm).

Uniqueness: Dense implies residual

Lemma

Let $N U:=\left\{b \in X_{\varepsilon}\right.$: there are $T^{1} \neq T^{2}$ area-min with boundary $\left.b\right\}$. Then we can decompose this set as

$$
\bigcup_{k \geq 1}\left\{b \in X_{\varepsilon}: \exists T^{1}, T^{2} \text { area-min with boundary } b, \mathbb{F}\left(T^{1}-T^{2}\right) \geq \frac{1}{k}\right\}
$$

and moreover if $X_{\varepsilon} \backslash N U$ is dense, then it is residual.
Proof: We know $N U_{k}$ has empty interior (as $N U$ has), need to show: closed. Observe that $\mathbb{F}\left(T^{1}-T^{2}\right) \geq \frac{1}{k}$ is stable under \mathbb{F}-convergence and limit of minimizers is minimizing.

Proof Strategy I: One-sided case

Morgan's argument

Fix a minimizer T for Γ. If $p \in \Gamma$ is one-sided, then T is regular at p. Perturb Γ into the interior of T to favorize it. Moreover, if every boundary point is one-sided, the minimizer has multiplicity one.

Proof Strategy II: Two-sided case

Structure Theorem (De Lellis-De Philippis-Hirsch-Massaccesi)

Assume T is area-minimizing with boundary $\Gamma=\sqcup \Gamma_{i}$. Then $T=\sum_{j=1}^{N} Q_{j} T_{j}$ with $Q_{j} \in \mathbb{N}, \partial T_{j}=\sum_{i} \pm \llbracket \Gamma_{i} \rrbracket$ and

- either Γ_{i} is one-sided and all regular points of T at Γ_{i} have mult one,
- or Γ_{i} is two-sided, exactly two of the T_{j} 's touch it and all regular points of T at Γ_{i} have mult $Q_{j}-\frac{1}{2}$. Moreover the sum of those two T_{j} 's is again area-minimizing (for its boundary).

Assume for $p \in \Gamma$, there is an area-minimizing T that is two-sided and regular at p. Then $S=\left(T_{j}+T_{j^{\prime}}\right)\left\llcorner B_{r}(p)\right.$ is area-minimizing for which $\Gamma \cap B_{r}(p)$ are regular interior points. Thus $\mathcal{M}:=\operatorname{supp}(S)$ is a smooth m-dim mfld containing and open set of $\Gamma \nsucceq$ (happens only to a meager set of boundaries)

Proof Strategy III: Banach-Mazur Game

Goal: Those $u \in X_{\varepsilon}=\left\{u \in C^{3, \alpha}: f-u \equiv 0\right.$ on $\left.\Omega \backslash \Omega^{\prime},\|f-u\|_{C^{3, \alpha}}<\varepsilon\right\}$ which lie in a more regular mfld, form a meager set.

Theorem (The Game)

Let X be a complete metric space and $A \subset X$. There are two players P 1 and P2:

- P1 chooses $U_{1} \subset X$ nonempty and open,
- P2 chooses $V_{1} \subset U_{1}$ nonempty and open,
- P1 chooses $U_{2} \subset V_{1}$ nonempty and open,
- ...

Then there is a strategy for P 2 that forces $\bigcap_{i \in \mathbb{N}} U_{i} \cap A=\emptyset$ iff A is meager in X, i.e. $A=\bigcup_{j \in \mathbb{N}} A_{j}$ with A_{j} nowhere dense (i.e. $\stackrel{\circ}{A_{j}}=\emptyset$).

For us: $X=X_{\varepsilon}$ is the space of perturbed boundaries, $A=\left\{u: \operatorname{graph}(u)\right.$ intersects some $\mathcal{M} \in C^{3, \beta}$ in a relative open set $\}$.

Game strategy

Proposition

Given a boundary $\omega \in X_{\varepsilon}, x \in \Omega$ and $\bar{\rho}, j>0$, we find $u \in X_{\varepsilon}, \rho>0$ s.t.
(1) $\mathscr{B}_{\rho}(u) \subset \mathscr{B}_{\bar{\rho}}(\omega)$,
(2) for every $v \in \mathscr{B}_{\rho}(u), M \in C^{3, \beta}(\Omega \times \mathbb{R})$ with $\|M\|_{C^{3, \beta}}<j$, the projection misses a point, i.e.
$\pi_{\Omega}\left(\operatorname{graph}(M) \cap \operatorname{graph}(v) \cap C_{r}(x)\right) \neq B_{r}(x)$, where $r:=\min \left\{\frac{1}{j}, \operatorname{dist}(x, \partial \Omega)\right\} . \quad \wedge \mathbb{R}^{n-m}$

Game strategy: proof

(1) Assume (by contradiction) that for all $u \in \mathscr{B}_{\bar{\rho}}(\omega)$ there is a sequence $\rho_{i} \downarrow 0, M_{i}, v_{i} \in \mathscr{B}_{\rho_{i}}(u)$ s.t.

$$
\pi_{\Omega}\left(\operatorname{graph}\left(M_{i}\right) \cap \operatorname{graph}\left(v_{i}\right) \cap C_{r}(x)\right)=B_{r}(x)
$$

(2) Let $\alpha<\gamma<\beta$ and choose

$$
u(z):=\varphi_{\delta} * \omega(z)+\left(0, \ldots, 0, \delta \eta(z)\left|z_{1}-x_{1}\right|^{3+\gamma}\right)
$$

for some η cut-off and φ_{δ} standard mollifier.
(3) Observe $u \in X_{\varepsilon}$ and for $\delta>0$ small $u \in B_{\bar{\rho}}(\omega)$.
(3) By (1), we have for all $y \in B_{r}(x)$

$$
\left(y, v_{i}^{1}(y), v_{i}^{2 \cdots(n-m+1)}(y)\right)=\left(y, y^{\prime}, M_{i}\left(y, y^{\prime}\right)\right)
$$

(6) Compare components, Taylor everything, find contradiction to $\alpha<\gamma<\beta$.

Winning the game

(1) Choose a dense family $\left\{x_{\ell}\right\} \subset \Omega$.
(2) Iteratively choose balls as in the proposition with the additional constraint $\rho_{k}<\frac{1}{k+1}$.
(3) Find $\omega_{\infty} \in \bigcap_{k \geq 1} \mathscr{B}_{\rho_{k}}\left(u_{k}\right)$. Then for every k and $M \in C^{3, \beta}$, we have

$$
\pi_{\Omega}\left(\operatorname{graph}(M) \cap \operatorname{graph}\left(\omega_{\infty}\right) \cap C_{1 / k}\left(x_{k}\right)\right) \neq B_{1 / k}\left(x_{k}\right)
$$

(9) Assume (by contradiction) that graph $\left(\omega_{\infty}\right)$ intersects any $C^{3, \beta}$-mfld in a relatively open set $U \subset \Omega$. As $\left\{x_{\ell}\right\} \subset \Omega$ are dense, it contains one of the $B_{1 / k}\left(x_{k}\right)$. 4
(5) As the only element in the intersection does not lie in our set A, we conclude that A is meager.

Thank you!

