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Plateau Problem

Joseph Plateau
(1801-1883)

Experiments
with soap
bubbles/films

Minimal surface

Problem

For a fixed boundary Γ, find the surface Σ of least area among those with
∂Σ = Γ.
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For graph(u) minimizer and ϕ : D2 → R with compact support, we have

0 =
d

dt

∣∣∣∣
t=0

H2(graph(u+ tϕ)) = −
∫
D2

div

(
∇u√

1 + |∇u|2

)
︸ ︷︷ ︸

=0 Minimal Surface Equation

ϕ dL2.

Theorem (Douglas, Radó)

Fix b : S1 → R. Then there exists a minimizer u with u|S1 = b.

Douglas showed equivalence to minimizing the Dirichlet functional,
only works in R3

Fields medal 1936

the set of graphs is not compact
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Currents - ”Sobolev surfaces”

Definition

An m-dim current is a continuous linear functional T : Dm(Rm+n) → R.

0-dimensional currents are distributions.

For Σ an oriented surface,

TΣ(ω) =

∫
Σ
ω.

Stokes Theorem

T∂Σ(ω) =

∫
∂Σ

ω =

∫
Σ
dω = TΣ(dω).

Definition (Boundary)

The boundary of a current T is the (m− 1)-current

∂T : Dm−1(Rm+n) → R, ω 7→ T (dω).
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Integral Currents

Definition (Integer Rectifiable Current)

An integer rectifiable m-current T is given by

T (ω) =

∫
E
θ(x)⟨ω(x), τ(x)⟩dHm(x),

where E is m-rectifiable, τ is an orientation of E and θ(x) ∈ Z for a.e. x
(multiplicity). T is denoted by [E, τ, θ].

Definition (Mass)

The mass of a current T is given by

M(T ) := sup
|ω|≤1,ω∈Dm

T (ω).
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Compactness

Theorem (Federer-Fleming (1960))

Let {Ti}i∈N be a sequence of integral currents with M(Ti) +M(∂Ti) ≤ C
for all i, then there is a subsequence converging to an integer rectifiable
current T .

Definition (Area-minimzing)

An integral current T is called area-minimzing if for all integral currents S
with ∂S = ∂T , we have

M(T ) ≤ M(S).
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Regularity Theorems

Theorem (Almgren, De Lellis-Spadaro)

Let T ∈ Im(Rn+m) be area-minimizing with ∂T = TΓ regular. Then the
set of interior points p ∈ supp(T ) \ supp(∂T ) for which Br(p) ∩ supp(T ) is
not a smooth mfld for any r > 0, is a set of H-dimension ≤ m− 2.

Theorem (De Lellis-De Philippis-Hirsch-Massaccesi)

Let T ∈ Im(Rn+m) be area-minimizing with ∂T = TΓ regular. Then the
set of boundary points p ∈ supp(∂T ) for which there is an r > 0 such that
Br(p) ∩ supp(T ) is a regular mfld with boundary, is open dense in
supp(∂T ).
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Two-sided boundaries

Definition

A boundary point p ∈ Γ is called two-sided if

lim inf
r→0

∥T∥(Br(p))

ωmrm
≥ 3

2
.

Otherwise p is called one-sided.

2

1

Simone Steinbrüchel (Uni Leipzig) Generic Uniqueness and Multiplicity One 10 / 19



Main Theorem

Theorem (Caldini-Marchese-Merlo-S.)

The typical (m− 1)-dim C3,α-boundary Γ ⊂ Rn+m has a unique
area-minimzing current T with ∂T = TΓ and moreover, T has multiplicity
θ ≡ 1.

Definition (Space of boundaries)

Let Γ be an oriented, closed submanifold of dimension m− 1. Let
U ⊂ Rn+m be open and f : Ω ⊂ Rm−1 → Rn+1 a C3,α-map s.t.
Γ ∩ U = graph(f). Then we define the space of boundaries as

Xε := {u ∈ C3,α(Ω) : f − u ≡ 0 on Ω \ Ω′, ∥f − u∥C3,α < ε}.

Claim: The set of u ∈ Xε such that graph(u) ∩M has empty interior
(relative to graph(u)) for any m-dim mfld M of class C3,β, β > α, is
residual (wrt C3,α-norm).
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Uniqueness: Dense implies residual

Lemma

Let NU := {b ∈ Xε : there are T 1 ̸= T 2 area-min with boundary b}.
Then we can decompose this set as⋃

k≥1

{
b ∈ Xε : ∃T 1, T 2 area-min with boundary b, F(T 1 − T 2) ≥ 1

k

}

and moreover if Xε \NU is dense, then it is residual.

Proof: We know NUk has empty interior (as NU has), need to show:
closed. Observe that F(T 1 − T 2) ≥ 1

k is stable under F-convergence and
limit of minimizers is minimizing.
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Proof Strategy I: One-sided case

Morgan’s argument

Fix a minimizer T for Γ. If p ∈ Γ is one-sided, then T is regular at p.
Perturb Γ into the interior of T to favorize it. Moreover, if every boundary
point is one-sided, the minimizer has multiplicity one.
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Proof Strategy II: Two-sided case

Structure Theorem (De Lellis-De Philippis-Hirsch-Massaccesi)

Assume T is area-minimizing with boundary Γ = ⊔Γi. Then
T =

∑N
j=1QjTj with Qj ∈ N, ∂Tj =

∑
i±JΓiK and

either Γi is one-sided and all regular points of T at Γi have mult one,

or Γi is two-sided, exactly two of the Tj ’s touch it and all regular
points of T at Γi have mult Qj − 1

2 . Moreover the sum of those two
Tj ’s is again area-minimizing (for its boundary).

Assume for p ∈ Γ, there is an area-minimizing T that is two-sided and
regular at p. Then S = (Tj + Tj′) Br(p) is area-minimizing for which
Γ ∩Br(p) are regular interior points. Thus M := supp(S) is a smooth
m-dim mfld containing and open set of Γ  (happens only to a meager set
of boundaries)
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Proof Strategy III: Banach-Mazur Game

Goal: Those u ∈ Xε = {u ∈ C3,α : f − u ≡ 0 on Ω \ Ω′, ∥f − u∥C3,α < ε}
which lie in a more regular mfld, form a meager set.

Theorem (The Game)

Let X be a complete metric space and A ⊂ X. There are two players P1
and P2:

P1 chooses U1 ⊂ X nonempty and open,

P2 chooses V1 ⊂ U1 nonempty and open,

P1 chooses U2 ⊂ V1 nonempty and open,

...

Then there is a strategy for P2 that forces
⋂

i∈N Ui ∩A = ∅ iff A is

meager in X, i.e. A =
⋃

j∈NAj with Aj nowhere dense (i.e.
◦
Aj = ∅).

For us: X = Xε is the space of perturbed boundaries,
A = {u : graph(u) intersects some M ∈ C3,β in a relative open set}.
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Game strategy

Proposition

Given a boundary ω ∈ Xε, x ∈ Ω and ρ̄, j > 0, we find u ∈ Xε, ρ > 0 s.t.

1 Bρ(u) ⊂ Bρ̄(ω),

2 for every v ∈ Bρ(u), M ∈ C3,β(Ω× R) with ∥M∥C3,β < j, the
projection misses a point, i.e.

πΩ
(
graph(M)∩graph(v)∩Cr(x)

)
̸= Br(x),

where r := min{1
j ,dist(x, ∂Ω)}.

(x, v1(x))

R
n−m

R

R
m−1

x

(y, y′,M(y, y′))

(x, v(x))

(y, y′)
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Game strategy: proof

1 Assume (by contradiction) that for all u ∈ Bρ̄(ω) there is a sequence
ρi ↓ 0, Mi, vi ∈ Bρi(u) s.t.

πΩ
(
graph(Mi) ∩ graph(vi) ∩ Cr(x)

)
= Br(x).

2 Let α < γ < β and choose

u(z) := φδ ∗ ω(z) + (0, . . . , 0, δη(z)|z1 − x1|3+γ),

for some η cut-off and φδ standard mollifier.

3 Observe u ∈ Xε and for δ > 0 small u ∈ Bρ̄(ω) .

4 By (1), we have for all y ∈ Br(x)(
y, v1i (y), v

2···(n−m+1)
i (y)

)
=
(
y, y′,Mi(y, y

′)
)
.

5 Compare components, Taylor everything, find contradiction to
α < γ < β.
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Winning the game

1 Choose a dense family {xℓ} ⊂ Ω.

2 Iteratively choose balls as in the proposition with the additional
constraint ρk < 1

k+1 .

3 Find ω∞ ∈
⋂

k≥1 Bρk(uk). Then for every k and M ∈ C3,β, we have

πΩ
(
graph(M) ∩ graph(ω∞) ∩ C1/k(xk)

)
̸= B1/k(xk).

4 Assume (by contradiction) that graph(ω∞) intersects any C3,β-mfld
in a relatively open set U ⊂ Ω. As {xℓ} ⊂ Ω are dense, it contains
one of the B1/k(xk).  

5 As the only element in the intersection does not lie in our set A, we
conclude that A is meager.
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Thank you!
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