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Plateau Problem

@ Joseph Plateau
(1801-1883)

@ Experiments
with soap
bubbles/films

@ Minimal surface

Problem

For a fixed boundary T, find the surface 3 of least area among those with
oYX =T.
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For graph(u) minimizer and ¢ : D? — R with compact support, we have

d Vu
0= —| H>*(graph(u+t :—/ div [ ——— dc2.
at),_, (graph(u +t¢)) - ( ﬁ+|W|2> ¢

=0 Minimal Surface Equation

Theorem (Douglas, Radd)

Fix b : S! — R. Then there exists a minimizer u with u|g = b.

@ Douglas showed equivalence to minimizing the Dirichlet functional,
only works in R?

o Fields medal 1936

@ the set of graphs is not compact
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Currents - "Sobolev surfaces”

Definition

An m-dim current is a continuous linear functional 7' : D™(R™™") — R.

@ 0-dimensional currents are distributions.
@ For X an oriented surface,
Tg(w) = / Ww.
by

@ Stokes Theorem

Tag(w):/azcu:/xdw:Tg(dw).

Definition (Boundary)

The boundary of a current T" is the (m — 1)-current
oT : D" HR™™) 5 R, w i T(dw).
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Integral Currents

Definition (Integer Rectifiable Current)

An integer rectifiable m-current T is given by

T(w) = /E@(x)@(ﬂf)ﬁ(x))d’fim(w),

where E is m-rectifiable, 7 is an orientation of E and 6(z) € Z for a.e.
(multiplicity). T is denoted by [E, T, 0).

Definition (Mass)

The mass of a current T is given by

M(T):= sup T(w).
|w]|<1,weD™m

.
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Compactness

Theorem (Federer-Fleming (1960))

Let {T;}ien be a sequence of integral currents with M(T;) + M(9T;) < C
for all 7, then there is a subsequence converging to an integer rectifiable
current T

\

Definition (Area-minimzing)

An integral current T is called area-minimzing if for all integral currents .S
with 95 = 9T, we have

M(T) < M(S).

A,
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Regularity Theorems

Theorem (Almgren, De Lellis-Spadaro)

Let 7' € L,,(R™"™) be area-minimizing with 9T = Tt regular. Then the
set of interior points p € supp(T) \ supp(9T) for which B,(p) Nsupp(T) is
not a smooth mfld for any r > 0, is a set of H-dimension < m — 2.

o

Theorem (De Lellis-De Philippis-Hirsch-Massaccesi)

Let T € L,,(R™"™) be area-minimizing with 9T = Tt regular. Then the
set of boundary points p € supp(91') for which there is an r > 0 such that
B, (p) Nsupp(T) is a regular mfld with boundary, is open dense in
supp(0T).
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Two-sided boundaries

Definition
A boundary point p € I is called two-sided if
lim jnf JENBr () S 3.
r—0 W™ 2

Otherwise p is called one-sided.

G ]@ -
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Main Theorem

Theorem (Caldini-Marchese-Merlo-S.)

The typical (m — 1)-dim C3“-boundary I' € R™*™ has a unique
area-minimzing current 1" with 97" = Tt and moreover, T has multiplicity
0=1.

Definition (Space of boundaries)

Let I be an oriented, closed submanifold of dimension m — 1. Let
U C R"™ be open and f: Q c R™~! — R*"! a2 C3%map s.t.
I'NU = graph(f). Then we define the space of boundaries as

X, ={uelC®@Q): f—u=00n Q\Q,||f —ullgsa < e}.

Claim: The set of u € X, such that graph(u) N M has empty interior
(relative to graph(u)) for any m-dim mfld M of class C*#, 3 > q, is
residual (wrt C%“-norm).
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Uniqueness: Dense implies residual

Let NU := {b € X, : there are T' # T? area-min with boundary b}.
Then we can decompose this set as

=

U {b € X, : 31", T? area-min with boundary b, F(T' — T?) >
E>1

and moreover if X. \ NU is dense, then it is residual.

Proof: We know NUj, has empty interior (as NU has), need to show:
closed. Observe that F(T! — T?) > % is stable under [F-convergence and
limit of minimizers is minimizing.
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Proof Strategy |: One-sided case

Morgan’s argument

Fix a minimizer T for I'. If p € I" is one-sided, then T is regular at p.
Perturb I'" into the interior of T to favorize it. Moreover, if every boundary
point is one-sided, the minimizer has multiplicity one.

>
D
a>

.
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Proof Strategy |I: Two-sided case

Structure Theorem (De Lellis-De Philippis-Hirsch-Massaccesi)

Assume T is area-minimizing with boundary I' = LIT';. Then
T =Y N, Q;T; with Q; €N, 9T, = Y, =[I';j] and
o either I'; is one-sided and all regular points of 1" at I'; have mult one,
@ or I'; is two-sided, exactly two of the T}'s touch it and all regular
points of T" at I'; have mult Q; — % Moreover the sum of those two
Tj's is again area-minimizing (for its boundary).

Assume for p € T, there is an area-minimizing T that is two-sided and
regular at p. Then S = (T; +T}) L B,.(p) is area-minimizing for which

I' N B, (p) are regular interior points. Thus M := supp(S) is a smooth
m-dim mfld containing and open set of I' 4 (happens only to a meager set
of boundaries)
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Proof Strategy |ll: Banach-Mazur Game

Goal: Those u € X, ={u € C3: f—u=0o0n Q\ Y, ||f —ullcso < e}
which lie in a more regular mfld, form a meager set.
Theorem (The Game)

Let X be a complete metric space and A C X. There are two players P1
and P2:

@ P1 chooses U; C X nonempty and open,

@ P2 chooses Vi C U; nonempty and open,
@ P1 chooses Uy C Vi nonempty and open,
° .

Then there is a strategy for P2 that forces ),y Ui N A =0 iff A is

meager in X, i.e. A={J;cyA; with A; nowhere dense (i.e. 4; =0).

For us: X = X_ is the space of perturbed boundaries,
A = {u : graph(u) intersects some M € C% in a relative open set}.
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Game strategy

Proposition
Given a boundary w € X, z € Q and p,j > 0, we find u € X, p > 0 s.t.
Q@ %,(u) C Bs(w),
@ for every v € B,(u), M € C>P(Q x R) with ||[M||¢ss < j, the
projection misses a point, i.e.

Ta(graph(M)Ngraph(v)NCy (z)) # B, (),

where r := mln{%,d|st($7 aQ)} A Rn—m

]
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Game strategy: proof

@ Assume (by contradiction) that for all u € %;(w) there is a sequence
pi 4 0, M;, v; € B, (u) s.t.

ma (graph(M;) N graph(v;) N Cr(x)) = By ().
@ Let a <y < [ and choose
U(Z) =ps w(z) + (07 -5 0, 577(2”21 - .7)1|3+7),

for some 7 cut-off and s standard mollifier.
© Observe u € X, and for § > 0 small u € Bs(w) .
© By (1), we have for all y € B,(x)

2 (n—m+1
(0! ), 07" W) = (0.9 Mi, ).
© Compare components, Taylor everything, find contradiction to

a <y <p.
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Winning the game

© Choose a dense family {z,} C Q.

@ lteratively choose balls as in the proposition with the additional
constraint p; < k—}rl

O Find woo € (>1 By (u). Then for every k and M € C3P, we have

7o (graph(M) N graph(weo) N Cy (1)) # Buyi(w)-

@ Assume (by contradiction) that graph(ws) intersects any C*2-mfld
in a relatively open set U C Q. As {z;} C Q are dense, it contains
one of the By i,(71). 4

@ As the only element in the intersection does not lie in our set A, we
conclude that A is meager.
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Thank you!
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