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Graph-Based Semi-Supervised Learning

Given: e
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a “smooth” function u: 2, — R ©e © o
such that u = g on O,,. o © °© 5 o°
o o oo
o o ©
(e}
Model:

construct a weighted graph G,, = (2,,,wy,)
with edge weights w,, : £2,, x £2,, — R.
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Graph-Based Semi-Supervised Learning

1o}
o
o]
i,EE’!gm
& B a B
L .
my,, P8n g
n el §E
m g En &
22} B “Ze
an &
B nt
= n
il
A n &
5 g oot
= g B
.HW; o ;
LTt ]
on o
1%opn iy
&5 e

Represent data as weighted graph
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Graph-Based Semi-Supervised Learning

3

Ii =y

Extend labels solving a graph PDE

Represent data as weighted graph
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Laplacian Learning
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Laplacian Learning

In Laplacian learning [ZGLO03] one computes a harmonic extension of the labels via
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In Laplacian learning [ZGLO03] one computes a harmonic extension of the labels via

min £F(u),

subject tou =g on O,,.
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Laplacian Learning

In Laplacian learning [ZGLO03] one computes a harmonic extension of the labels via

L3u=0in 2,\ O,,
u=gonO,,

min £F(u),

subject tou =g on O,,.

&y (u) = Z wa(z,y) u(z) — u(y)]? denotes the graph Dirichlet-energy,
T, YyENRy

Lyu(x) := Z wn(z,y)(u(y) —u(x)) denotes the graph Laplacian.
YyENy
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What are the challenges in semi-supervised learning?
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Spiking in Laplacian Learning
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Spiking in Laplacian Learning
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Graph harmonic extension of two labels [ZGLO3]

L3u, =00n 2,\ O, subjecttou, =gon O,.
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Continuum limits of Graph-Based SSL

Graph-Based Semi-Supervised Learning
@ Given: Weighted graph G,, = (£2,,w,) with labels g : O,, C 2, — R*.

@ Goal: u, : 2, — R such that u, =g on O,
@ Tool: graph PDE
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Continuum limits of Graph-Based SSL

Graph-Based Semi-Supervised Learning

@ Given: Weighted graph G,, = (£2,,,w,,) with labels g : O,, C 2,, — R*.
@ Goal: u, : 2, — R such that u, =g on O,
@ Tool: graph PDE

Driving question:
What happens with more and more data, |{2,| — oo (and potentially |O,,| — c0)?
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Continuum limits of Graph-Based SSL

Graph-Based Semi-Supervised Learning

@ Given: Weighted graph G,, = (£2,,w,) with labels g : O,, C 2, — R*.
@ Goal: u, : 2, — R such that u, =g on O,
@ Tool: graph PDE

Driving question:
What happens with more and more data, |{2,| — oo (and potentially |O,,| — c0)?

graph PDE — continuum PDE, asn — oo.

Rates of convergence?
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Four Fixes to the Spiking Issue

@ sufficiently large labeling rates ‘Ig} [CST23] or reweighting [CS20];
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@ sufficiently large labeling rates ‘Ig} [CST23] or reweighting [CS20];

@ p-Laplace learning with p > d [El 4+16], well-posed continuum limit [ST19]
via I'-convergence (no convergence rates);
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Four Fixes to the Spiking Issue

@ sufficiently large labeling rates ‘Ig} [CST23] or reweighting [CS20];

@ p-Laplace learning with p > d [El 4+16], well-posed continuum limit [ST19]
via I'-convergence (no convergence rates);

@ Lipschitz learning (i.e., p = o0), well-posed continuum limit [Cal19; RB23]
with rates [BCR23; BCR24];

@ Poisson learning [Cal+20], little empirical degradation for small label rates,
well-posed continuum limit [B+24]
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© Convergence Rates for Lipschitz Learning

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 10 /31



What is Lipschitz learning?
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Lipschitz Learning

Lipschitz Learning
Find u,, : £2,, — R such that

in O,.

un = 9,

{ﬁwun =0, in 2, \ Oy, (LL)

March 19, 2024 12 /31
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Lipschitz Learning

Lipschitz Learning Continuum Problem
Find u, : 2, — R such that Find u € C(42), viscosity solution of
% n =20, i -Qn n, o = 1
Lu 0 !n \O (LL) Asou = 0, !n N\ O, (L)
u, =g, in O,. u=g, in O.
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Lipschitz Learning

Lipschitz Learning Continuum Problem
Find u, : 2, — R such that Find u € C({2), viscosity solution of
ooy = P in (2, ny U = H
L u 0 !n \ O (LL) Ao = 0, !n N\ O, (L)
u, =g, in O,. u=g, in O.

Lootin(2) = max wn(z,y)(Un(y) — un(x)) + min wn(z,y)(un(y) - un())

(Vu(z), D*u(x)Vu(z))

Asu(z) :
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Lipschitz Learning

Continuum Problem
Find u € C({2), viscosity solution of

{Awu—a in 2\ 0, (I

Lipschitz Learning
Find u, : {2, — R such that

Lu, =0, in2,\ Oy, (LL)
u=g, in 0.

in O,.

un = 9,

Previous work:

March 19, 2024 12 /31
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Lipschitz Learning

Lipschitz Learning Continuum Problem
Find u, : 2, — R such that Find u € C({2), viscosity solution of
ooy = P in (2, ny U = H
L u 0 !n \ O (LL) Ao = 0, !n N\ O, (L)
u, =g, in O,. u=g, in O.

Previous work:

o [RB23]: I'-convergence of associated energies (just necessary conditions)

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 12 /31



Lipschitz Learning

Lipschitz Learning Continuum Problem
Find u, : 2, — R such that Find u € C({2), viscosity solution of
Liu, =0, in 2,\ Oy, Aswou=0, in ,
N\ O LE0 NGy
u, =g, in O,. u=g, in O.

Previous work:

o [RB23]: I'-convergence of associated energies (just necessary conditions)

@ [Smal0; Call19]: Convergence under strong assumptions (i.a., dense graphs),
no rates
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Lipschitz Learning

Lipschitz Learning Continuum Problem
Find u, : 2, — R such that Find u € C({2), viscosity solution of
Liu, =0, in 2,\ Oy, Aswou=0, in ,
N\ O LE0 NGy
u, =g, in O,. u=g, in O.

Previous work:

o [RB23]: I'-convergence of associated energies (just necessary conditions)

@ [Smal0; Call19]: Convergence under strong assumptions (i.a., dense graphs),
no rates

Aims: convergence rates for sparse graphs
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Graph Bandwidth and Resolution

Graph Bandwidth

For a bandwidth €, > 0 and a function 7 : (0,00) — [0, c0) we define

w”('xvy) = 77(|$—y|/6n), T,y € Qn? :L’7éy
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Graph Bandwidth and Resolution

Graph Bandwidth

For a bandwidth €, > 0 and a function 7 : (0,00) — [0, c0) we define

w”('xvy) = 77(|$—y|/6n), T,y € Qn? :L’7éy

Assumptions on the Kernel

(K1) supp(n) C [0,1] 1 '
(K2) 7 is non-increasing

(K3) oy :=esssup,otn(t) =1 0 1 0 1
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Graph Bandwidth and Resolution

Graph Bandwidth

For a bandwidth €, > 0 and a function 7 : (0,00) — [0, c0) we define

w”('xvy) = 77(|$—y|/6n), T,y € Qn? g;;éy

Graph Resolution

We define the graph resolution as
On = du(2n, 2)Vdu(On, O),
where we use the Hausdorff distance

du (A, B)—suplnf lz—y |\/sup1nf |z —y|, A,BcCR%
z€EAYE
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Graph Bandwidth and Resolution

Graph Bandwidth

For a bandwidth €, > 0 and a function 7 : (0,00) — [0, c0) we define

w”(xvy) = T](|$*y|/6n), T,y € Qn? :L';léy

Graph Resolution

We define the graph resolution as
On = dH(Qn, Q) V dH(On, O),

where we use the Hausdorff distance

di (A, B) = sup inf |z —y| Vsup inf |z —y|, A,BcR%
z€AYEB zcBYEA

Important relations:

=

671 .
e < ﬁ' connected graph Op ~ (105") for a random graph
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General Convergence Statement

Theorem ([BCR23])

Let 2 C R? be a locally convex domain, 2, C £2 be an arbitrary set of points, let
u, : 2, — R solve (LL) and u : 2 — R solve (IL), and let 7 > 0 be arbitrary.

If 6, < €n, S 7 then it holds

) 5
max |[u, —u| ST+ {/ —= + =
2y EnT T
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Let 2 C R? be a locally convex domain, 2, C £2 be an arbitrary set of points, let
u, : 2, — R solve (LL) and u : 2 — R solve (IL), and let 7 > 0 be arbitrary.

If 6, < €n, S 7 then it holds

) 5
max |[u, —u| ST+ {/ —= + =
2y EnT T

Corollary

Optimizing over T = T,, one gets:

Bl

5
@ (Sparse regime): If 6, < en S 02 the rate is (‘%:)
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General Convergence Statement

Theorem ([BCR23])

Let 2 C R? be a locally convex domain, 2, C £2 be an arbitrary set of points, let
u, : 2, — R solve (LL) and u : 2 — R solve (IL), and let 7 > 0 be arbitrary.

If 6, < €n, S 7 then it holds

) 5
max |[u, —u| ST+ {/ —= + =
2y EnT T

Corollary

Optimizing over T = T,, one gets:

Bl

5
@ (Sparse regime): If 6, < en S 02 the rate is (‘%:)

5 1
© (Dense regime): If e, 2 0, the rate is ep .
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Improved Convergence on Random Graphs

Theorem ([BCR24])

Assume that (2, is a uniform i.i.d. sample or a homogeneous Poisson point process, let

n(t) = %1t§1, et ceteris paribus.

If (log n/n)l/d < e&n ST then it holds with high probability:

(logn/n)t/d e,

—u| < Z/logn —
max [u, |NT+¢g o L

zE2y
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Improved Convergence on Random Graphs

Theorem ([BCR24])

Assume that (2, is a uniform i.i.d. sample or a homogeneous Poisson point process, let

n(t) = %1t§1, et ceteris paribus.

If (log n/n)l/d < e&n ST then it holds with high probability:

1 1/d "
max lup, —u| ST+ \/Iogn% + %

Corollary

Optimizing over T = 7, and choosing ,, ~ (logn/n)*/? yields almost surely:

1
2 (1 9d
mas [, — u| S (logn)’ (ﬂ)
TE N n
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Proof Strategy, Step 1

Introduce non-local operator with larger bandwidth 7> ¢,
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Proof Strategy, Step 1

Introduce non-local operator with larger bandwidth 7> ¢,

yEB(z;7) yEB(x;T)

Alu(z) = = ( sup (u(y) —u(z))+ inf (uy) - U(I))> ;
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Proof Strategy, Step 1

Introduce non-local operator with larger bandwidth 7> ¢,

Au(e) = ( S (uy) —ule) + it () - u(a:))) ,

and define the infimal convolution

ur () = yerg(igﬂ u(y),

Using comparison with cones [AS10] proved

—Apu>0 = —ALu, >0,
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Proof Strategy, Step 1

Introduce non-local operator with larger bandwidth 7> ¢,

T yEB(x;7) yEB(z;7)

Alou(x) = ig ( sup  (u(y) —u(x))+ _inf (u(y) — U(l’))> ;

and define the infimal and discrete-to-continuum supremal convolution

ur () = yelg(ig;ﬂ u(y),  up(w) = e u,,(y).

Using comparison with cones on graphs we proved in [BCR23]

—Apu>0 = —ALu, >0,
Ty Ep
_ + —_

—Egoung():>—ATuT<T 2

oo TN A~
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Proof Strategy, Step 1

Introduce non-local operator with larger bandwidth 7> ¢,

T yEB(x;7) yEB(z;7)

Alou(x) = ig ( sup  (u(y) —u(x))+ _inf (u(y) — U(l’))> ;

and define the infimal and discrete-to-continuum supremal convolution

ur () = yelg(ig;ﬂ u(y),  up(w) = e u,,(y).

Using comparison with cones on graphs we proved in [BCR23]
—Apu>0 = —ALu, >0,

n Tr En

where we define the ratio of graph distances as

SUD, cB(x dn(x,y
ro(z) = ——dEE@TN 0)

1
lnfye 2, \B(z,27—¢5) dn (.fb, y) 2
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Proof Strategy, Step 2

Use perturbation and comparison principle for —AZ_ to show

[rr €
sup(u, —u) ST+ =+ 5.
25 T T
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Proof Strategy, Step 2

Use perturbation and comparison principle for —AZ_ to show

[rr €
sup(u, —u) ST+ =+ 5.
25 T T

Repeat everything using —L2 u,, > 0.
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Proof Strategy, Step 2

Use perturbation and comparison principle for —AZ_ to show

Ty En

sup(u, —u) S7+ ¢ +ﬁ'

2, T
Repeat everything using —L2 u,, > 0.
Estimate the ratio r, using the general estimate [BCR23]

On
|z —y| < dn(z,y) < (1 +C€) |z — y| + Then
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Proof Strategy, Step 2

Use perturbation and comparison principle for —AZ_ to show

Ty En

sup(u, —u) S7+ ¢ +ﬁ'

2, T
Repeat everything using —L2 u,, > 0.
Estimate the ratio r, using the general estimate [BCR23]

On
|z —y| < dn(z,y) < (1 +C€) |z — y| + Then

or the percolation estimate [BCR24], valid for €,, ~ 6§y,

logn a logn
rr <
~ n \TE

which is based on homogenization of the graph distance.
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Numerical Results

1071 A

Error

—&— h, ~ §,,rate ~ §08
6 x 1072 L 4y n

2/3 ;
—o— h, ~ 52/ ,rate ~ 6%

1/2
—— h, ~ 62 rate ~ §o4l

4% 1072 3x 1072 2x 1072

On

Figure: Experimental rates for constant weights on star domain.
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Numerical Results

6x 1073

4% 1078

Error

3x 1073

—4— h, ~ &y, rate ~ 46
2/3
—o— h, ~ (5,,,/ ,rate ~ 5,,}'48

2% 1073 1/2 ;
—— h, ~ 62 rate ~ 5,106

4% 1072 3x 1072 2x 1072

On

Figure: Experimental rates for singular weights on star domain.
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© Convergence Rates for Poisson Learning
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What is Poisson learning?
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Poisson Learning

Poisson Learning
Find u, : £2, — R such that

~Lhu, = 3 (9(z) ~ )6,

z€O

subject to >° _, dn(z)u(z) = 0.
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Poisson Learning

Poisson Learning Continuum Problem
Find u, : 2, — R such that Find u € W' (£2), distributional solution of
—Liun = > (9(x) —9)0, —div(p*Vu) = 3 (9(x) — 9)3,
zeO zcO

subject to >° _, dn(z)u(z) = 0. du

subject to 2% =0 and [, up® dz = 0.
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Poisson Learning

Poisson Learning Continuum Problem
Find u, : 2, — R such that Find u € W' (£2), distributional solution of
—Liun = > (9(x) —9)0, —div(p*Vu) = 3 (9(x) — 9)3,
zeO zcO

subject to >° _, dn(z)u(z) = 0.

subject to 2% =0 and [, up® dz = 0.

Here,

d(@)i= 3 walay),  Gi= ﬁ S g(a),

YyENRy zeO

and we assume that 2, = {z;}j—; with i.i.d. samples z; with Law(z;) = p and that O
is a finite set.

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 21/31



Poisson Learning

Poisson Learning Continuum Problem
Find u, : 2, — R such that Find u € W' (£2), distributional solution of
—Liun = > (9(x) —9)0, —div(p*Vu) = 3 (9(x) — 9)3,
zeO zcO

subject to >° _, dn(z)u(z) = 0.

subject to 2% =0 and [, up® dz = 0.

Remark:
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Poisson Learning

Poisson Learning Continuum Problem
Find u, : 2, — R such that Find u € W' (£2), distributional solution of
—Liun = > (9(x) —9)0, —div(p*Vu) = 3 (9(x) — 9)3,
zeO zcO
subject to 3, cq, dn(z)u(z) = 0. subject to 2% =0 and [, up® dz = 0.

Remark:

@ Proposed in [Cal4+20], superior experimental results
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Poisson Learning

Poisson Learning Continuum Problem
Find u, : 2, — R such that Find u € W' (£2), distributional solution of
—Liun = > (9(x) —9)0, —div(p*Vu) = 3 (9(x) — 9)3,
zeO zcO

subject to >° _, dn(z)u(z) = 0.

subject to 2% =0 and [, up® dz = 0.

Remark:
@ Proposed in [Cal4+20], superior experimental results

o No variational interpretation of continuum problem = continuum limit
requires PDE techniques
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Poisson Learning

Poisson Learning Continuum Problem
Find u, : 2, — R such that Find u € W' (£2), distributional solution of
—Lyun = > (9(x) = 9)d, —div(p’Va) = Y (9() ~ 9)bs,
z€O z€0

subject to >° _, dn(z)u(z) = 0.

subject to 2% =0 and [, up® dz = 0.

Remark:
@ Proposed in [Cal4+20], superior experimental results

o No variational interpretation of continuum problem = continuum limit
requires PDE techniques

Aims: convergence rates
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Formal Main Result

Theorem (Formal, [B+24] (forthcoming))

Under reasonable assumptions and for

1>en > .
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Formal Main Result

Theorem (Formal, [B+24] (forthcoming))

Under reasonable assumptions and for

1> en > .

it holds with high probability that
T+
[un — “”el((zn) S én
1
If p = const and e, > (1%87)37=2F9/TF D this can be improved to

_2
lan — u”el(_on) Sentt.
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Numerical Results

We consider the problem Au= A, —§_, for z € 2 = B(0,1) C R? which has an
explicit solution.

1
We choose ¢ = 2 (log") “* for n =210, ..., 216 and get the following rates!:

n

—— (1(X,),0(s%3)
107 (), O(e53)
—_—— {J&

(F + B[)Al)). O(E(]‘SQ)

Gx 102

Error

4% 1072

3x 1072

2% 1072

101 6 x 1072

IFigure courtesy of Jeff Calder
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Three Levels of Approximation
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Three Levels of Approximation

Continuum mollification

Replace continuum data }°_ ., (g(x) —§)dz by > (9(2) — )@ with
supp ¢, C B(z, R) obtain quantitative L'-estimates in R.
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Three Levels of Approximation

Continuum mollification

Replace continuum data }°_ ., (g(x) —§)dz by > (9(2) — )@ with
supp ¢, C B(z, R) obtain quantitative L'-estimates in R.

Discrete mollification

Mollify discrete data > . (g(z) — g)d= with k steps of the graph heat equation and
obtain quantitative estimates in k and ¢.
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Three Levels of Approximation

Continuum mollification

Replace continuum data }°_ ., (g(x) —§)dz by > (9(2) — )@ with
supp @z C B(z, R) obtain quantitative L'-estimates in R.

Discrete mollification

Mollify discrete data > . (g(z) — g)d= with k steps of the graph heat equation and
obtain quantitative estimates in k and ¢.

Regular continuum limit

Prove discrete-to-continuum convergence rates for bounded right hand sides using
variational methods (strong convexity).
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Three Levels of Approximation

Continuum mollification

Replace continuum data }°_ ., (g(x) —§)dz by > (9(2) — )@ with
supp @z C B(z, R) obtain quantitative L'-estimates in R.

Discrete mollification

Mollify discrete data > . (g(z) — g)d= with k steps of the graph heat equation and
obtain quantitative estimates in k and ¢.

Regular continuum limit

Prove discrete-to-continuum convergence rates for bounded right hand sides using
variational methods (strong convexity).

NB: Keeping track of all constants (which blow up) and optimizing over all
parameters we obtain the final rate.
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Continuum Mollification

We regularize the continuum equation by approximating the Dirac deltas:

—div(p Vu Z g0y and —div(p VUR Z AP
zel xel’

where supp ¢, C B(z, R), v, >0, and fB(x R) 0 (y)dy = 1.
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Continuum Mollification

We regularize the continuum equation by approximating the Dirac deltas:

—div(p Vu Z g0y and —div(p VUR Z AP
zel xel’

where supp ¢, C B(z, R), v, >0, and fB(m m Pe(y)dy = 1.

Theorem ([B+24])
If dist(I', 062) > R then

lu = urllg1 ) S D laa| R.

zel’
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Continuum Mollification

We regularize the continuum equation by approximating the Dirac deltas:

—div(p Vu Z g0y and —div(p VUR Z AP
xzel’ zel’
where supp ¢, C B(z, R), v, >0, and fB(m R) 0 (y)dy = 1.
Theorem ([B+24])
If dist(I', 062) > R then

lu = urllg1 ) S D laa| R.

zel’

If in addition p = const and @.(y) = R~ (ly — z| /R), then

= wrlls o S 3 lasl B

zel’
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Discrete Mollification

We define the random walk graph Laplacian:

Lrwuy () := mﬁgun(z) = Eig dnl(x) Z W (2, Y) Uy (y) — up ()
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Discrete Mollification

We define the random walk graph Laplacian:

Lrwuy () := #n(x)ﬁgun(x) = Eig dn () Z W (2, Y) Uy (y) — up ()

n YER,

The graph heat kernel #j, is the solution of the heat equation, starting with ¢,:
x _ Hr _ 2£T Hm ch =nd
k+1 = Tl — €& ks 0 = "0gz.

n=rw

We define the convolution H * u,(z) := 1 > yen, Hi(y)ua(y).
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Discrete Mollification

We define the random walk graph Laplacian:

Lrwuy () := #n(x) suy,(r) = Eig %(x) Z W (2, Y) Uy (y) — up ()

yER2,
The graph heat kernel #j, is the solution of the heat equation, starting with ¢,:
vo=Hy -2 LL HE,  HE = nd,.
We define the convolution Hj, * uy,(z) := L > yen, Hi(y)ua(y).

Theorem ([B+24])
It holds Hy, * (LrwUn) = Lrw(Hi * un). J
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Estimates on Mollified Problem

)

k .
Let u,, and ugl = H,;, * u, solve

_ﬁun = Z am(sa: and — ﬁu,slk) = Z GIHE
zeO zeO
Then it holds
ne? =
u, —ul) = d—” az y Hj.
" zeo 7=0
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Estimates on Mollified Problem

Let u,, and uSP = H,;, * u, solve

_ﬁun - Z am51 and — Ellglk) = Z am?‘[z
zeO zeO
Then it holds

9 k—1
u, —u(k)— 6”2%27—[?

’I’L

ze0 7=0
Using that d,, ~ n and ||”7'-l}”Hél(Q )= 1 we get the estimate
‘ u, — u(k) oo, 5 ken Z ‘(13;|

z€0

and will need to choose 1 < k <« E%
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Continuum Limit for Bounded Data

We consider Poisson equations with bounded right hand side:

fdiv(pQVu) =f and — L3uy, = fn
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Continuum Limit for Bounded Data

We consider Poisson equations with bounded right hand side:

fdiv(p2Vu) =f and — L3uy, = fn

Theorem ([B+24])

For all R, \1, A2, €n,8 >0 sufficiently small, and q > g we have with high probability:

2
v —unllz(x,) S (an — fllaca,) + lloscans(.,s) f||L1(9)) (Hf”m(n) + ||fn||gq(9n))

2 2
+ Ifllzee @)A1 + |1 Iz d4e,, 2)8n + 1 frlloz(0,) | frllez(2nnomr2)

1)
+ (an”z%(nn) + ||f||2LZ(Q)) <a +en+ AT+ )\2> .
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Continuum Limit for Bounded Data

We consider Poisson equations with bounded right hand side:

fdiv(pZVu) =f and — L3uy, = fn

Theorem ([B+24])

For all R, \1, A2, €n,8 >0 sufficiently small, and q > g we have with high probability:

2 .
o = wnlifirny S (I = Fllergon) +llosconses fia ) (Iflza@ + 1fallaga,))

+ Hf”%wmy\l + Hf”f:ww%” o)en + 1 fnllzo,) | fallez(@nnomr o)

+ (172l

1)
by W) (& + o0+ X 0 )

We choose f, =3 . azHj, and prove discrete-to-continuum convergence rates
towards a k-fold convolution f =", azp(z)~*ME(S,).
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@ Conclusion and Outlook
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Conclusion
What we discussed today:

Part 1 (Lipschitz Learning):
@ Lipschitz learning is asymptotically well-posed

@ Uniform discrete-to-continuum convergence rates down to smallest length
scales

@ Novel “homogenized" proof technique
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Conclusion
What we discussed today:

Part 1 (Lipschitz Learning):
@ Lipschitz learning is asymptotically well-posed
@ Uniform discrete-to-continuum convergence rates down to smallest length
scales
@ Novel “homogenized" proof technique

Part 2 (Poisson Learning):
@ Poisson learning is asymptotically well-posed
e L'-discrete-to-continuum convergence rates down for relatively large length
scales
@ Three-scale proof technique
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Conclusion
What we discussed today:

Part 1 (Lipschitz Learning):
@ Lipschitz learning is asymptotically well-posed

@ Uniform discrete-to-continuum convergence rates down to smallest length
scales

@ Novel “homogenized" proof technique

Part 2 (Poisson Learning):
@ Poisson learning is asymptotically well-posed

e L'-discrete-to-continuum convergence rates down for relatively large length
scales

@ Three-scale proof technique

Future work:
o Convergence rates for Lipschitz Learning with density-drift
@ Percolation rates for less rigid assumptions
@ Sharpness of Poisson learning rates
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Discussion

Thank you for your attention!

Questions?

L. B, J. Calder, and T. Roith. “Uniform convergence rates for Lipschitz learning
on graphs”. In: IMA Journal of Numerical Analysis 43.4 (2023), pp. 2445-2495

L. B, J. Calder, and T. Roith. “Ratio convergence rates for Euclidean first-passage
percolation: Applications to the graph infinity Laplacian”. In: Annals of Applied
Probability (2024). In press

L. B, J. Calder, F. Hoffmann, K. Houssou, M. Mihailescu, and A. Yuan.

Convergence rates for Poisson Learning to a Poisson equation with measure data.
2024. In preparation
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Sparse graph: bandwidth > connectivity threshold,
Lipschitz learning (today, [BCR23])

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 32/31



Length Scale Restrictions

Sparse graph: bandwidth > connectivity threshold,
Lipschitz learning (today, [BCR23])

Medium graph: bandwidth > (connectivity threshold)%,
Lipschitz learning (best so far, [Cal19])
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Length Scale Restrictions

Sparse graph: bandwidth > connectivity threshold,
Lipschitz learning (today, [BCR23])

Medium graph: bandwidth > (connectivity threshold)g,
Lipschitz learning (best so far, [Cal19])

Dense graph: bandwidth > (connectivity threshold)1,
Laplacian learning [Cal18]
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Experimental Convergence Rates

1071 A

Error

—&— h, ~ §,,rate ~ §08
6 x 1072 L 4y n

2/3 ;
—o— R, ~ 5,,,/ ,rate ~ 6,,?'“

1/2
—— h, ~ 62 rate ~ §o4l

4% 1072 3x 1072 2x 1072

On

Figure: Experimental rates for constant weights on star domain.
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Experimental Convergence Rates
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Figure: Experimental rates for singular weights on star domain.
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Experimental Convergence Rates
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Figure: Experimental rates for constant weights on square domain.
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Experimental Convergence Rates

Figure: Experimental rates for weights on domain.
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Graph Functional

Graph Lipschitz Learning Lipschitz Learning

Find u : £, — R such that Find u € W' () such that

uw € argmin max wy(z,y)|u(z) — u(y)], u € arg min ess sup |Vu(z)],
z,y€02n TEN

and u = g on Oy. and u =g in O.

@ The graph functional has the form

Bafu) = — max ., (2 = o) fu(z) = u(y)].
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Graph Functional

Graph Lipschitz Learning Lipschitz Learning

Find u : £, — R such that Find u € W' () such that

uw € argmin max wy(z,y)|u(z) — u(y)], u € argmin esssup |Vu(x)|,
T,YyE2n TEN

and u = g on Oy. and u =g in O.

@ The graph functional has the form

Bafu) = — max ., (2 = o) fu(z) = u(y)].

@ The respective continuum functional for u € W1°°(£2) reads

E(u) :=esssup |Vu(x)|.
€SN
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Graph Functional

Graph Lipschitz Learning Lipschitz Learning

Find u : £, — R such that Find u € W' () such that

uw € argmin max wy(z,y)|u(z) — u(y)], u € argmin esssup |Vu(x)|,
z,YyE2n TEN

and u = g on Oy. and u =g in O.

@ The graph functional has the form

Bafu) = — max ., (2 = o) fu(z) = u(y)].

@ The respective continuum functional for u € W1°°(£2) reads

E(u) :=esssup |Vu(x)|.
€SN

@ We want to prove I'-convergence and compactness for convergence of
minimizers.
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Domain Regularity

The key estimate in our arguments is
u(z) = u(y)] < [IVull o de(z,y),
where u : W1°°(2) — R and
do(z,y) ;= inf {len(y) : v:[0,1] — 2 is a curve with v(0) = z, v(1) = y}

denotes the geodesic distance in 2.
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Domain Regularity

The key estimate in our arguments is
u(z) = u(y)] < [IVull o de(z,y),
where u : W1°°(2) — R and
do(z,y) ;= inf {len(y) : v:[0,1] — 2 is a curve with v(0) = z, v(1) = y}
denotes the geodesic distance in 2.

Our results only hold true for “locally convex” domains {2 which satisfy

Local Convexity Condition

lim sup { %

: 02, |z — 0 =1
lim sy € o=yl <5}
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Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence
result for a non-local continuum functional.

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 36 /31



Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence
result for a non-local continuum functional.

Non-Local to Local Convergence [RB23]
Let (2 be locally convex. For u € L*(£2) and h > 0 we define

Eu(u) = 1 esssup . (jz — o) Ju(x) — ()]}

For any null sequence &, we have that
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Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence
result for a non-local continuum functional.

Non-Local to Local Convergence [RB23]
Let (2 be locally convex. For u € L*(£2) and h > 0 we define

Eu(u) = 1 esssup . (jz — o) Ju(x) — ()]}

For any null sequence &, we have that

@ The limit functional is defined as

E(u) := esssup |Vul.
2
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Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence
result for a non-local continuum functional.

Non-Local to Local Convergence [RB23]
Let (2 be locally convex. For u € L*(£2) and h > 0 we define

Eu(u) = 1 esssup . (jz — o) Ju(x) — ()]}

For any null sequence &, we have that

@ The limit functional is defined as
E(u) := esssup |Vul.
Q
@ The value o, is defined as

oy = esssup {n(z) |z|} .
x>0
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How do we establish I'-convergence for a sequence
of discrete functionals with varying domain,
namely the space of functions on the graph (2,7
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Extension of the Discrete Functional

@ In our case we associate graph functions with piecewise constant L™
functions.
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Extension of the Discrete Functional

@ In our case we associate graph functions with piecewise constant L™
functions.

o Consider a closest-point projection p,, : {2 — §2,, such that

pn(x) € arg min lz—y|.
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Extension of the Discrete Functional

@ In our case we associate graph functions with piecewise constant L™
functions.

o Consider a closest-point projection p,, : {2 — §2,, such that

Pn(z) € arg min |z —y|.

@ We extend the functional E,, onto L by defining for u € L>°({2):

1 _ _ . -
By (u) = { o0 MOXewe, e, (lz —yDla(z) —aly)|, ifu=1uopy,
00, else.

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 38 /31



Discrete to Continuum Convergence

We can also define the constrained functionals

0, else,

En,cons(u) _ {En(u)» if u= g on Ona gcons(u) _ {

and obtain
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Discrete to Continuum Convergence

We can also define the constrained functionals

E,(u), fu=gonO E(u), ifu=gonO
En,cons(u) = " ’ " Econs (u) = ’ ’
0, else, 0, else
and obtain
Discrete to Continuum Convergence [RB23]
Let {2 be locally convex. For any null sequence €,, such that
du(2n,2) < en,
du(On,0) K en.
we have that
r
En,cons — Op Eeeno
v
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Discrete to Continuum Convergence

We can also define the constrained functionals

B () = E,(u), ifu=gonO,, Eeonaltt) = E(u), ifu=gonO,
n,cons - 007 else’ cons - oo’ else

and obtain

Discrete to Continuum Convergence [RB23]

Let {2 be locally convex. For any null sequence €,, such that

du (20, 2) < &,
A (On, 0) < en.

we have that

r
En,cons — Op Eeeno

Convergence of minimizers?
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Compactness

A sequence of functionals F;, : X — R is called compact if for any sequence
(Zn)nen the property

sup Fy,(z,) < o0
neN

implies that (z,,)nen is relatively compact.
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Compactness

A sequence of functionals F;, : X — R is called compact if for any sequence
(Zn)nen the property

sup Fy,(z,) < o0
neN

implies that (z,,)nen is relatively compact.

Compactness Result [RB23]

Let £, be a null sequence such that

dH(-Qn7 Q) < €n,
du(0n, 0) K &n.

then E, cons is @ compact sequence of functionals. Therefore, every sequence of
minimizers for E, cons has a cluster point which is a minimizer of Econs.
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