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Graph-Based Semi-Supervised Learning

Given:
a data set Ωn ⊂ Rd,
with labels g : On ⊂ Ωn → R.

Goal:
a “smooth” function u : Ωn → R
such that u = g on On.

Model:
construct a weighted graph Gn = (Ωn, ωn)
with edge weights ωn : Ωn ×Ωn → R.
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Graph-Based Semi-Supervised Learning

Represent data as weighted graph
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Graph-Based Semi-Supervised Learning

Represent data as weighted graph Extend labels solving a graph PDE
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Laplacian Learning

In Laplacian learning [ZGL03] one computes a harmonic extension of the labels via

min
u

En
2 (u),

subject to u = g on On.

⇐⇒ Ln
2u = 0 in Ωn \ On,

u = g on On,

En
2 (u) :=

∑
x,y∈Ωn

ωn(x, y) |u(x)− u(y)|2 denotes the graph Dirichlet-energy,

Ln
2u(x) :=

∑
y∈Ωn

ωn(x, y)(u(y)− u(x)) denotes the graph Laplacian.
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What are the challenges in semi-supervised learning?
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Spiking in Laplacian Learning
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Spiking in Laplacian Learning

Graph harmonic extension of two labels [ZGL03]

Ln
2un = 0 on Ωn \ On subject to un = g on On.
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Continuum limits of Graph-Based SSL

Graph-Based Semi-Supervised Learning

Given: Weighted graph Gn = (Ωn, ωn) with labels g : On ⊂ Ωn → Rk.

Goal: un : Ωn → R such that un = g on On

Tool: graph PDE

Driving question:
What happens with more and more data, |Ωn| → ∞ (and potentially |On| → ∞)?

graph PDE → continuum PDE, as n → ∞.

Rates of convergence?
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Four Fixes to the Spiking Issue

1 sufficiently large labeling rates |On|
|Ωn| [CST23] or reweighting [CS20];

2 p-Laplace learning with p > d [El +16], well-posed continuum limit [ST19]
via Γ -convergence (no convergence rates);

3 Lipschitz learning (i.e., p = ∞), well-posed continuum limit [Cal19; RB23]
with rates [BCR23; BCR24];

4 Poisson learning [Cal+20], little empirical degradation for small label rates,
well-posed continuum limit [B+24]
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What is Lipschitz learning?
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Lipschitz Learning

Lipschitz Learning
Find un : Ωn → R such that{

Ln
∞un = 0, in Ωn \ On,

un = g, in On.
(LL)

Continuum Problem
Find u ∈ C(Ω), viscosity solution of{

∆∞u = 0, in Ω \ O,
u = g, in O.

(IL)

Previous work:

[RB23]: Γ -convergence of associated energies (just necessary conditions)
[Sma10; Cal19]: Convergence under strong assumptions (i.a., dense graphs),
no rates

Aims: convergence rates for sparse graphs
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Graph Bandwidth and Resolution

Graph Bandwidth
For a bandwidth εn > 0 and a function η : (0,∞) → [0,∞) we define

ωn(x, y) := η(|x− y| /εn), x, y ∈ Ωn, x ̸= y.
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Graph Bandwidth
For a bandwidth εn > 0 and a function η : (0,∞) → [0,∞) we define

ωn(x, y) := η(|x− y| /εn), x, y ∈ Ωn, x ̸= y.

Assumptions on the Kernel

(K1) supp(η) ⊂ [0, 1]

(K2) η is non-increasing

(K3) ση := ess supt>0 tη(t) = 1 0 1

1
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Graph Bandwidth and Resolution

Graph Bandwidth
For a bandwidth εn > 0 and a function η : (0,∞) → [0,∞) we define

ωn(x, y) := η(|x− y| /εn), x, y ∈ Ωn, x ̸= y.

Graph Resolution
We define the graph resolution as

δn := dH(Ωn, Ω) ∨ dH(On,O),

where we use the Hausdorff distance

dH(A,B) = sup
x∈A

inf
y∈B

|x− y| ∨ sup
x∈B

inf
y∈A

|x− y|, A,B ⊂ Rd.
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Graph Resolution
We define the graph resolution as

δn := dH(Ωn, Ω) ∨ dH(On,O),

where we use the Hausdorff distance

dH(A,B) = sup
x∈A

inf
y∈B

|x− y| ∨ sup
x∈B

inf
y∈A

|x− y|, A,B ⊂ Rd.

Important relations:

δn
εn

< 1
4
√
d
: connected graph δn ∼

(
logn
n

) 1
d

for a random graph

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 13 / 31



General Convergence Statement

Theorem ([BCR23])

Let Ω ⊂ Rd be a locally convex domain, Ωn ⊂ Ω be an arbitrary set of points, let
un : Ωn → R solve (LL) and u : Ω → R solve (IL), and let τ > 0 be arbitrary.

If δn ≲ εn ≲ τ then it holds

max
Ωn

|un − u| ≲ τ + 3

√
δn
εnτ

+
εn
τ2
.

Corollary
Optimizing over τ = τn one gets:

(Sparse regime): If δn ≲ εn ≲ δ
5
9
n the rate is

(
δn
εn

) 1
4 .

(Dense regime): If εn ≳ δ
5
9
n the rate is ε

1
5
n .
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Improved Convergence on Random Graphs

Theorem ([BCR24])

Assume that Ωn is a uniform i.i.d. sample or a homogeneous Poisson point process, let
η(t) = 1

t
1t≤1, et ceteris paribus.

If (logn/n)1/d ≲ εn ≲ τ then it holds with high probability:

max
x∈Ωn

|un − u| ≲ τ + 3

√
logn

(logn/n)1/d√
τ3εn

+
εn
τ2

Corollary

Optimizing over τ = τn and choosing εn ∼ (logn/n)1/d yields almost surely:

max
x∈Ωn

|un − u| ≲ (logn)
2
9

(
logn

n

) 1
9d
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Proof Strategy, Step 1

Introduce non-local operator with larger bandwidth τ ≫ εn

∆τ
∞u(x) :=

1

τ2

(
sup

y∈B(x;τ)

(u(y)− u(x)) + inf
y∈B(x;τ)

(u(y)− u(x))

)
,

and define the infimal convolution

uτ (x) := min
y∈B(x;τ)

u(y),

Using comparison with cones

−∆∞u ≥ 0 =⇒ −∆τ
∞uτ ≥ 0,

− Ln
∞un ≤ 0 =⇒ −∆τ

∞uτ
n ≲

rτ
τ

+
εn
τ2

,

where we define the ratio of graph distances as

rτ (x) :=
supy∈B(x,τ)∩Ωn

dn(x, y)

infy∈Ωn\B(x,2τ−εn)
dn(x, y)

− 1

2
.
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y∈B(x;τ)

u(y), uτ
n(x) := max

y∈B(x;τ)∩Ωn

un(y).

Using comparison with cones on graphs we proved in [BCR23]

−∆∞u ≥ 0 =⇒ −∆τ
∞uτ ≥ 0,

− Ln
∞un ≤ 0 =⇒ −∆τ

∞uτ
n ≲

rτ
τ

+
εn
τ2

,

where we define the ratio of graph distances as

rτ (x) :=
supy∈B(x,τ)∩Ωn

dn(x, y)

infy∈Ωn\B(x,2τ−εn)
dn(x, y)

− 1

2
.
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Proof Strategy, Step 2

Use perturbation and comparison principle for −∆τ
∞ to show

sup
Ωn

(un − u) ≲ τ + 3

√
rτ
τ

+
εn
τ2

.

Repeat everything using −Ln
∞un ≥ 0.

Estimate the ratio rτ using the general estimate [BCR23]

|x− y| ≤ dn(x, y) ≤
(
1 + C

δn
εn

)
|x− y|+ τηεn

or the percolation estimate [BCR24], valid for εn ∼ δn,

rτ ≲

(
log n

n

) 1
d log n√

τε

which is based on homogenization of the graph distance.
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Numerical Results

2× 10−23× 10−24× 10−2

δn

10−1

6× 10−2

E
rr

or

hn ∼ δn, rate ∼ δ 0.89
n

hn ∼ δ
2/3
n , rate ∼ δ 0.56

n

hn ∼ δ
1/2
n , rate ∼ δ 0.41

n

Figure: Experimental rates for constant weights on star domain.

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 18 / 31



Numerical Results
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What is Poisson learning?
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Poisson Learning

Poisson Learning
Find un : Ωn → R such that

−Ln
2un =

∑
x∈O

(g(x)− g)δx,

subject to
∑

x∈Ωn
dn(x)u(x) = 0.

Continuum Problem

Find u ∈W 1,1(Ω), distributional solution of

−div(ρ2∇u) =
∑
x∈O

(g(x)− g)δx,

subject to ∂u
∂ν

= 0 and
∫
Ω
uρ2 dx = 0.

Remark:

Proposed in [Cal+20], superior experimental results
No variational interpretation of continuum problem =⇒ continuum limit
requires PDE techniques

Aims: convergence rates
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Formal Main Result

Theorem (Formal, [B+24] (forthcoming))

Under reasonable assumptions and for

1 ≫ εn ≫


(
logn

n

) 1
3d−2

if d ≥ 4(
logn

n

) 1
2d+2

if d < 4

it holds with high probability that

∥un − u∥ℓ1(Ωn) ≲ ε
1

d+2
n .

If ρ ≡ const and εn ≫
(
logn
n

) 1
3d−2(d+2)/(d+4) this can be improved to

∥un − u∥ℓ1(Ωn) ≲ ε
2

d+4
n .
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Numerical Results

We consider the problem ∆u = ∆z − δ−z for z ∈ Ω = B(0, 1) ⊂ R2 which has an
explicit solution.

We choose ε = 2
(

logn
n

) 1
d+2

for n = 210, . . . , 216 and get the following rates1:

1Figure courtesy of Jeff Calder
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Three Levels of Approximation

Continuum mollification
Replace continuum data

∑
x∈O(g(x)− g)δx by

∑
x∈O(g(x)− g)φx with

suppφx ⊂ B(x,R) obtain quantitative L1-estimates in R.

Discrete mollification
Mollify discrete data

∑
x∈O(g(x)− g)δx with k steps of the graph heat equation and

obtain quantitative estimates in k and ε.

Regular continuum limit
Prove discrete-to-continuum convergence rates for bounded right hand sides using
variational methods (strong convexity).

NB: Keeping track of all constants (which blow up) and optimizing over all
parameters we obtain the final rate.
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Continuum Mollification

We regularize the continuum equation by approximating the Dirac deltas:

−div(ρ2∇u) =
∑
x∈Γ

axδx and − div(ρ2∇uR) =
∑
x∈Γ

axφx,

where suppφx ⊂ B(x,R), φx ≥ 0, and
∫
B(x,R)

φx(y) dy = 1.

Theorem ([B+24])

If dist(Γ, ∂Ω) > R then

∥u− uR∥L1(Ω) ≲
∑
x∈Γ

|ax|R.

If in addition ρ ≡ const and φx(y) = R−dψ (|y − x| /R), then

∥u− uR∥L1(Ω) ≲
∑
x∈Γ

|ax|R2.
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Discrete Mollification

We define the random walk graph Laplacian:

Lrwun(x) :=
1

ε2ndn(x)
Ln
2un(x) =

1

ε2n

 1

dn(x)

∑
y∈Ωn

ωn(x, y)un(y)− un(x)

 .

The graph heat kernel Hx
k is the solution of the heat equation, starting with δx:

Hx
k+1 = Hx

k − ε2nLT
rwHx

k , Hx
0 = nδx.

We define the convolution Hk ∗ un(x) :=
1
n

∑
y∈Ωn

Hx
k(y)un(y).

Theorem ([B+24])

It holds Hk ∗ (Lrwun) = Lrw(Hk ∗ un).
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Estimates on Mollified Problem

Let un and u
(k)
n := H·

k ∗ un solve

−Lun =
∑
x∈O

axδx and − Lu(k)
n =

∑
x∈O

axHx
k .

Then it holds

un − u(k)
n =

nε2n
dn

∑
x∈O

ax

k−1∑
j=0

Hx
j .

Using that dn ∼ n and
∥∥Hx

j

∥∥
ℓ1(Ωn)

= 1 we get the estimate∥∥∥un − u(k)
n

∥∥∥
ℓ1(Ωn)

≲ kε2n
∑
x∈O

|ax|

and will need to choose 1 ≪ k ≪ 1
ε2n

.
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Continuum Limit for Bounded Data

We consider Poisson equations with bounded right hand side:

− div(ρ2∇u) = f and − Ln
2un = fn

Theorem ([B+24])

For all R, λ1, λ2, εn, δ >0 sufficiently small, and q > d
2

we have with high probability:

∥u− un∥2H1(Xn) ≲
(
∥fn − f∥ℓ1(Ωn) + ∥ oscΩ∩B(·,δ) f∥L1(Ω)

)(
∥f∥Lq(Ω) + ∥fn∥ℓq(Ωn)

)
+ ∥f∥2L∞(Ω)λ1 + ∥f∥2L∞(∂4εnΩ)εn + ∥fn∥ℓ2(Ωn) ∥fn∥ℓ2(Ωn∩∂2RΩ)

+
(
∥fn∥2ℓ2(Ωn) + ∥f∥2L2(Ω)

)(
δ

εn
+ εn + λ2

1 + λ2

)
.

We choose fn =
∑

x∈O axHx
k and prove discrete-to-continuum convergence rates

towards a k-fold convolution f :=
∑

x∈O axρ(x)
−1Mk

ε(δx).
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Continuum Limit for Bounded Data

We consider Poisson equations with bounded right hand side:

− div(ρ2∇u) = f and − Ln
2un = fn

Theorem ([B+24])

For all R, λ1, λ2, εn, δ >0 sufficiently small, and q > d
2

we have with high probability:

∥u− un∥2H1(Xn) ≲
(
∥fn − f∥ℓ1(Ωn) + ∥ oscΩ∩B(·,δ) f∥L1(Ω)

)(
∥f∥Lq(Ω) + ∥fn∥ℓq(Ωn)
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Conclusion

What we discussed today:

Part 1 (Lipschitz Learning):
Lipschitz learning is asymptotically well-posed
Uniform discrete-to-continuum convergence rates down to smallest length
scales
Novel “homogenized” proof technique

Part 2 (Poisson Learning):
Poisson learning is asymptotically well-posed
L1-discrete-to-continuum convergence rates down for relatively large length
scales
Three-scale proof technique

Future work:
Convergence rates for Lipschitz Learning with density-drift
Percolation rates for less rigid assumptions
Sharpness of Poisson learning rates
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Discussion

Thank you for your attention!
Questions?

L. B, J. Calder, and T. Roith. “Uniform convergence rates for Lipschitz learning
on graphs”. In: IMA Journal of Numerical Analysis 43.4 (2023), pp. 2445–2495

L. B, J. Calder, and T. Roith. “Ratio convergence rates for Euclidean first-passage
percolation: Applications to the graph infinity Laplacian”. In: Annals of Applied
Probability (2024). In press

L. B, J. Calder, F. Hoffmann, K. Houssou, M. Mihailescu, and A. Yuan.
Convergence rates for Poisson Learning to a Poisson equation with measure data.
2024. In preparation
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Length Scale Restrictions

Sparse graph: bandwidth ≫ connectivity threshold,
Lipschitz learning (today, [BCR23])

Medium graph: bandwidth ≫ (connectivity threshold)
2
3 ,

Lipschitz learning (best so far, [Cal19])

Dense graph: bandwidth ≫ (connectivity threshold)
1
4 ,

Laplacian learning [Cal18]
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Experimental Convergence Rates
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hn ∼ δn, rate ∼ δ 0.89
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hn ∼ δ
2/3
n , rate ∼ δ 0.56

n

hn ∼ δ
1/2
n , rate ∼ δ 0.41

n

Figure: Experimental rates for constant weights on star domain.

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 33 / 31



Experimental Convergence Rates

2× 10−23× 10−24× 10−2

δn

2× 10−3

3× 10−3

4× 10−3

6× 10−3

E
rr

or

hn ∼ δn, rate ∼ δ 1.46
n

hn ∼ δ
2/3
n , rate ∼ δ 1.48

n

hn ∼ δ
1/2
n , rate ∼ δ 1.06

n

Figure: Experimental rates for singular weights on star domain.

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 33 / 31



Experimental Convergence Rates

2× 10−23× 10−24× 10−2

δn

10−2

2× 10−2
E

rr
or

hn ∼ δn, rate ∼ δ 0.62
n

hn ∼ δ
2/3
n , rate ∼ δ 0.88

n

hn ∼ δ
1/2
n , rate ∼ δ 1.04

n

Figure: Experimental rates for constant weights on square domain.
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Experimental Convergence Rates

Figure: Experimental rates for weights on domain.
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Figure: Approximation of the Aronsson solution with increasing graph resolution.
Labeled vertices in red.
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Graph Functional

Graph Lipschitz Learning
Find u : Ωn → R such that

u ∈ argmin max
x,y∈Ωn

ωn(x, y)|u(x)− u(y)|,

and u = g on On.

Lipschitz Learning

Find u ∈W 1,∞(Ω) such that

u ∈ argmin ess sup
x∈Ω

|∇u(x)|,

and u = g in O.

The graph functional has the form

En(u) =
1

εn
max

x,y∈Ωn

ηεn(|x− y|) |u(x)− u(y)| .

The respective continuum functional for u ∈ W 1,∞(Ω) reads

E(u) := ess sup
x∈Ω

|∇u(x)| .

We want to prove Γ -convergence and compactness for convergence of
minimizers.
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Domain Regularity

The key estimate in our arguments is

|u(x)− u(y)| ≤ ∥∇u∥L∞ dΩ(x, y),

where u : W 1,∞(Ω) → R and

dΩ(x, y) := inf {len(γ) : γ : [0, 1] → Ω is a curve with γ(0) = x, γ(1) = y}

denotes the geodesic distance in Ω.

Our results only hold true for “locally convex” domains Ω which satisfy

Local Convexity Condition

lim
δ↘0

sup

{
dΩ(x, y)

|x− y| : x, y ∈ Ω, |x− y| < δ

}
= 1.
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Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence
result for a non-local continuum functional.

Non-Local to Local Convergence [RB23]

Let Ω be locally convex. For u ∈ L∞(Ω) and h > 0 we define

Eh(u) :=
1

h
ess sup
x,y∈Ω

{ηs(|x− y|) |u(x)− u(y)|} .

For any null sequence εn we have that

Eεn
Γ−→ ση E .

The limit functional is defined as

E(u) := ess sup
Ω

|∇u|.

The value ση is defined as

ση := ess sup
x>0

{η(x) |x|} .

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 36 / 31



Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence
result for a non-local continuum functional.

Non-Local to Local Convergence [RB23]

Let Ω be locally convex. For u ∈ L∞(Ω) and h > 0 we define

Eh(u) :=
1

h
ess sup
x,y∈Ω

{ηs(|x− y|) |u(x)− u(y)|} .

For any null sequence εn we have that

Eεn
Γ−→ ση E .

The limit functional is defined as

E(u) := ess sup
Ω

|∇u|.

The value ση is defined as

ση := ess sup
x>0

{η(x) |x|} .

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 36 / 31



Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence
result for a non-local continuum functional.

Non-Local to Local Convergence [RB23]

Let Ω be locally convex. For u ∈ L∞(Ω) and h > 0 we define

Eh(u) :=
1

h
ess sup
x,y∈Ω

{ηs(|x− y|) |u(x)− u(y)|} .

For any null sequence εn we have that

Eεn
Γ−→ ση E .

The limit functional is defined as

E(u) := ess sup
Ω

|∇u|.

The value ση is defined as

ση := ess sup
x>0

{η(x) |x|} .

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 36 / 31



Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence
result for a non-local continuum functional.

Non-Local to Local Convergence [RB23]

Let Ω be locally convex. For u ∈ L∞(Ω) and h > 0 we define

Eh(u) :=
1

h
ess sup
x,y∈Ω

{ηs(|x− y|) |u(x)− u(y)|} .

For any null sequence εn we have that

Eεn
Γ−→ ση E .

The limit functional is defined as

E(u) := ess sup
Ω

|∇u|.

The value ση is defined as

ση := ess sup
x>0

{η(x) |x|} .

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 36 / 31



How do we establish Γ -convergence for a sequence
of discrete functionals with varying domain,
namely the space of functions on the graph Ωn?
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Extension of the Discrete Functional

In our case we associate graph functions with piecewise constant L∞

functions.

Consider a closest-point projection pn : Ω → Ωn such that

pn(x) ∈ arg min
y∈Ωn

|x− y| .

We extend the functional En onto L∞ by defining for u ∈ L∞(Ω):

En(u) =

{
1
εn

maxx,y∈Ωn ηεn(|x− y|)|ū(x)− ū(y)|, if u = ū ◦ pn,
+∞, else.
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+∞, else.

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024 38 / 31



Extension of the Discrete Functional

In our case we associate graph functions with piecewise constant L∞

functions.

Consider a closest-point projection pn : Ω → Ωn such that

pn(x) ∈ arg min
y∈Ωn

|x− y| .

We extend the functional En onto L∞ by defining for u ∈ L∞(Ω):

En(u) =

{
1
εn
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Discrete to Continuum Convergence

We can also define the constrained functionals

En,cons(u) =

{
En(u), if u = g on On,

∞, else,
Econs(u) =

{
E(u), if u = g on O,

∞, else

and obtain

Discrete to Continuum Convergence [RB23]

Let Ω be locally convex. For any null sequence εn such that

dH(Ωn, Ω) ≪ εn,

dH(On,O) ≪ εn.

we have that

En,cons
Γ−→ ση Econs.

Convergence of minimizers?
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Compactness

A sequence of functionals Fn : X → R is called compact if for any sequence
(xn)n∈N the property

sup
n∈N

Fn(xn) < ∞

implies that (xn)n∈N is relatively compact.

Compactness Result [RB23]

Let εn be a null sequence such that

dH(Ωn, Ω) ≪ εn,

dH(On,O) ≪ εn.

then En,cons is a compact sequence of functionals. Therefore, every sequence of
minimizers for En,cons has a cluster point which is a minimizer of Econs.
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