Convergence rates for graph-based learning featuring singular PDEs

Leon Bungert

Institute of Mathematics & CAIDAS, University of Würzburg

March 19, 2024

CNA seminar @ CMU Pittsburgh

・ロト ・母ト ・ヨト ・ヨト ・タヘマ

Outline

2 Convergence Rates for Lipschitz Learning

- 3 Convergence Rates for Poisson Learning
- 4 Conclusion and Outlook

EL OQO

Convergence Rates for Lipschitz Learning

3 Convergence Rates for Poisson Learning

Conclusion and Outlook

Leon Bungert (JMU)

Convergence rates for graph-based learning

March 19, 2024

ъ

A D > <
A P >

Given:

• a data set $\Omega_n \subset \mathbb{R}^d$,

• with labels
$$g: \mathcal{O}_n \subset \Omega_n \to \mathbb{R}$$
.

ELE NOR

Leon Bungert (JMU)

ELE SQA

Represent data as weighted graph

Represent data as weighted graph

Extend labels solving a graph PDE

Leon Bungert (JMU)

Convergence rates for graph-based learning

.

Laplacian Learning

Leon Bungert (JMU)

Laplacian Learning

In Laplacian learning [ZGL03] one computes a harmonic extension of the labels via

A B > A B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

ELE DOG

In Laplacian learning [ZGL03] one computes a harmonic extension of the labels via

 $\min_{\mathbf{u}} \ \mathcal{E}_2^n(\mathbf{u}),$ subject to $\mathbf{u} = g$ on $\mathcal{O}_n.$

EL OQO

In Laplacian learning [ZGL03] one computes a harmonic extension of the labels via

$$\begin{array}{c} \min_{\mathbf{u}} \ \mathcal{E}_{2}^{n}(\mathbf{u}), \\ \text{subject to } \mathbf{u} = g \text{ on } \mathcal{O}_{n}. \end{array} \qquad \longleftrightarrow \qquad \mathcal{L}_{2}^{n}\mathbf{u} = 0 \text{ in } \Omega_{n} \setminus \mathcal{O}_{n}, \\ \mathbf{u} = g \text{ on } \mathcal{O}_{n}, \end{array}$$

4 A 1

ELE DOG

In Laplacian learning [ZGL03] one computes a harmonic extension of the labels via

$$\min_{\mathbf{u}} \ \mathcal{E}_2^n(\mathbf{u}),$$

subject to $\mathbf{u} = g$ on \mathcal{O}_n .

$$\mathcal{L}_2^n \mathbf{u} = 0 \text{ in } \Omega_n \setminus \mathcal{O}_n,$$

 $\mathbf{u} = g \text{ on } \mathcal{O}_n,$

$$\mathcal{E}_2^n(\mathbf{u}) := \sum_{x,y \in \Omega_n} \omega_n(x,y) |\mathbf{u}(x) - \mathbf{u}(y)|^2$$
$$\mathcal{L}_2^n \mathbf{u}(x) := \sum_{y \in \Omega_n} \omega_n(x,y) (\mathbf{u}(y) - \mathbf{u}(x))$$

denotes the graph Dirichlet-energy,

denotes the graph Laplacian.

ELE NOR

What are the challenges in semi-supervised learning?

Spiking in Laplacian Learning

Leon Bungert (JMU)

Convergence rates for graph-based learning

March 19, 2024

イロト イボト イヨト イヨト

Spiking in Laplacian Learning

-

Spiking in Laplacian Learning

Graph-Based Semi-Supervised Learning

- Given: Weighted graph $G_n = (\Omega_n, \omega_n)$ with labels $g : \mathcal{O}_n \subset \Omega_n \to \mathbb{R}^k$.
- Goal: $\mathbf{u}_n : \Omega_n \to \mathbb{R}$ such that $\mathbf{u}_n = g$ on \mathcal{O}_n
- Tool: graph PDE

EL OQO

Graph-Based Semi-Supervised Learning

- Given: Weighted graph $G_n = (\Omega_n, \omega_n)$ with labels $g : \mathcal{O}_n \subset \Omega_n \to \mathbb{R}^k$.
- Goal: $\mathbf{u}_n : \Omega_n \to \mathbb{R}$ such that $\mathbf{u}_n = g$ on \mathcal{O}_n
- Tool: graph PDE

Driving question:

What happens with more and more data, $|\Omega_n| \to \infty$ (and potentially $|\mathcal{O}_n| \to \infty$)?

Graph-Based Semi-Supervised Learning

- Given: Weighted graph $G_n = (\Omega_n, \omega_n)$ with labels $g : \mathcal{O}_n \subset \Omega_n \to \mathbb{R}^k$.
- Goal: $\mathbf{u}_n : \Omega_n \to \mathbb{R}$ such that $\mathbf{u}_n = g$ on \mathcal{O}_n
- Tool: graph PDE

Driving question:

What happens with more and more data, $|\Omega_n| \to \infty$ (and potentially $|\mathcal{O}_n| \to \infty$)?

Graph-Based Semi-Supervised Learning

- Given: Weighted graph $G_n = (\Omega_n, \omega_n)$ with labels $g : \mathcal{O}_n \subset \Omega_n \to \mathbb{R}^k$.
- Goal: $\mathbf{u}_n: \Omega_n \to \mathbb{R}$ such that $\mathbf{u}_n = g$ on \mathcal{O}_n
- Tool: graph PDE

Driving question:

What happens with more and more data, $|\Omega_n| \to \infty$ (and potentially $|\mathcal{O}_n| \to \infty$)?

• sufficiently large labeling rates $\frac{|O_n|}{|\Omega_n|}$ [CST23] or reweighting [CS20];

ELE SQA

- sufficiently large labeling rates $\frac{|\mathcal{O}_n|}{|\Omega_n|}$ [CST23] or reweighting [CS20];
- p-Laplace learning with p > d [El +16], well-posed continuum limit [ST19] via Γ-convergence (no convergence rates);

ELE DOG

- sufficiently large labeling rates $\frac{|\mathcal{O}_n|}{|\Omega_n|}$ [CST23] or reweighting [CS20];
- p-Laplace learning with p > d [El +16], well-posed continuum limit [ST19] via Γ-convergence (no convergence rates);
- Lipschitz learning (i.e., $p = \infty$), well-posed continuum limit [Cal19; RB23] with rates [BCR23; BCR24];

- sufficiently large labeling rates $\frac{|\mathcal{O}_n|}{|\Omega_n|}$ [CST23] or reweighting [CS20];
- p-Laplace learning with p > d [El +16], well-posed continuum limit [ST19] via Γ-convergence (no convergence rates);
- Lipschitz learning (i.e., $p = \infty$), well-posed continuum limit [Cal19; RB23] with rates [BCR23; BCR24];
- Poisson learning [Cal+20], little empirical degradation for small label rates, well-posed continuum limit [B+24]

< ロ > < 同 > < 三 > < 三 > 、 三 = < の へ の > < 二 > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > < つ > <

2 Convergence Rates for Lipschitz Learning

3 Convergence Rates for Poisson Learning

Conclusion and Outlook

Leon Bungert (JMU)

Convergence rates for graph-based learning

March 19, 2024

A D > <
A P >

ELE DQQ

What is Lipschitz learning?

Image: A math a math

ъ

EL OQO

Lipschitz Learning

Find $\mathbf{u}_n: \Omega_n \to \mathbb{R}$ such that

$$\begin{cases} \mathcal{L}_{\infty}^{n} \mathbf{u}_{n} = 0, & \text{ in } \Omega_{n} \setminus \mathcal{O}_{n}, \\ \mathbf{u}_{n} = g, & \text{ in } \mathcal{O}_{n}. \end{cases}$$
(LL)

イロト イボト イヨト イヨト

三日 のへで

Lipschitz Learning

Find $\mathbf{u}_n: \Omega_n \to \mathbb{R}$ such that

$$\begin{cases} \mathcal{L}_{\infty}^{n} \mathbf{u}_{n} = 0, & \text{in } \mathcal{Q}_{n} \setminus \mathcal{O}_{n}, \\ \mathbf{u}_{n} = g, & \text{in } \mathcal{O}_{n}. \end{cases}$$
(LL)

Continuum Problem

Find $u \in C(\Omega)$, viscosity solution of

$$\begin{cases} \Delta_{\infty} u = 0, & \text{in } \Omega \setminus \mathcal{O}, \\ u = g, & \text{in } \mathcal{O}. \end{cases}$$
(IL)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

EL OQO

Lipschitz Learning

Find $\mathbf{u}_n: \Omega_n \to \mathbb{R}$ such that

$$\begin{cases} \mathcal{L}_{\infty}^{n} \mathbf{u}_{n} = 0, & \text{in } \Omega_{n} \setminus \mathcal{O}_{n}, \\ \mathbf{u}_{n} = g, & \text{in } \mathcal{O}_{n}. \end{cases}$$
(LL)

Continuum Problem

Find $u \in C(\Omega)$, viscosity solution of

$$\begin{cases} \Delta_{\infty} u = 0, & \text{in } \Omega \setminus \mathcal{O}, \\ u = g, & \text{in } \mathcal{O}. \end{cases}$$
(IL)

$$\mathcal{L}_{\infty}^{n}\mathbf{u}_{n}(x) := \max_{y \in \Omega_{n}} \omega_{n}(x, y)(\mathbf{u}_{n}(y) - \mathbf{u}_{n}(x)) + \min_{y \in \Omega_{n}} \omega_{n}(x, y)(\mathbf{u}_{n}(y) - \mathbf{u}_{n}(x))$$
$$\Delta_{\infty}u(x) := \langle \nabla u(x), D^{2}u(x)\nabla u(x) \rangle$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

EL OQO

Lipschitz Learning

Find $\mathbf{u}_n: \Omega_n \to \mathbb{R}$ such that

$$\begin{cases} \mathcal{L}_{\infty}^{n} \mathbf{u}_{n} = 0, & \text{in } \Omega_{n} \setminus \mathcal{O}_{n}, \\ \mathbf{u}_{n} = g, & \text{in } \mathcal{O}_{n}. \end{cases}$$
(LL)

Continuum Problem

Find $u\in C(\varOmega),$ viscosity solution of

$$\begin{cases} \Delta_{\infty} u = 0, & \text{in } \Omega \setminus \mathcal{O}, \\ u = g, & \text{in } \mathcal{O}. \end{cases}$$
(IL)

Previous work:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ELE DOG

Lipschitz Learning

Find $\mathbf{u}_n: \Omega_n \to \mathbb{R}$ such that

 $\begin{cases} \mathcal{L}_{\infty}^{n} \mathbf{u}_{n} = 0, & \text{ in } \Omega_{n} \setminus \mathcal{O}_{n}, \\ \mathbf{u}_{n} = g, & \text{ in } \mathcal{O}_{n}. \end{cases}$ (LL)

Continuum Problem Find $u \in C(\Omega)$, viscosity solution of $\begin{cases} \Delta_{\infty} u = 0, & \text{in } \Omega \setminus \mathcal{O}, \\ u = g, & \text{in } \mathcal{O}. \end{cases}$ (IL)

Previous work:

• [RB23]: Γ -convergence of associated energies (just necessary conditions)

Lipschitz Learning

Find $\mathbf{u}_n: \Omega_n \to \mathbb{R}$ such that

 $\begin{cases} \mathcal{L}_{\infty}^{n}\mathbf{u}_{n}=0, & \text{in } \Omega_{n}\setminus\mathcal{O}_{n}, \\ \mathbf{u}_{n}=g, & \text{in } \mathcal{O}_{n}. \end{cases}$ (LL)

Continuum Problem Find $u \in C(\Omega)$, viscosity solution of $\begin{cases} \Delta_{\infty} u = 0, & \text{in } \Omega \setminus \mathcal{O}, \\ u = g, & \text{in } \mathcal{O}. \end{cases} \tag{IL}$

Previous work:

- [RB23]: *Γ*-convergence of associated energies (just necessary conditions)
- [Sma10; Cal19]: Convergence under strong assumptions (i.a., dense graphs), no rates

Lipschitz Learning

Find $\mathbf{u}_n: \Omega_n \to \mathbb{R}$ such that

 $\begin{cases} \mathcal{L}_{\infty}^{n}\mathbf{u}_{n}=0, & \text{ in } \Omega_{n}\setminus\mathcal{O}_{n}, \\ \mathbf{u}_{n}=g, & \text{ in } \mathcal{O}_{n}. \end{cases}$ (LL)

Continuum Problem Find $u \in C(\Omega)$, viscosity solution of $\begin{cases} \Delta_{\infty} u = 0, & \text{in } \Omega \setminus \mathcal{O}, \\ u = g, & \text{in } \mathcal{O}. \end{cases} \tag{IL}$

Previous work:

- [RB23]: Γ -convergence of associated energies (just necessary conditions)
- [Sma10; Cal19]: Convergence under strong assumptions (i.a., dense graphs), no rates

Aims: convergence rates for sparse graphs

Graph Bandwidth and Resolution

Graph Bandwidth

For a bandwidth $\varepsilon_n > 0$ and a function $\eta : (0, \infty) \to [0, \infty)$ we define

 $\omega_n(x,y) := \eta(|x-y|/\varepsilon_n), \quad x,y \in \Omega_n, \ x \neq y.$

Graph Bandwidth and Resolution

Graph Bandwidth

For a bandwidth $\varepsilon_n > 0$ and a function $\eta : (0, \infty) \to [0, \infty)$ we define

$$\omega_n(x,y) := \eta(|x-y|/\varepsilon_n), \quad x,y \in \Omega_n, \ x \neq y.$$

ELE SQC
Graph Bandwidth and Resolution

Graph Bandwidth

For a bandwidth $\varepsilon_n > 0$ and a function $\eta : (0, \infty) \to [0, \infty)$ we define

$$\omega_n(x,y) := \eta(|x-y|/\varepsilon_n), \quad x,y \in \Omega_n, \ x \neq y.$$

Graph Resolution

We define the graph resolution as

$$\delta_n := d_H(\Omega_n, \Omega) \vee d_H(\mathcal{O}_n, \mathcal{O}),$$

where we use the Hausdorff distance

$$d_H(A,B) = \sup_{x \in A} \inf_{y \in B} |x-y| \lor \sup_{x \in B} \inf_{y \in A} |x-y|, \quad A, B \subset \mathbb{R}^d.$$

Graph Bandwidth and Resolution

Graph Bandwidth

For a bandwidth $\varepsilon_n > 0$ and a function $\eta : (0, \infty) \to [0, \infty)$ we define

$$\omega_n(x,y) := \eta(|x-y|/\varepsilon_n), \quad x,y \in \Omega_n, \ x \neq y.$$

Graph Resolution

We define the graph resolution as

$$\delta_n := d_H(\Omega_n, \Omega) \vee d_H(\mathcal{O}_n, \mathcal{O}),$$

where we use the Hausdorff distance

$$d_H(A,B) = \sup_{x \in A} \inf_{y \in B} |x-y| \lor \sup_{x \in B} \inf_{y \in A} |x-y|, \quad A, B \subset \mathbb{R}^d.$$

Important relations:

1

31

Theorem ([BCR23])

Let $\Omega \subset \mathbb{R}^d$ be a locally convex domain, $\Omega_n \subset \Omega$ be an arbitrary set of points, let $\mathbf{u}_n : \Omega_n \to \mathbb{R}$ solve (LL) and $u : \Omega \to \mathbb{R}$ solve (IL), and let $\tau > 0$ be arbitrary. If $\delta_n \lesssim \varepsilon_n \lesssim \tau$ then it holds

$$\max_{\Omega_n} |\mathbf{u}_n - u| \lesssim \tau + \sqrt[3]{\frac{\delta_n}{\varepsilon_n \tau} + \frac{\varepsilon_n}{\tau^2}}.$$

ELE NOR

Theorem ([BCR23])

Let $\Omega \subset \mathbb{R}^d$ be a locally convex domain, $\Omega_n \subset \Omega$ be an arbitrary set of points, let $\mathbf{u}_n:\Omega_n\to\mathbb{R}$ solve (LL) and $u:\Omega\to\mathbb{R}$ solve (LL), and let $\tau>0$ be arbitrary. If $\delta_n \leq \varepsilon_n \leq \tau$ then it holds

$$\max_{\Omega_n} |\mathbf{u}_n - u| \lesssim \tau + \sqrt[3]{\frac{\delta_n}{\varepsilon_n \tau} + \frac{\varepsilon_n}{\tau^2}}.$$

Corollary

Optimizing over $\tau = \tau_n$ one gets:

• (Sparse regime): If
$$\delta_n \lesssim \varepsilon_n \lesssim \delta_n^{rac{5}{9}}$$
 the rate is $\left(rac{\delta_n}{\varepsilon_n}
ight)^{rac{1}{4}}$

Theorem ([BCR23])

Let $\Omega \subset \mathbb{R}^d$ be a locally convex domain, $\Omega_n \subset \Omega$ be an arbitrary set of points, let $\mathbf{u}_n:\Omega_n\to\mathbb{R}$ solve (LL) and $u:\Omega\to\mathbb{R}$ solve (LL), and let $\tau>0$ be arbitrary. If $\delta_n \leq \varepsilon_n \leq \tau$ then it holds

$$\max_{\Omega_n} |\mathbf{u}_n - u| \lesssim \tau + \sqrt[3]{\frac{\delta_n}{\varepsilon_n \tau} + \frac{\varepsilon_n}{\tau^2}}.$$

Corollary

Optimizing over $\tau = \tau_n$ one gets:

• (Sparse regime): If
$$\delta_n \lesssim \varepsilon_n \lesssim \delta_n^{rac{5}{9}}$$
 the rate is $\left(rac{\delta_n}{\varepsilon_n}
ight)^{rac{1}{4}}$

• (Dense regime): If $\varepsilon_n \gtrsim \delta_n^{\frac{5}{9}}$ the rate is $\varepsilon_n^{\frac{1}{5}}$.

Leon Bungert (JMU)

Improved Convergence on Random Graphs

Theorem ([BCR24])

Assume that Ω_n is a uniform i.i.d. sample or a homogeneous Poisson point process, let $\eta(t) = \frac{1}{t} \mathbb{1}_{t \leq 1}$, et ceteris paribus.

If $(\log n/n)^{1/d} \lesssim \varepsilon_n \lesssim \tau$ then it holds with high probability:

$$\max_{x \in \Omega_n} |\mathbf{u}_n - u| \lesssim \tau + \sqrt[3]{\log n \frac{(\log n/n)^{1/d}}{\sqrt{\tau^3 \varepsilon_n}}} + \frac{\varepsilon_n}{\tau^2}$$

ELE SQC

Improved Convergence on Random Graphs

Theorem ([BCR24])

Assume that Ω_n is a uniform *i.i.d.* sample or a homogeneous Poisson point process, let $\eta(t) = \frac{1}{t} \mathbf{1}_{t < 1}$, et ceteris paribus.

If $(\log n/n)^{1/d} \leq \varepsilon_n \leq \tau$ then it holds with high probability:

$$\max_{x \in \Omega_n} |\mathbf{u}_n - u| \lesssim \tau + \sqrt[3]{\log n \frac{(\log n/n)^{1/d}}{\sqrt{\tau^3 \varepsilon_n}}} + \frac{\varepsilon_n}{\tau^2}$$

Corollary

Optimizing over $\tau = \tau_n$ and choosing $\varepsilon_n \sim (\log n/n)^{1/d}$ yields almost surely:

$$\max_{x \in \Omega_n} |\mathbf{u}_n - u| \lesssim (\log n)^{\frac{2}{9}} \left(\frac{\log n}{n}\right)^{\frac{1}{9q}}$$

Introduce non-local operator with larger bandwidth $\tau \gg \varepsilon_n$

イロト イボト イヨト イヨト

Introduce non-local operator with larger bandwidth $\tau \gg \varepsilon_n$

$$\varDelta^\tau_\infty u(x) := \frac{1}{\tau^2} \left(\sup_{y \in B(x;\tau)} (u(y) - u(x)) + \inf_{y \in B(x;\tau)} (u(y) - u(x)) \right),$$

イロト イボト イヨト イヨト

EL OQO

Introduce non-local operator with larger bandwidth $\tau \gg \varepsilon_n$

$$\varDelta^\tau_\infty u(x) := \frac{1}{\tau^2} \left(\sup_{y \in B(x;\tau)} (u(y) - u(x)) + \inf_{y \in B(x;\tau)} (u(y) - u(x)) \right),$$

and define the infimal convolution

$$u_{\tau}(x) := \min_{y \in B(x;\tau)} u(y),$$

Using comparison with cones [AS10] proved

$$-\Delta_{\infty} u \ge 0 \implies -\Delta_{\infty}^{\tau} u_{\tau} \ge 0,$$

A D N A B N A B

Introduce non-local operator with larger bandwidth $\tau \gg \varepsilon_n$

$$\Delta^\tau_\infty u(x) := \frac{1}{\tau^2} \left(\sup_{y \in B(x;\tau)} (u(y) - u(x)) + \inf_{y \in B(x;\tau)} (u(y) - u(x)) \right),$$

and define the infimal and discrete-to-continuum supremal convolution

$$u_\tau(x) := \min_{y \in B(x;\tau)} u(y), \qquad u_n^\tau(x) := \max_{y \in B(x;\tau) \cap \varOmega_n} \mathbf{u}_n(y).$$

Using comparison with cones on graphs we proved in [BCR23]

$$-\Delta_{\infty} u \ge 0 \implies -\Delta_{\infty}^{\tau} u_{\tau} \ge 0, -\mathcal{L}_{\infty}^{n} \mathbf{u}_{n} \le 0 \implies -\Delta_{\infty}^{\tau} u_{n}^{\tau} \lesssim \frac{r_{\tau}}{\tau} + \frac{\varepsilon_{n}}{\tau^{2}},$$

A D N A B N A B N

Introduce non-local operator with larger bandwidth $\tau \gg \varepsilon_n$

$$\varDelta_{\infty}^{\tau}u(x):=\frac{1}{\tau^2}\left(\sup_{y\in B(x;\tau)}(u(y)-u(x))+\inf_{y\in B(x;\tau)}(u(y)-u(x))\right),$$

and define the infimal and discrete-to-continuum supremal convolution

$$u_\tau(x) := \min_{y \in B(x;\tau)} u(y), \qquad u_n^\tau(x) := \max_{y \in B(x;\tau) \cap \varOmega_n} \mathbf{u}_n(y).$$

Using comparison with cones on graphs we proved in [BCR23]

$$-\Delta_{\infty} u \ge 0 \implies -\Delta_{\infty}^{\tau} u_{\tau} \ge 0, -\mathcal{L}_{\infty}^{n} \mathbf{u}_{n} \le 0 \implies -\Delta_{\infty}^{\tau} u_{n}^{\tau} \lesssim \frac{r_{\tau}}{\tau} + \frac{\varepsilon_{n}}{\tau^{2}},$$

where we define the ratio of graph distances as

$$r_{\tau}(x) := \frac{\sup_{y \in \overline{B}(x,\tau) \cap \Omega_n} d_n(x,y)}{\inf_{y \in \Omega_n \setminus \overline{B}(x,2\tau-\varepsilon_n)} d_n(x,y)} - \frac{1}{2}.$$

Leon Bungert (JMU)

Use perturbation and comparison principle for $-\Delta_{\infty}^{\tau}$ to show

$$\sup_{\Omega_n} (\mathbf{u}_n - u) \lesssim \tau + \sqrt[3]{\frac{r_\tau}{\tau} + \frac{\varepsilon_n}{\tau^2}}.$$

Use perturbation and comparison principle for $-\varDelta^\tau_\infty$ to show

$$\sup_{\Omega_n} (\mathbf{u}_n - u) \lesssim \tau + \sqrt[3]{\frac{r_\tau}{\tau} + \frac{\varepsilon_n}{\tau^2}}.$$

Repeat everything using $-\mathcal{L}_{\infty}^{n}\mathbf{u}_{n} \geq 0$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■目目 少な()

Use perturbation and comparison principle for $-\varDelta^{\tau}_{\infty}$ to show

$$\sup_{\Omega_n} (\mathbf{u}_n - u) \lesssim \tau + \sqrt[3]{\frac{r_{\tau}}{\tau} + \frac{\varepsilon_n}{\tau^2}}.$$

Repeat everything using $-\mathcal{L}_{\infty}^{n}\mathbf{u}_{n} \geq 0$. Estimate the ratio r_{τ} using the general estimate [BCR23]

$$|x-y| \le d_n(x,y) \le \left(1 + C\frac{\delta_n}{\varepsilon_n}\right)|x-y| + \tau_\eta \varepsilon_n$$

Use perturbation and comparison principle for $-\Delta_{\infty}^{\tau}$ to show

$$\sup_{\Omega_n} (\mathbf{u}_n - u) \lesssim \tau + \sqrt[3]{\frac{r_\tau}{\tau} + \frac{\varepsilon_n}{\tau^2}}.$$

Repeat everything using $-\mathcal{L}_{\infty}^{n}\mathbf{u}_{n} \geq 0$. Estimate the ratio r_{τ} using the general estimate [BCR23]

$$|x-y| \le d_n(x,y) \le \left(1 + C\frac{\delta_n}{\varepsilon_n}\right)|x-y| + \tau_\eta \varepsilon_n$$

or the percolation estimate [BCR24], valid for $\varepsilon_n \sim \delta_n$,

$$r_{ au} \lesssim \left(\frac{\log n}{n}\right)^{rac{1}{d}} rac{\log n}{\sqrt{ auarepsilon}}$$

which is based on homogenization of the graph distance.

Leon Bungert (JMU)

17/31

Numerical Results

Figure: Experimental rates for constant weights on star domain.

Leon Bungert (JMU)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ March 19, 2024

Numerical Results

Figure: Experimental rates for singular weights on star domain.

Leon Bungert (J	м	U)
-----------------	---	----

3 Convergence Rates for Poisson Learning

Conclusion and Outlook

Leon Bungert (JMU)

Convergence rates for graph-based learning

March 19, 2024

A D > <
 A P >
 A

ELE DQQ

What is Poisson learning?

イロト イヨト イヨト イ

74 M

EL OQO

Poisson Learning

Find $\mathbf{u}_n: \Omega_n \to \mathbb{R}$ such that

$$-\mathcal{L}_2^n \mathbf{u}_n = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to $\sum_{x \in \Omega_n} d_n(x)u(x) = 0.$

(b) A T = (b)

• • • • • • • • • • •

三日 のへの

Poisson Learning

Find $\mathbf{u}_n:\Omega_n\to\mathbb{R}$ such that

$$-\mathcal{L}_2^n \mathbf{u}_n = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to $\sum_{x\in \varOmega_n} d_n(x) u(x) = 0.$

Continuum Problem

Find $u \in W^{1,1}(\Omega)$, distributional solution of

$$-\operatorname{div}(\rho^2 \nabla u) = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to
$$\frac{\partial u}{\partial \nu} = 0$$
 and $\int_{\Omega} u \rho^2 \, \mathrm{d}x = 0$.

A D > A B > A B

EL OQO

Poisson Learning

Find $\mathbf{u}_n:\Omega_n\to\mathbb{R}$ such that

$$-\mathcal{L}_2^n \mathbf{u}_n = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to $\sum_{x\in \varOmega_n} d_n(x) u(x) = 0.$

Continuum Problem

Find $u \in W^{1,1}(\Omega)$, distributional solution of

$$-\operatorname{div}(\rho^2 \nabla u) = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

• • • • • • • • • • • •

subject to
$$\frac{\partial u}{\partial \nu} = 0$$
 and $\int_{\Omega} u \rho^2 \, \mathrm{d}x = 0$.

Here,

$$d_n(x) := \sum_{y \in \Omega_n} \omega_n(x, y), \qquad \overline{g} := \frac{1}{|\mathcal{O}|} \sum_{x \in \mathcal{O}} g(x),$$

and we assume that $\Omega_n = \{x_i\}_{i=1}^n$ with *i.i.d.* samples x_i with $Law(x_i) = \rho$ and that \mathcal{O} is a finite set.

EL OQO

Poisson Learning

Find $\mathbf{u}_n:\Omega_n\to\mathbb{R}$ such that

$$-\mathcal{L}_2^n \mathbf{u}_n = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to $\sum_{x\in \varOmega_n} d_n(x) u(x) = 0.$

Continuum Problem

Find $u \in W^{1,1}(\Omega)$, distributional solution of

$$-\operatorname{div}(\rho^2 \nabla u) = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to
$$\frac{\partial u}{\partial \nu} = 0$$
 and $\int_{\Omega} u \rho^2 \, \mathrm{d}x = 0$.

Remark:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Poisson Learning

Find $\mathbf{u}_n:\Omega_n\to\mathbb{R}$ such that

$$-\mathcal{L}_2^n \mathbf{u}_n = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to $\sum_{x\in \varOmega_n} d_n(x) u(x) = 0.$

Continuum Problem

Find $u \in W^{1,1}(\Omega)$, distributional solution of

$$-\operatorname{div}(\rho^2 \nabla u) = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to
$$\frac{\partial u}{\partial \nu} = 0$$
 and $\int_{\Omega} u \rho^2 \, \mathrm{d}x = 0$.

Remark:

• Proposed in [Cal+20], superior experimental results

A D N A B N A B N

Poisson Learning

Find $\mathbf{u}_n:\Omega_n\to\mathbb{R}$ such that

$$-\mathcal{L}_2^n \mathbf{u}_n = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to $\sum_{x\in \varOmega_n} d_n(x) u(x) = 0.$

Continuum Problem

Find $u \in W^{1,1}(\Omega)$, distributional solution of

$$-\operatorname{div}(\rho^2 \nabla u) = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to
$$\frac{\partial u}{\partial \nu}=0$$
 and $\int_{\varOmega} u \rho^2 \, \mathrm{d} x=0.$

Remark:

- Proposed in [Cal+20], superior experimental results
- \bullet No variational interpretation of continuum problem \implies continuum limit requires PDE techniques

A D N A B N A B N

ELE SQA

Find $\mathbf{u}_n:\Omega_n\to\mathbb{R}$ such that

$$-\mathcal{L}_2^n \mathbf{u}_n = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to $\sum_{x\in \varOmega_n} d_n(x) u(x) = 0.$

Continuum Problem

Find $u \in W^{1,1}(\Omega)$, distributional solution of

$$-\operatorname{div}(\rho^2 \nabla u) = \sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x,$$

subject to
$$\frac{\partial u}{\partial \nu}=0$$
 and $\int_{\varOmega} u \rho^2 \, \mathrm{d} x=0.$

Remark:

- Proposed in [Cal+20], superior experimental results
- \bullet No variational interpretation of continuum problem \implies continuum limit requires PDE techniques

Aims: convergence rates

Leon Bungert (JMU)

ELE SQA

Formal Main Result

Theorem (Formal, [B+24] (forthcoming))

Under reasonable assumptions and for

$$1 \gg \varepsilon_n \gg \begin{cases} \left(\frac{\log n}{n}\right)^{\frac{1}{3d-2}} & \text{if } d \ge 4\\ \left(\frac{\log n}{n}\right)^{\frac{1}{2d+2}} & \text{if } d < 4 \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Formal Main Result

Theorem (Formal, [B+24] (forthcoming))

Under reasonable assumptions and for

$$1 \gg \varepsilon_n \gg \begin{cases} \left(\frac{\log n}{n}\right)^{\frac{1}{3d-2}} & \text{if } d \ge 4\\ \left(\frac{\log n}{n}\right)^{\frac{1}{2d+2}} & \text{if } d < 4 \end{cases}$$

it holds with high probability that

$$\|\mathbf{u}_n - u\|_{\ell^1(\Omega_n)} \lesssim \varepsilon_n^{\frac{1}{d+2}}.$$

Leon Bungert (JMU)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Formal Main Result

Theorem (Formal, [B+24] (forthcoming))

Under reasonable assumptions and for

$$1 \gg \varepsilon_n \gg \begin{cases} \left(\frac{\log n}{n}\right)^{\frac{1}{3d-2}} & \text{if } d \ge 4\\ \left(\frac{\log n}{n}\right)^{\frac{1}{2d+2}} & \text{if } d < 4 \end{cases}$$

it holds with high probability that

$$\|\mathbf{u}_n - u\|_{\ell^1(\Omega_n)} \lesssim \varepsilon_n^{\frac{1}{d+2}}.$$

If $\rho \equiv const$ and $\varepsilon_n \gg \left(\frac{\log n}{n}\right)^{\frac{1}{3d-2(d+2)/(d+4)}}$ this can be improved to

$$\|\mathbf{u}_n - u\|_{\ell^1(\Omega_n)} \lesssim \varepsilon_n^{\frac{2}{d+4}}.$$

Leon Bungert (JMU)

Numerical Results

We consider the problem $\Delta u = \Delta_z - \delta_{-z}$ for $z \in \Omega = B(0,1) \subset \mathbb{R}^2$ which has an explicit solution.

We choose $\varepsilon = 2\left(\frac{\log n}{n}\right)^{\frac{1}{d+2}}$ for $n = 2^{10}, \ldots, 2^{16}$ and get the following rates¹:

Leon Bungert (JMU)

Convergence rates for graph-based learning

EL OQO

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024

ъ

EL NOR

Continuum mollification

Replace continuum data $\sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x$ by $\sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \varphi_x$ with $\operatorname{supp} \varphi_x \subset B(x, R)$ obtain quantitative L^1 -estimates in R.

ELE SQA

Continuum mollification

Replace continuum data $\sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x$ by $\sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \varphi_x$ with $\operatorname{supp} \varphi_x \subset B(x, R)$ obtain quantitative L^1 -estimates in R.

Discrete mollification

Mollify discrete data $\sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x$ with k steps of the graph heat equation and obtain quantitative estimates in k and ε .

<ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の へ の

Continuum mollification

Replace continuum data $\sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x$ by $\sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \varphi_x$ with $\operatorname{supp} \varphi_x \subset B(x, R)$ obtain quantitative L^1 -estimates in R.

Discrete mollification

Mollify discrete data $\sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x$ with k steps of the graph heat equation and obtain quantitative estimates in k and ε .

Regular continuum limit

Prove discrete-to-continuum convergence rates for bounded right hand sides using variational methods (strong convexity).

Continuum mollification

Replace continuum data $\sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x$ by $\sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \varphi_x$ with $\operatorname{supp} \varphi_x \subset B(x, R)$ obtain quantitative L^1 -estimates in R.

Discrete mollification

Mollify discrete data $\sum_{x \in \mathcal{O}} (g(x) - \overline{g}) \delta_x$ with k steps of the graph heat equation and obtain quantitative estimates in k and ε .

Regular continuum limit

Prove discrete-to-continuum convergence rates for bounded right hand sides using variational methods (strong convexity).

NB: Keeping track of all constants (which blow up) and optimizing over all parameters we obtain the final rate.

Leon Bungert (JMU)
Continuum Mollification

We regularize the continuum equation by approximating the Dirac deltas:

$$-\operatorname{div}(\rho^2 \nabla u) = \sum_{x \in \Gamma} a_x \delta_x \quad \text{and} \quad -\operatorname{div}(\rho^2 \nabla u_R) = \sum_{x \in \Gamma} a_x \varphi_x,$$

where $\operatorname{supp} \varphi_x \subset B(x, R)$, $\varphi_x \ge 0$, and $\int_{B(x, R)} \varphi_x(y) \, dy = 1$.

A D > A B > A B

ELE OQO

Leon Bungert (JMU)

Continuum Mollification

We regularize the continuum equation by approximating the Dirac deltas:

$$-\operatorname{div}(\rho^2 \nabla u) = \sum_{x \in \Gamma} a_x \delta_x \quad \text{and} \quad -\operatorname{div}(\rho^2 \nabla u_R) = \sum_{x \in \Gamma} a_x \varphi_x,$$

where $\operatorname{supp} \varphi_x \subset B(x, R)$, $\varphi_x \ge 0$, and $\int_{B(x, R)} \varphi_x(y) \, \mathrm{d}y = 1$.

Theorem ([B+24])

If $dist(\Gamma, \partial \Omega) > R$ then

$$\|u - u_R\|_{L^1(\Omega)} \lesssim \sum_{x \in \Gamma} |a_x| R.$$

Leon Bungert (JMU)

ELE DOG

Continuum Mollification

We regularize the continuum equation by approximating the Dirac deltas:

$$-\operatorname{div}(\rho^2 \nabla u) = \sum_{x \in \Gamma} a_x \delta_x \quad \text{and} \quad -\operatorname{div}(\rho^2 \nabla u_R) = \sum_{x \in \Gamma} a_x \varphi_x,$$

where $\operatorname{supp} \varphi_x \subset B(x, R)$, $\varphi_x \ge 0$, and $\int_{B(x, R)} \varphi_x(y) \, dy = 1$.

Theorem ([B+24])

If $dist(\Gamma, \partial \Omega) > R$ then

$$\|u-u_R\|_{L^1(\Omega)} \lesssim \sum_{x\in\Gamma} |a_x| R.$$

If in addition $ho\equiv const$ and $arphi_{x}(y)=R^{-d}\psi\left(\left|y-x\right|/R
ight)$, then

$$\|u-u_R\|_{L^1(\Omega)} \lesssim \sum_{x\in\Gamma} |a_x| R^2.$$

Leon Bungert (JMU)

Discrete Mollification

We define the random walk graph Laplacian:

$$\mathcal{L}_{rw}\mathbf{u}_n(x) := \frac{1}{\varepsilon_n^2 d_n(x)} \mathcal{L}_2^n \mathbf{u}_n(x) = \frac{1}{\varepsilon_n^2} \left(\frac{1}{d_n(x)} \sum_{y \in \Omega_n} \omega_n(x, y) \mathbf{u}_n(y) - \mathbf{u}_n(x) \right)$$

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ELE DOG

Discrete Mollification

We define the random walk graph Laplacian:

$$\mathcal{L}_{rw}\mathbf{u}_n(x) := \frac{1}{\varepsilon_n^2 d_n(x)} \mathcal{L}_2^n \mathbf{u}_n(x) = \frac{1}{\varepsilon_n^2} \left(\frac{1}{d_n(x)} \sum_{y \in \Omega_n} \omega_n(x, y) \mathbf{u}_n(y) - \mathbf{u}_n(x) \right).$$

The graph heat kernel \mathcal{H}_k^x is the solution of the heat equation, starting with δ_x :

$$\mathcal{H}_{k+1}^x = \mathcal{H}_k^x - \varepsilon_n^2 \mathcal{L}_{rw}^T \mathcal{H}_k^x, \qquad \mathcal{H}_0^x = n\delta_x.$$

We define the convolution $\mathcal{H}_k * \mathbf{u}_n(x) := \frac{1}{n} \sum_{y \in \Omega_n} \mathcal{H}_k^x(y) \mathbf{u}_n(y).$

Discrete Mollification

We define the random walk graph Laplacian:

$$\mathcal{L}_{rw}\mathbf{u}_n(x) := \frac{1}{\varepsilon_n^2 d_n(x)} \mathcal{L}_2^n \mathbf{u}_n(x) = \frac{1}{\varepsilon_n^2} \left(\frac{1}{d_n(x)} \sum_{y \in \Omega_n} \omega_n(x, y) \mathbf{u}_n(y) - \mathbf{u}_n(x) \right).$$

The graph heat kernel \mathcal{H}_{k}^{x} is the solution of the heat equation, starting with δ_{x} :

$$\mathcal{H}_{k+1}^x = \mathcal{H}_k^x - \varepsilon_n^2 \mathcal{L}_{rw}^T \mathcal{H}_k^x, \qquad \mathcal{H}_0^x = n\delta_x.$$

We define the convolution $\mathcal{H}_k * \mathbf{u}_n(x) := \frac{1}{n} \sum_{y \in \Omega_n} \mathcal{H}_k^x(y) \mathbf{u}_n(y).$

Theorem ([B+24])It holds $\mathcal{H}_k * (\mathcal{L}_{rw} \mathbf{u}_n) = \mathcal{L}_{rw} (\mathcal{H}_k * \mathbf{u}_n).$

Leon Bungert (JMU)

Estimates on Mollified Problem

Let \mathbf{u}_n and $\mathbf{u}_n^{(k)} := \mathcal{H}_k^{\cdot} * \mathbf{u}_n$ solve

$$-\mathcal{L}\mathbf{u}_n = \sum_{x \in \mathcal{O}} a_x \delta_x$$
 and $-\mathcal{L}\mathbf{u}_n^{(k)} = \sum_{x \in \mathcal{O}} a_x \mathcal{H}_k^x.$

Then it holds

$$\mathbf{u}_n - \mathbf{u}_n^{(k)} = \frac{n\varepsilon_n^2}{d_n} \sum_{x \in \mathcal{O}} a_x \sum_{j=0}^{k-1} \mathcal{H}_j^x.$$

Estimates on Mollified Problem

Let \mathbf{u}_n and $\mathbf{u}_n^{(k)} := \mathcal{H}_k^{\cdot} * \mathbf{u}_n$ solve

$$-\mathcal{L}\mathbf{u}_n = \sum_{x \in \mathcal{O}} a_x \delta_x \quad \text{and} \quad -\mathcal{L}\mathbf{u}_n^{(k)} = \sum_{x \in \mathcal{O}} a_x \mathcal{H}_k^x.$$

Then it holds

$$\mathbf{u}_n - \mathbf{u}_n^{(k)} = \frac{n\varepsilon_n^2}{d_n} \sum_{x \in \mathcal{O}} a_x \sum_{j=0}^{k-1} \mathcal{H}_j^x.$$

Using that $d_n \sim n$ and $\left\|\mathcal{H}_j^x\right\|_{\ell^1(\Omega_n)} = 1$ we get the estimate

$$\left\|\mathbf{u}_n - \mathbf{u}_n^{(k)}\right\|_{\ell^1(\Omega_n)} \lesssim k\varepsilon_n^2 \sum_{x \in \mathcal{O}} |a_x|$$

and will need to choose $1 \ll k \ll \frac{1}{\varepsilon_n^2}$.

Leon Bungert (JMU)

Continuum Limit for Bounded Data

We consider Poisson equations with bounded right hand side:

$$-\operatorname{div}(\rho^2 \nabla u) = f$$
 and $-\mathcal{L}_2^n \mathbf{u}_n = f_n$

EL OQO

Continuum Limit for Bounded Data

We consider Poisson equations with bounded right hand side:

$$-\operatorname{div}(\rho^2 \nabla u) = f$$
 and $-\mathcal{L}_2^n \mathbf{u}_n = f_n$

Theorem ([B+24]) For all $R, \lambda_1, \lambda_2, \varepsilon_n, \delta > 0$ sufficiently small, and $q > \frac{d}{2}$ we have with high probability: $\|u - \mathbf{u}_n\|_{H^1(\mathcal{X}_n)}^2 \lesssim \left(\|f_n - f\|_{\ell^1(\Omega_n)} + \|\operatorname{osc}_{\Omega \cap B(\cdot,\delta)} f\|_{L^1(\Omega)}\right) \left(\|f\|_{L^q(\Omega)} + \|f_n\|_{\ell^q(\Omega_n)}\right)$ $+ \|f\|_{L^{\infty}(\Omega)}^2 \lambda_1 + \|f\|_{L^{\infty}(\partial_{4\varepsilon_n}\Omega)}^2 \varepsilon_n + \|f_n\|_{\ell^2(\Omega_n)} \|f_n\|_{\ell^2(\Omega_n \cap \partial_{2R}\Omega)}$ $+ \left(\|f_n\|_{\ell^2(\Omega_n)}^2 + \|f\|_{L^2(\Omega)}^2\right) \left(\frac{\delta}{\varepsilon_n} + \varepsilon_n + \lambda_1^2 + \lambda_2\right).$

Continuum Limit for Bounded Data

We consider Poisson equations with bounded right hand side:

$$-\operatorname{div}(\rho^2 \nabla u) = f$$
 and $-\mathcal{L}_2^n \mathbf{u}_n = f_n$

Theorem ([B+24]) For all $R, \lambda_1, \lambda_2, \varepsilon_n, \delta > 0$ sufficiently small, and $q > \frac{d}{2}$ we have with high probability: $\|u - \mathbf{u}_n\|_{H^1(\mathcal{X}_n)}^2 \lesssim \left(\|f_n - f\|_{\ell^1(\Omega_n)} + \|\operatorname{osc}_{\Omega \cap B(\cdot,\delta)} f\|_{L^1(\Omega)}\right) \left(\|f\|_{L^q(\Omega)} + \|f_n\|_{\ell^q(\Omega_n)}\right)$ $+ \|f\|_{L^{\infty}(\Omega)}^2 \lambda_1 + \|f\|_{L^{\infty}(\partial_{4\varepsilon_n}\Omega)}^2 \varepsilon_n + \|f_n\|_{\ell^2(\Omega_n)} \|f_n\|_{\ell^2(\Omega_n \cap \partial_{2R}\Omega)}$ $+ \left(\|f_n\|_{\ell^2(\Omega_n)}^2 + \|f\|_{L^2(\Omega)}^2\right) \left(\frac{\delta}{\varepsilon_n} + \varepsilon_n + \lambda_1^2 + \lambda_2\right).$

We choose $f_n = \sum_{x \in \mathcal{O}} a_x \mathcal{H}_k^x$ and prove discrete-to-continuum convergence rates towards a k-fold convolution $f := \sum_{x \in \mathcal{O}} a_x \rho(x)^{-1} \mathcal{M}_{\varepsilon}^k(\delta_x)$.

28/31

Motivation

2 Convergence Rates for Lipschitz Learning

3 Convergence Rates for Poisson Learning

Leon Bungert (JMU)

Convergence rates for graph-based learning

March 19, 2024

A D > <
 A P >

ELE NOR

ъ

What we discussed today:

イロト イボト イヨト イヨト

What we discussed today:

Part 1 (Lipschitz Learning):

- Lipschitz learning is asymptotically well-posed
- Uniform discrete-to-continuum convergence rates down to smallest length scales
- Novel "homogenized" proof technique

< 47 ►

ELE SQC

What we discussed today:

Part 1 (Lipschitz Learning):

- Lipschitz learning is asymptotically well-posed
- Uniform discrete-to-continuum convergence rates down to smallest length scales
- Novel "homogenized" proof technique

Part 2 (Poisson Learning):

- Poisson learning is asymptotically well-posed
- $\bullet \ L^1\mbox{-discrete-to-continuum convergence rates down for relatively large length scales$
- Three-scale proof technique

ELE SQA

What we discussed today:

Part 1 (Lipschitz Learning):

- Lipschitz learning is asymptotically well-posed
- Uniform discrete-to-continuum convergence rates down to smallest length scales
- Novel "homogenized" proof technique

Part 2 (Poisson Learning):

- Poisson learning is asymptotically well-posed
- $\bullet \ L^1\mbox{-discrete-to-continuum convergence rates down for relatively large length scales$
- Three-scale proof technique

Future work:

- Convergence rates for Lipschitz Learning with density-drift
- Percolation rates for less rigid assumptions
- Sharpness of Poisson learning rates

Leon Bungert (JMU)

Convergence rates for graph-based learning

March 19, 2024

A D N A B N A B

▲ ■ ▶ ■ ■ ■ ● ● ● ●

Thank you for your attention! Questions?

L. B, J. Calder, and T. Roith. "Uniform convergence rates for Lipschitz learning on graphs". In: IMA Journal of Numerical Analysis 43.4 (2023), pp. 2445–2495

L. B, J. Calder, and T. Roith. "Ratio convergence rates for Euclidean first-passage percolation: Applications to the graph infinity Laplacian". In: Annals of Applied Probability (2024). In press

L. B, J. Calder, F. Hoffmann, K. Houssou, M. Mihailescu, and A. Yuan. Convergence rates for Poisson Learning to a Poisson equation with measure data. 2024. In preparation

References I

- [ZGL03] X. Zhu, Z. Ghahramani, and J. D. Lafferty. "Semi-supervised learning using gaussian fields and harmonic functions". In: *Proceedings of the* 20th International conference on Machine learning (ICML-03). 2003, pp. 912–919.
- [AS10] S. N. Armstrong and C. K. Smart. "An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions". In: *Calculus of Variations and Partial Differential Equations* 37.3 (2010), pp. 381–384.
- [Sma10] C. K. Smart. "On the infinity Laplacian and Hrushovski's fusion". PhD thesis. UC Berkeley, 2010.
- [GS15] N. García Trillos and D. Slepčev. "Continuum Limit of Total Variation on Point Clouds". In: Archive for Rational Mechanics and Analysis 220.1 (2015), pp. 193–241. DOI: 10.1007/s00205-015-0929-z.

References II

- [Cal18] J. Calder. "The game theoretic *p*-Laplacian and semi-supervised learning with few labels". In: *Nonlinearity* 32.1 (2018), p. 301.
- [Cal19] J. Calder. "Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data". In: SIAM Journal on Mathematics of Data Science 1.4 (2019), pp. 780–812.
- [ST19] D. Slepčev and M. Thorpe. "Analysis of *p*-Laplacian regularization in semisupervised learning". In: SIAM Journal on Mathematical Analysis 51.3 (2019), pp. 2085–2120.
- [Cal+20] J. Calder, B. Cook, M. Thorpe, and D. Slepcev. "Poisson learning: Graph based semi-supervised learning at very low label rates". In: *International Conference on Machine Learning*. PMLR. 2020, pp. 1306–1316.
- [CS20] J. Calder and D. Slepčev. "Properly-weighted graph Laplacian for semi-supervised learning". In: Applied mathematics & optimization 82 (2020), pp. 1111–1159.

References III

- [BCR23] L. B, J. Calder, and T. Roith. "Uniform convergence rates for Lipschitz learning on graphs". In: IMA Journal of Numerical Analysis 43.4 (2023), pp. 2445–2495.
- [CST23] J. Calder, D. Slepčev, and M. Thorpe. "Rates of convergence for Laplacian semi-supervised learning with low labeling rates". In: *Research in the Mathematical Sciences* 10.1 (2023), p. 10.
- [RB23] T. Roith and L. B. "Continuum limit of Lipschitz learning on graphs". In: Foundations of Computational Mathematics 23.2 (2023), pp. 393–431.
- [B+24] L. B, J. Calder, F. Hoffmann, K. Houssou, M. Mihailescu, and A. Yuan. Convergence rates for Poisson Learning to a Poisson equation with measure data. 2024. In preparation.
- [BCR24] L. B, J. Calder, and T. Roith. "Ratio convergence rates for Euclidean first-passage percolation: Applications to the graph infinity Laplacian". In: Annals of Applied Probability (2024). In press.

Leon Bungert (JMU) Convergence rates for graph-based learning March 19, 2024

イロト イボト イヨト イヨト

三日 のへの

Sparse graph: bandwidth \gg connectivity threshold, Lipschitz learning (today, [BCR23])

4 A 1

ELE NOR

Sparse graph: bandwidth \gg connectivity threshold, Lipschitz learning (today, [BCR23])

Medium graph: bandwidth \gg (connectivity threshold)^{$\frac{2}{3}$}, Lipschitz learning (best so far, [Cal19])

EL= DOG

Sparse graph: bandwidth \gg connectivity threshold, Lipschitz learning (today, [BCR23])

Medium graph: bandwidth \gg (connectivity threshold)^{$\frac{2}{3}$}, Lipschitz learning (best so far, [Cal19])

Dense graph: bandwidth \gg (connectivity threshold) $^{\frac{1}{4}}$, Laplacian learning [Cal18]

A D N A B N A B N

▲ ∃ ► ∃ = < < < <</p>

Figure: Experimental rates for constant weights on star domain.

Leon Bungert (JMU)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ March 19, 2024

33 / 31

Figure: Experimental rates for singular weights on star domain.

Leon Bungert (J	м	U)
-----------------	---	----

Image: Image:

Figure: Experimental rates for constant weights on square domain.

Leon Bungert	(JMU))
--------------	-------	---

Image: Image:

▲ E ► E E ● 9 Q C

Figure: Experimental rates for weights on domain.

Graph Functional

Graph Lipschitz Learning Find $u : \Omega_n \to \mathbb{R}$ such that $u \in \arg \min \max_{x,y \in \Omega_n} \omega_n(x,y) |u(x) - u(y)|,$ and u = g on \mathcal{O}_n . Lipschitz Learning Find $u \in W^{1,\infty}(\Omega)$ such that $u \in \arg\min \operatorname{ess\,sup}_{x \in \Omega} |\nabla u(x)|,$ and u = g in \mathcal{O} .

• The graph functional has the form

$$E_n(u) = \frac{1}{\varepsilon_n} \max_{x, y \in \Omega_n} \eta_{\varepsilon_n}(|x - y|) |u(x) - u(y)|$$

< ロ > < 同 > < 三 > < 三 >

ELE OQO

Graph Functional

Graph Lipschitz Learning Find $u : \Omega_n \to \mathbb{R}$ such that $u \in \arg \min \max_{x,y \in \Omega_n} \omega_n(x,y) |u(x) - u(y)|,$ and u = g on \mathcal{O}_n . Lipschitz Learning Find $u \in W^{1,\infty}(\Omega)$ such that $u \in \arg\min \operatorname{ess\,sup}_{x \in \Omega} |\nabla u(x)|,$ and u = g in \mathcal{O} .

• The graph functional has the form

$$E_n(u) = \frac{1}{\varepsilon_n} \max_{x, y \in \Omega_n} \eta_{\varepsilon_n}(|x - y|) |u(x) - u(y)|$$

• The respective continuum functional for $u\in W^{1,\infty}(\varOmega)$ reads

$$\mathcal{E}(u) := \operatorname{ess\,sup}_{x \in \Omega} |\nabla u(x)|.$$

Leon Bungert (JMU)

Graph Functional

Graph Lipschitz Learning Find $u : \Omega_n \to \mathbb{R}$ such that $u \in \arg \min \max_{x,y \in \Omega_n} \omega_n(x,y) |u(x) - u(y)|,$ and u = g on \mathcal{O}_n . Lipschitz Learning Find $u \in W^{1,\infty}(\Omega)$ such that $u \in \arg\min \operatorname{ess\,sup}_{x \in \Omega} |\nabla u(x)|,$ and u = g in \mathcal{O} .

• The graph functional has the form

$$E_n(u) = \frac{1}{\varepsilon_n} \max_{x, y \in \Omega_n} \eta_{\varepsilon_n}(|x - y|) |u(x) - u(y)|$$

• The respective continuum functional for $u\in W^{1,\infty}(\varOmega)$ reads

$$\mathcal{E}(u) := \operatorname{ess\,sup}_{x \in \Omega} |\nabla u(x)|.$$

 We want to prove Γ-convergence and compactness for convergence of minimizers.

Leon Bungert (JMU)

Domain Regularity

The key estimate in our arguments is

$$|u(x) - u(y)| \le \|\nabla u\|_{L^{\infty}} d_{\Omega}(x, y),$$

where $u: W^{1,\infty}(\Omega) \to \mathbb{R}$ and

 $d_{\varOmega}(x,y):=\inf\left\{\operatorname{len}(\gamma)\ :\ \gamma:[0,1]\to\varOmega\text{ is a curve with }\gamma(0)=x,\,\gamma(1)=y\right\}$

denotes the geodesic distance in Ω .

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■目目 少な()

Domain Regularity

The key estimate in our arguments is

$$|u(x) - u(y)| \le \|\nabla u\|_{L^{\infty}} d_{\Omega}(x, y),$$

where $u: W^{1,\infty}(\Omega) \to \mathbb{R}$ and

 $d_{\Omega}(x,y) := \inf \{ \operatorname{len}(\gamma) : \gamma : [0,1] \to \Omega \text{ is a curve with } \gamma(0) = x, \gamma(1) = y \}$

denotes the geodesic distance in Ω .

Our results only hold true for "locally convex" domains Ω which satisfy

Local Convexity Condition

$$\lim_{\delta \searrow 0} \sup \left\{ \frac{d_{\Omega}(x,y)}{|x-y|} : x, y \in \Omega, |x-y| < \delta \right\} = 1.$$

Leon Bungert (JMU)

Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence result for a non-local continuum functional.

A D > <
 A P >
 A

EL OQO

Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence result for a non-local continuum functional.

Non-Local to Local Convergence [RB23]

Let Ω be locally convex. For $u \in L^{\infty}(\Omega)$ and h > 0 we define

$$\mathcal{E}_h(u) := \frac{1}{h} \operatorname{ess\,sup}_{x,y \in \Omega} \left\{ \eta_s(|x-y|) \left| u(x) - u(y) \right| \right\}.$$

For any null sequence ε_n we have that

$$\mathcal{E}_{\varepsilon_n} \xrightarrow{\Gamma} \sigma_{\eta} \mathcal{E}.$$

Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence result for a non-local continuum functional.

Non-Local to Local Convergence [RB23]

Let Ω be locally convex. For $u \in L^{\infty}(\Omega)$ and h > 0 we define

$$\mathcal{E}_h(u) := \frac{1}{h} \operatorname{ess\,sup}_{x,y \in \Omega} \left\{ \eta_s(|x-y|) \left| u(x) - u(y) \right| \right\}.$$

For any null sequence ε_n we have that

$$\mathcal{E}_{\varepsilon_n} \xrightarrow{\Gamma} \sigma_{\eta} \mathcal{E}.$$

• The limit functional is defined as

$$\mathcal{E}(u) := \operatorname{ess\,sup}_{\Omega} |\nabla u|.$$

Leon Bungert (JMU)
Non-Local Auxiliary Functional

Similar to the proof in [GS15] it is convenient to first establish a convergence result for a non-local continuum functional.

Non-Local to Local Convergence [RB23]

Let Ω be locally convex. For $u \in L^{\infty}(\Omega)$ and h > 0 we define

$$\mathcal{E}_h(u) := \frac{1}{h} \operatorname{ess\,sup}_{x,y \in \Omega} \left\{ \eta_s(|x-y|) \left| u(x) - u(y) \right| \right\}.$$

For any null sequence ε_n we have that

$$\mathcal{E}_{\varepsilon_n} \xrightarrow{\Gamma} \sigma_{\eta} \mathcal{E}.$$

• The limit functional is defined as

$$\mathcal{E}(u) := \operatorname{ess\,sup}_{\Omega} |\nabla u|.$$

• The value σ_{η} is defined as

$$\sigma_{\eta} := \operatorname{ess\,sup}_{x>0} \left\{ \eta(x) \, |x| \right\}.$$

Leon Bungert (JMU)

Convergence rates for graph-based learning

36/31

How do we establish Γ -convergence for a sequence of discrete functionals with varying domain, namely the space of functions on the graph Ω_n ?

Extension of the Discrete Functional

 $\bullet\,$ In our case we associate graph functions with piecewise constant L^∞ functions.

A B > A B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Extension of the Discrete Functional

- $\bullet\,$ In our case we associate graph functions with piecewise constant L^∞ functions.
- Consider a closest-point projection $p_n: \Omega \to \Omega_n$ such that

$$p_n(x) \in \arg\min_{y \in \Omega_n} |x - y|.$$

A D N A B N A B N

ELE SQA

Extension of the Discrete Functional

- $\bullet\,$ In our case we associate graph functions with piecewise constant L^∞ functions.
- Consider a closest-point projection $p_n: \Omega \to \Omega_n$ such that

$$p_n(x) \in \arg\min_{y \in \Omega_n} |x - y|.$$

• We extend the functional E_n onto L^{∞} by defining for $u \in L^{\infty}(\Omega)$:

$$E_n(u) = \begin{cases} \frac{1}{\varepsilon_n} \max_{x, y \in \Omega_n} \eta_{\varepsilon_n}(|x - y|) |\bar{u}(x) - \bar{u}(y)|, & \text{if } u = \bar{u} \circ p_n, \\ +\infty, & \text{else.} \end{cases}$$

Leon Bungert (JMU)

A D N A B N A B N

ELE DOG

Discrete to Continuum Convergence

We can also define the constrained functionals

$$E_{n,\mathrm{cons}}(u) = \begin{cases} E_n(u), & \text{if } u = g \text{ on } \mathcal{O}_n, \\ \infty, & \text{else}, \end{cases} \qquad \qquad \mathcal{E}_{\mathrm{cons}}(u) = \begin{cases} \mathcal{E}(u), & \text{if } u = g \text{ on } \mathcal{O}, \\ \infty, & \text{else} \end{cases}$$

and obtain

A D > <
A P >

ELE NOR

Discrete to Continuum Convergence

We can also define the constrained functionals

$$E_{n,\mathrm{cons}}(u) = \begin{cases} E_n(u), & \text{if } u = g \text{ on } \mathcal{O}_n, \\ \infty, & \text{else}, \end{cases} \qquad \qquad \mathcal{E}_{\mathrm{cons}}(u) = \begin{cases} \mathcal{E}(u), & \text{if } u = g \text{ on } \mathcal{O}, \\ \infty, & \text{else} \end{cases}$$

and obtain

Discrete to Continuum Convergence [RB23]

Let \varOmega be locally convex. For any null sequence ε_n such that

 $d_H(\Omega_n, \Omega) \ll \varepsilon_n,$ $d_H(\mathcal{O}_n, \mathcal{O}) \ll \varepsilon_n.$

we have that

$$E_{n, \text{cons}} \xrightarrow{\Gamma} \sigma_{\eta} \mathcal{E}_{\text{cons}}.$$

Leon Bungert (JMU)

ELE SQC

Discrete to Continuum Convergence

We can also define the constrained functionals

$$E_{n,\mathrm{cons}}(u) = \begin{cases} E_n(u), & \text{if } u = g \text{ on } \mathcal{O}_n, \\ \infty, & \text{else}, \end{cases} \qquad \qquad \mathcal{E}_{\mathrm{cons}}(u) = \begin{cases} \mathcal{E}(u), & \text{if } u = g \text{ on } \mathcal{O}, \\ \infty, & \text{else} \end{cases}$$

and obtain

Discrete to Continuum Convergence [RB23]

Let \varOmega be locally convex. For any null sequence ε_n such that

 $d_H(\Omega_n, \Omega) \ll \varepsilon_n,$ $d_H(\mathcal{O}_n, \mathcal{O}) \ll \varepsilon_n.$

we have that

$$E_{n, \operatorname{cons}} \xrightarrow{\Gamma} \sigma_{\eta} \mathcal{E}_{\operatorname{cons}}.$$

Convergence of minimizers?

Leon Bungert (JMU)

Convergence rates for graph-based learning

ELE NOR

Compactness

A sequence of functionals $F_n:X\to\mathbb{R}$ is called compact if for any sequence $(x_n)_{n\in\mathbb{N}}$ the property

 $\sup_{n\in\mathbb{N}}F_n(x_n)<\infty$

implies that $(x_n)_{n \in \mathbb{N}}$ is relatively compact.

74 M

A D N A B N A B N

ELE OQO

Compactness

A sequence of functionals $F_n: X \to \mathbb{R}$ is called compact if for any sequence $(x_n)_{n \in \mathbb{N}}$ the property

> $\sup F_n(x_n) < \infty$ $n \in \mathbb{N}$

implies that $(x_n)_{n \in \mathbb{N}}$ is relatively compact.

Compactness Result [RB23]

Let ε_n be a null sequence such that

 $d_H(\Omega_n, \Omega) \ll \varepsilon_n,$ $d_H(\mathcal{O}_n, \mathcal{O}) \ll \varepsilon_n.$

then $E_{n,cons}$ is a compact sequence of functionals. Therefore, every sequence of minimizers for $E_{n,cons}$ has a cluster point which is a minimizer of \mathcal{E}_{cons} .