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Deterministic Euler equations 2/13

� flow of an inviscid fluid

� system of PDEs derived from the basic physical principles

� conservation of mass + conservation of linear momentum

@tu+div (u
u)+rp = f
div u = 0
u(0) = u0

x2T3; t2 (0; T )

� velocity u: [0; T ]�T3!R3, pressure p: [0; T ]�T3!R

� source term of external force f : [0; T ]�T3!R3

Existence? Uniqueness?

� strong solutions exist only locally in time and are unique

� weak solutions can be constructed by convex integration, exist globally in time, non-unique

� weak�strong uniqueness principle



Construction of solutions by compactness 3/13

� consider a vanishing viscosity approximation (through a Navier�Stokes system)

@tu
�+div (u� 
u�)+rp� = ��u�

div u� = 0
u�(0) = u0

x2T3; t2 (0; T )

� assume u� is smooth � test the equation by u�

h@tu� ; ui+ hdiv (u�
u�); u�i+ hrp� ; u�i= � h�u� ; u�i

) 1
2
@tku�kLx2

2 + �kru�kLx2
2 6 0

� Leray solutions to NSE exist globally in time and satisfy the energy inequality

� uniform bounds in L1(0; T ;Lx
2), resp. Cweak(0; T ;Lx

2)

� compactness (up to a subsequence) in L1(0; T ;Lx
2) with weak-star topology

� u� 
u� bounded in L1(0; T ;Lx
1) converges weak-star in L1(0; T ;M+(T3;Rsym

3�3))

� the limit is a dissipative solution to Euler



Some convex integration results 4/13

De Lellis�Szekelyhidi Jr. '10 There exists a bounded and compactly supported divergence-
free vector field u0 giving raise to infinitely many weak solutions satisfying the energy inequality.

Daneri�Szekelyhidi Jr. '17 The set of initial data giving raise to infinitely many weak solu-
tions satisfying the energy inequality and having Hölder regularity 1/5¡ " is dense in Lx

2.

Buckmaster�De Lellis�Szekelyhidi Jr.�Vicol '18 For every � < 1/3 and a given smooth
energy profile e: [0; T ]! (0;1) there exists a weak solution satisfying

e(t)=

Z
T3

jv(t; x)j2dx

and having Hölder regularity �. (Onsager's conjecture)

Daneri�Runa�Szekelyhidi Jr. '20 For every � < 1/3, non-uniqueness holds for a dense set
of initial data and weak solutions satisfying the energy inequality and having Hölder regularity �.

� weak-solutions with energy inequality satisfy the weak-strong uniqueness principle
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Stochastic perturbations



Stochastic setting 6/13

du+ [div (u
u)+rp]dt = G(u)dW
div u = 0

x2T3; t2 (0; T )

� a Brownian motion W , suitable coefficient G

� hope in the SPDE community that a noise can help with the well-posedness issue

Regularization by noise:

� damping � no explosion with large probability (Glatt-Holtz�Vicol '14)

G(u)=�u

� but this system can be transformed to a deterministic setting by simple transformation

� negative results from previous slide apply



Our goal 7/13

� a unified solution theory to study well-posedness from various perspectives

Dissipative martingale solutions

1. Global existence - relies on a compactness argument and Skorokhod representation

2. Weak�Strong uniqueness - analytically strong solution coincides with all dissipative mar-
tingale starting from the same initial condition

3. Non-uniqueness in law - based on convex integration and general probabilistic extension
of solutions from [HZZ19]

4. Existence of a strong Markov solution - relies on the Markov selection procedure by Krylov

5. Non-uniqueness of strong Markov solutions - combination of 3. and 4.



Dissipative martingale solutions 8/13

� more information than just velocity and pressure needed

� rewrite the Euler system as

du+divR dt+rpdt=GdW ; div u=0; u(0)=u0

� a new matrix-valued variable R - part of the solution with compatibility condition

N :=R¡u
u> 0

� towards energy inequality: introduce a new variable z

dz=2hu;GdW i+ kGkL2(U;L2)
2 dt; z(0)= z0

� for regular weak solutions z(t)= ku(t)kLx2
2

� postulate compatibility conditionZ
T3

dtrR(t)= ku(t)kLx2
2 +

Z
T3

dtrN(t)6 z(t)



Dissipative martingale solutions 9/13

Dissipative martingale solution

� is a probability law of �
u; y(�) := y0+

Z
0

�
R(s)ds; z

�

satisfying the above conditions

� for weak�strong uniqueness: z(0)= ku(0)kL22 needed (no initial energy sink)

� for Markov selection: the general case of z(0)= z0> ku(0)kL22 needed

� convex integration: infinitely many probabilistically strong and analytically weak solutions
up to a stopping time with energy inequality

� probabilistic construction: extension to [0;1) as dissipative martingale solutions



Convex integration 10/13

du+ [div (u
u)+rp]dt=GdW ; div u=0

� consider a stopping time � to control certain norms of the noise GW

� let W�(�)=W (� ^ �) and v=u¡GW� then

@tv+div ((v+GW�)
 (v+GW�))+rp=0; div v=0

� solved on [0; T ], coincides with the original equation on [0; � ]

� the desired energy equality

1
2
k(v+GW�)(t)kLx2

2 =
1
2
ku0kLx2

2 +

Z
0

t

hv+GW� ; GdW� i+
�
1
2
¡ 1
`

�
(t^ �)kGkL2(U;L2)

2

H., Zhu, Zhu '20 There exists u0 2 Ldiv
2 giving raise to infinitely many probabilistically

strong and analytically weak solutions v= v` satisfying the above energy equality a.s. for a.e.
t2 (0; T ), for t=0 and for any given strictly positive stopping time �.



Probabilistic extension of solutions to [0;1) 11/13

Convex integration solutions:

� exist on a given probability space

� existence up to a stopping time � not very satisfactory

� how to extend these solutions to [0;1)?

� convex integration does not solve the Cauchy problem! � cannot connect them

Dissipative martingale solutions obtained by compactness:

� exist for every given u02Ldiv
2 but not on a given probability space

Idea:

� work on the level of induced probability laws P =Law[u; y; z]

� transfer the convex integration solutions to the canonical path space (difficulty for � )

� measurable selection from all the dissipative martingale solutions
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H., Zhu, Zhu '20 Let T > 0 be given. Dissipative martingale solutions are not unique, i.e.
non-uniqueness in law holds on [0; T ].

Ideas:

� for every `2 [2;1] there is a dissipative martingale solution P` on [0;1) such that P`-a.s.

1
2
ku(t)kLx2

2 =
1
2
ku0kLx2

2 +

Z
0

t

hu;GdW� i+
�
1
2
¡ 1
`

�
(t^ �)kGkL2(U;L2)

2

� hence they are different!
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Thanks for your attention!


