On ill- and well-posedness of dissipative martingale solutions to stochastic 3D Euler equations

Martina Hofmanova

Bielefeld University

based on a joint work with R. Zhu and X. Zhu

- flow of an inviscid fluid
- system of PDEs derived from the basic physical principles
 - $\circ~$ conservation of mass + conservation of linear momentum

$$\partial_t u + \operatorname{div} (u \otimes u) + \nabla p = f$$

$$\operatorname{div} u = 0 \qquad x \in \mathbb{T}^3, t \in (0, T)$$

$$u(0) = u_0$$

- velocity $u: [0,T] \times \mathbb{T}^3 \to \mathbb{R}^3$, pressure $p: [0,T] \times \mathbb{T}^3 \to \mathbb{R}$
- source term of external force $f: [0,T] \times \mathbb{T}^3 \to \mathbb{R}^3$

Existence? Uniqueness?

- strong solutions exist only locally in time and are unique
- weak solutions can be constructed by convex integration, exist globally in time, non-unique
- weak-strong uniqueness principle

• consider a vanishing viscosity approximation (through a Navier–Stokes system)

$$\partial_t u^{\nu} + \operatorname{div} \left(u^{\nu} \otimes u^{\nu} \right) + \nabla p^{\nu} = \nu \Delta u^{\nu}$$

$$\operatorname{div} u^{\nu} = 0 \qquad x \in \mathbb{T}^3, t \in (0, T)$$

$$u^{\nu}(0) = u_0$$

- assume u^{ν} is smooth – test the equation by u^{ν}

$$\begin{aligned} \langle \partial_t u^{\nu}, u \rangle + \langle \operatorname{div} \left(u^{\nu} \otimes u^{\nu} \right), u^{\nu} \rangle + \langle \nabla p^{\nu}, u^{\nu} \rangle &= \nu \left\langle \Delta u^{\nu}, u^{\nu} \right\rangle \\ \Rightarrow \qquad \frac{1}{2} \partial_t \| u^{\nu} \|_{L^2_x}^2 + \nu \| \nabla u^{\nu} \|_{L^2_x}^2 \leqslant 0 \end{aligned}$$

- Leray solutions to NSE exist globally in time and satisfy the energy inequality
- uniform bounds in $L^{\infty}(0,T;L^2_x)$, resp. $C_{\text{weak}}(0,T;L^2_x)$
- compactness (up to a subsequence) in $L^{\infty}(0,T;L^2_x)$ with weak-star topology
- $u^{\nu} \otimes u^{\nu}$ bounded in $L^{\infty}(0,T;L^{1}_{x})$ converges weak-star in $L^{\infty}(0,T;\mathcal{M}^{+}(\mathbb{T}^{3};\mathbb{R}^{3\times3}_{svm}))$
- the limit is a **dissipative solution** to Euler

De Lellis–Szekelyhidi Jr. '10 There exists a bounded and compactly supported divergencefree vector field u_0 giving raise to infinitely many weak solutions satisfying the energy inequality.

Daneri–Szekelyhidi Jr. '17 The set of initial data giving raise to infinitely many weak solutions satisfying the energy inequality and having Hölder regularity $1/5 - \varepsilon$ is dense in L_x^2 .

Buckmaster–De Lellis–Szekelyhidi Jr.–Vicol '18 For every $\beta < 1/3$ and a given smooth energy profile $e: [0,T] \rightarrow (0,\infty)$ there exists a weak solution satisfying

$$e(t) = \int_{\mathbb{T}^3} |v(t,x)|^2 dx$$

and having Hölder regularity β . (Onsager's conjecture)

Daneri–Runa–Szekelyhidi Jr. '20 For every $\beta < 1/3$, non-uniqueness holds for a dense set of initial data and weak solutions satisfying the energy inequality and having Hölder regularity β .

• weak-solutions with energy inequality satisfy the weak-strong uniqueness principle

Stochastic perturbations

$$du + [\operatorname{div} (u \otimes u) + \nabla p] dt = G(u) dW$$

$$div u = 0$$

$$x \in \mathbb{T}^3, t \in (0, T)$$

- a Brownian motion W, suitable coefficient G
- hope in the SPDE community that a noise can help with the well-posedness issue

Regularization by noise:

• damping – no explosion with large probability (Glatt-Holtz–Vicol '14)

$$G(u) = \alpha u$$

- but this system can be transformed to a deterministic setting by simple transformation
 - negative results from previous slide apply

• a unified solution theory to study well-posedness from various perspectives

Dissipative martingale solutions

- 1. Global existence relies on a compactness argument and Skorokhod representation
- 2. Weak-Strong uniqueness analytically strong solution coincides with all dissipative martingale starting from the same initial condition
- 3. Non-uniqueness in law based on convex integration and general probabilistic extension of solutions from [HZZ19]
- 4. Existence of a strong Markov solution relies on the Markov selection procedure by Krylov
- 5. Non-uniqueness of strong Markov solutions combination of 3. and 4.

- more information than just velocity and pressure needed
- rewrite the Euler system as

 $du + \operatorname{div} \mathfrak{R} dt + \nabla p dt = G dW, \qquad \operatorname{div} u = 0, \qquad u(0) = u_0$

• a new matrix-valued variable \mathfrak{R} - part of the solution with compatibility condition

 $\mathfrak{N} := \mathfrak{R} - u \otimes u \ge 0$

towards energy inequality: introduce a new variable z

$$dz = 2\langle u, G dW \rangle + ||G||^2_{L_2(U,L^2)} dt, \qquad z(0) = z_0$$

- for regular weak solutions $z(t) = ||u(t)||_{L^2_x}^2$
- postulate compatibility condition

$$\int_{\mathbb{T}^3} \mathrm{d} \operatorname{tr} \mathfrak{R}(t) = \| u(t) \|_{L^2_x}^2 + \int_{\mathbb{T}^3} \mathrm{d} \operatorname{tr} \mathfrak{N}(t) \leqslant z(t)$$

Dissipative martingale solution

• is a probability law of

$$\left(u, y(\cdot) := y_0 + \int_0^{\cdot} \Re(s) \mathrm{d}s, z\right)$$

satisfying the above conditions

- for weak-strong uniqueness: $z(0) = ||u(0)||_{L^2}^2$ needed (no initial energy sink)
- for Markov selection: the general case of $z(0) = z_0 \ge ||u(0)||_{L^2}^2$ needed
- **convex integration**: infinitely many probabilistically strong and analytically weak solutions up to a stopping time with energy inequality
- probabilistic construction: extension to $[0,\infty)$ as dissipative martingale solutions

$$du + [\operatorname{div}(u \otimes u) + \nabla p] dt = G dW, \qquad \operatorname{div} u = 0$$

- consider a stopping time au to control certain norms of the noise GW
- let $W_{\tau}(\cdot) = W(\cdot \wedge \tau)$ and $v = u GW_{\tau}$ then

$$\partial_t v + \operatorname{div} \left(\left(v + G W_\tau \right) \otimes \left(v + G W_\tau \right) \right) + \nabla p = 0, \quad \operatorname{div} v = 0$$

- solved on [0,T], coincides with the original equation on $[0,\tau]$
- the desired energy equality

$$\frac{1}{2} \| (v + GW_{\tau})(t) \|_{L_x^2}^2 = \frac{1}{2} \| u_0 \|_{L_x^2}^2 + \int_0^t \langle v + GW_{\tau}, G dW_{\tau} \rangle + \left(\frac{1}{2} - \frac{1}{\ell} \right) (t \wedge \tau) \| G \|_{L_2(U, L^2)}^2$$

H., Zhu, Zhu '20 There exists $u_0 \in L^2_{div}$ giving raise to infinitely many probabilistically strong and analytically weak solutions $v = v_\ell$ satisfying the above energy equality a.s. for a.e. $t \in (0,T)$, for t = 0 and for any given strictly positive stopping time σ .

Convex integration solutions:

- exist on a given probability space
- existence up to a stopping time τ not very satisfactory
- how to extend these solutions to $[0,\infty)$?
- convex integration does not solve the Cauchy problem! cannot connect them

Dissipative martingale solutions obtained by compactness:

• exist for every given $u_0 \in L^2_{div}$ but not on a given probability space

Idea:

- work on the level of induced probability laws P = Law[u, y, z]
- transfer the convex integration solutions to the canonical path space (difficulty for τ)
- measurable selection from all the dissipative martingale solutions

H., Zhu, Zhu '20 Let T > 0 be given. Dissipative martingale solutions are not unique, i.e. non-uniqueness in law holds on [0, T].

Ideas:

• for every $\ell \in [2,\infty]$ there is a dissipative martingale solution P_{ℓ} on $[0,\infty)$ such that P_{ℓ} -a.s.

$$\frac{1}{2} \|u(t)\|_{L_x^2}^2 = \frac{1}{2} \|u_0\|_{L_x^2}^2 + \int_0^t \langle u, G \, \mathrm{d}W_\tau \rangle + \left(\frac{1}{2} - \frac{1}{\ell}\right) (t \wedge \tau) \|G\|_{L_2(U, L^2)}^2$$

hence they are different!

Thanks for your attention!