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A general framework

Stress Driven Rearrangement Instabilities (SDRI): morphological instabilities of
interfaces between elastic phases generated by the competition between elastic and
(hyper)surface energies of perimeter type

Examples:
o epitaxially strained crystalline thin films;
e material voids inside elastically stressed solids;
e capillary droplets;
o Griffith and failure models.

Terminology by Grinfeld ’93; in physical literature at least from Asaro-Tiller '72.
A unified model proposed in Kholmatov-Piovano ’19.

Here: minimization and approximation for static energies in any space dimension,
in the context of linearized elasticity. Available results either in 2d for 1d
’discontinuity curves’ with a bounded number of connected components

or in simplified settings for elastic energy.
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Epitaxially strained crystalline films
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Etero-epitaxy: different lattice parameters between substrate and film crystals
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Bonnetier-Chambolle ’02:
G(u,h,):/+((le(u):e(u)da:+/ S [Vh(z, 22)]? d(zy, 23) -
Qh w

where e(u) = 1 (Vu + (Vu)T) and

1
2
h € CHw;[0,M]), [hll1 =m, w CR? Qf :=={z € wxR:0< a3 < h(z1,22)},

U+ € H' (), u=01in (wx(0, M + 1))\ Q}f, u=up in wx(0,1)
h
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Equilibrium configurations for epitaxially stained crystalline films in 2D

29,
W\ e

In 2D (so z; instead of (z1,z2) in G): for @ = wx(—1, M + 1)
Q\thiﬂ\ﬂh for some h: w — Rt Isc

O, 5 K D 00, = a5, U (09, \ 89,)

Gotab Theorem (since 92, connected in 1d): H!(K) < liminf,, H'(9%y,,,)
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Equilibrium configurations for epitaxially stained crystalline films in 2D

29,
W\ e

In 2D (so z; instead of (z1,z2) in G): for @ = wx(—1, M + 1)
Q\thiﬂ\ﬂh for some h: w — Rt Isc

0, 25 K D 09, = 09, U (09, \ 89),)

Gotab Theorem (since 92, connected in 1d): H!(K) < liminf,, H'(9%y,,,)
Geometric argument to say ’Hl(aﬁh) + 2K (0, \Bﬁh) < liminf,, ’Hl(ﬁﬂhn)

e(un) — & in L? (up to a subsequence) -+

Korn Inequality in any A C €, Lipschitz = u,, — u in Hﬁac(Qh; R?) and
e(u) = &€ (in particular u is independent of further subsequences)
Therefore COMPACTNESS for (un, hn) with G(un,hn) < M and

Glu, h) = /Q+ Ce(u) : e(u)de +H"(%0,) + 2K (9 \ 90,) < lim inf Gun, h)
h
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Material voids in linearly elastic materials

2

Braides-Chambolle-Solci ’07:
F(u,E) = / Ce(u) : e(u)dx + / o(vp)dHI L.
Q\E QNOE

where ¢ is a norm and represents a possibly anisotropic density.
Minimization under Dirichlet b.c. on 9pQ C 92 and a volume constraint on E.
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Equilibrium configurations for material voids

In 2D: assuming an equibounded number of connected components for voids, one
may still use Gotab Theorem to say

F(u,E) := / Ce(u) : e(u) dz+ /(p(uE)dH1+/ 20(vy )dH! < liminf F(uyp, Ep)
oE QNOE JuNO\E
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Equilibrium configurations for material voids

In 2D: assuming an equibounded number of connected components for voids, one
may still use Gotab Theorem to say

F(u,E) := / Ce(u) : e(u) dz+ /(p(VE)dH1+/ 20(vy )dH! < liminf F(uyp, Ep)
oE QNOE JuNO\E

Without this restriction, one could even have OF, i> Q!

The situation may be reproduced for connected surfaces (like graphs) in 3D

ned films
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approximation (from next slide)
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Relaxation of functionals F' and G

We look for the biggest lower semicontinuous functionals F and G with F < F
and G < G, wrt convergence in measure for u and in L! for g or h.
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We look for the biggest lower semicontinuous functionals F and G with F < F
and G < G, wrt convergence in measure for u and in L! for g or h.
To prove that

o ifu, = uae inQ, xg, — xg in L1(Q) then

F(u, E) <liminf F(un, Ep);
n—oo
o for all (u, E) with F(u, E) < +oc0, there are (un, En) — (u, E) with

F(u, E) > limsup F(un, Er) .

n—r00

and that
o if uy — u a.e. in Q, hy, — hin L1(Q) then

G(u,h) < lirginf G(un,hn);

o for all (u, h) with G(u,h) < +oo, there are (un,hyn) — (u, h) with

G(u, h) > limsup G(un, hn) .

n—00

Bon-Cha ’02: d = 2 for G; Cha-Sol ’07: any d but Vu in place of e(u) for G;
Bra-Cha-Sol ’07: any d but Vu in place of e(u) for F.
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Form of F' and minimization

Theorem (C.-Friedrich)

Fpir(u, E) = / Ce(u) : e(u)dz + p(vE) dna-t
Q\E (QUAL)NIE

if E Lipschitz, |E| =m € (0, |Q]), U|Q\E € HY(Q\ E;RY), u|g =0, u|§\9 =uo
relaxes into
Fpic(u, E) = / Ce(u) : e(u)dz + / o(vp)dH + / 20 (v )dHI !
o\E (QUApQ)NO* E J,,N(QUAH )\ B

if |E| =m, HI"Y(0*E) < +00, u = uxp,, for w' = ug on Q\ Q.
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Form of F' and minimization

Theorem (C.-Friedrich)

Fpir(u, E) = / Ce(u) : e(u)dz + p(vE) dna-t
Q\E (QUAL)NIE

if £ Lipschitz, |E| = m € (0,|Q]), ulg\z € H'(Q\ E;RY), u|p =0, ulg\o = Uo
relaxes into
Fpi(u, E) = / Ce(u) : e(u)dz + / o(vg)dH* + / 2p(vy)dHE!
Q\E (QUALQ)NS* E T, N(QUApQ)\EL

if |E| =m, HI"Y(0*E) < +00, u = uxp,, for w' = ug on Q\ Q.

Moreover, F'p;; admits minimizers
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Form of G and compactness
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Theorem (C.-Friedrich)

G(u, h) = / Ce(u) : e(u) dx-‘r/ \/1+|Vh(z')|? dz’
i w
heC}k (w; [0, M), u|Q}4L_ GHl(Q;;), u=0 in (wXR"")\QZ, u=ug in wx(0,1)
relaxes into
G(u,h) = /m Ce(u) : e(u)dz + HI™H(*Q, N Q) + 2H (I, NQ})
h

if w=uxq,, w=mup in wx(—1,0), h € BV (w;[0,M]), J}, := Ju + RTeq,

strained films



Form of G and compactness
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Theorem (C.-Friedrich)

G(u, h) = / Ce(u) : e(u) dx-‘r/ \/1+|Vh(z')|? dz’
i w
heC}k (w; [0, M), u|Q}4L_ GHl(Q;;), u=0 in (wXR"")\QZ, u=ug in wx(0,1)
relaxes into
G(u,h) = /m Ce(u) : e(u)dz + HI™H(*Q, N Q) + 2H (I, NQ})
h

if w=uxq,, w=mup in wx(—1,0), h € BV (w;[0,M]), J}, := Ju + RTeq,

Moreover, any (un, hn) with a(un, hn) < M has a converging subsequence
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The functional framework

E set of finite perimeter (xg € BV (2))

— d. |[ENBy(z)| _
E* ={z € R*: hmgﬁo%ﬁ—s}

8*E = R%\ (E° U E') essential boundary

ned films



The functional framework

F(u, E), G(u,h) ~ /(Ce(u): e(u)dx + HEL(Jy) =: Gr(u)
Q

(recall u = ux g, or u = uxq,)
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e|<1Q

w € BD(Q) = Eu = e(u) L4+ (ut —u™) @ vy HE [Ty + ECu
SBD?(Q) := {u € BD(Q): E¢u =0, e(u) € L?, H¥1(J,) < o}
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The functional framework

F(u, E), G(u,h) ~ /(Ce(u): e(u)dx + HEL(Jy) =: Gr(u)
Q

(recall u = uxp, or u=uxq,)

e Control of e(u) ~»

BD(Q) :={u€ L' (RY): Eu € Mb(Q;MQ‘ﬁ)} = {u: ISTE Ju-Ep < o}
e|<1Q

w € BD(Q) = Eu = e(u) L4+ (ut —u™) @ vy HE [Ty + ECu
SBD?(Q) := {u € BD(Q): E¢u =0, e(u) € L?, H¥1(J,) < o}

e But no L! control of u ~ GSBD() Dal Maso '12
(uw € GSBYV if truncations in SBV, now they destroy control on Eu)

Ju still (d—1)-countably rectifiable and for L%a.e. x, e(u)(x) s.t.

ap i (1) = 2@ — @)y =) -y~ w)
y—z ly —x|2

0,

strained films



Relaxation for F'

Theorem (C.-Friedrich)

Fpir(u, B) = / Ce(u) : e(u) dx +/ o(vgp)dHIL .
Q\E (QUOPQ)NIE

if £ Lipschitz, |E| =m € (0,|Q), ulg\z € H'(Q2\ E;R?), u|g =0, ulgrq = o
relaxes into

Fpir(u, E) = / Ce(u) : e(u)dx + / o(vp)dH! + / 2p(1 ) dH I
Q\E (QUApQ)No*EL J 1 N(QUOPp )\ E

if |E| =m, HI"Y(0*E) < +00, u = uxp,, for v’ :=ug on Q\Q

strained films



Relaxation for F'

Theorem (C.-Friedrich)

Fpir(u, E) = / Ce(u) : e(u)dz + o(vp)dHit.
OB (QUAPQ)NIE

if E Lipschitz, |E| =m € (0,]Q)), ulg\ € H (2 \ E;R?), ulp =0, ulg, o = uo
relaxes into

Fpic(u, B) = / Ce(u) : e(u)dz + / o(vp)dHI + / 2p(v)dHE!
Q\E (QUAP)NO*E J,/N(QUap )\ EL

if |E| =m, HI"Y(0*E) < +00, u = uxp,, for u' = ug on Q\Q
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Relaxation for F'

Theorem (C.-Friedrich)

Fpir(u, E) = / Ce(u) : e(u)dz + o(vp)dHit.
OB (QUAPQ)NIE

if £ Lipschitz, |E| =m € (0,|Q), ulg 7 € HY(Q\ E;RY), u|lp =0, u|§\ﬂ =g
relaxes into
T (u, E) = / Ce(u) : e(u)do + / o(vp) dHA + / 2 (1 )dHA !
o\E (QUALQ)NO* E T, N(QUAp )\ EL
if |E| =m, HI"Y(0*E) < +00, u = uxp,, for u' = ug on Q\Q

Proven similarly to Ambrosio-Tortorelli approximation for Griffith with Dirichlet
b.c. in Chambolle-C. ’19

e liminf by slicing argument (separately for bulk and surface part)

e limsup by an adaptation of density of Chambolle-C. '19 + BraChaSol’07

Density in GSBD (Chambolle-C. ’19)

Vu t.q. Grpir(u) < oo Juy t.q. Jy, of class Cl, up € C®(Q \ Juy ), and

Up — U a.€., GrDir(uk) — GrDir(u)

Vito Crismale Epitaxially strained films



Compactness for F'

Compactness (Chambolle-C.)

Let u, € GSBD?(Q) with
/ le(un)2 do + HE " (Ju,) < M.
Q

Then, up to a subsequence, for A := {z: |u,(x)| — oo}, there is u € GSBD?(Q),
w=01in A s.t.

Up — U a.e. in Q\ A,
e(un) — e(u) in L2(Q\ A4; ngxyg) ,
HITH(Ju U 0" A) < liminf HITH (u,,).-

strained films



Relaxation for G

Much more difficult both in lim inf and in lim sup, due to constraints on the jump
set
To prove the verticality we use a variant of the

2 ; P~ o o.a o5 T
o?-convergence (Dal Maso-Francfort-Toader '05, Giacomini-Ponsiglione ’06)

2
I'n CU, sup, Hd’I(Fn) < 0o. Then I'y, 25 T iff
() ((un)n C SBV2(U), Ju, C T, vn — v) = J,CT
(i) Jv, (vn)n C SBV2(U) with v, — v, Ju,, CTp, Jy =T
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Relaxation for G

Much more difficult both in lim inf and in lim sup, due to constraints on the jump
set
To prove the verticality we use a variant of the

o?-convergence (Dal Maso-Francfort-Toader 05, Giacomini-Ponsiglione *06)

2
I'n CU, sup, Hd’I(Fn) < 0o. Then I'y, 25 T iff
() ((un)n C SBV2(U), Ju, C T, vn — v) = J,CT
(ii) v, (vn)n C SBV2(U) with vy, — v, Jy, C Ty, J, =T
We introduce an analogous notion of sets convergence for the “Griffith energy
space” GSBD? in place of SBV?2, that we call aszym-convergence.

New technical point: consider also a limit set G with finite perimeter and
0*G s C T, inside which we do not control anything

ned films



Relaxation for G

Much more difficult both in lim inf and in lim sup, due to constraints on the jump

set
To prove the verticality we use a variant of the

o?-convergence (Dal Maso-Francfort-Toader 05, Giacomini-Ponsiglione *06)

2
I'n CU, sup, Hd’I(Fn) < 0o. Then I'y, 25 T iff
() ((un)n C SBV2(U), Ju, C T, vn — v) = J,CT
(i) Jv, (vn)n C SBV2(U) with v, — v, Ju,, CTp, Jy =T

05 m-convergence (C.-Friedrich)

2
sym

2
T C U, sup, H1(Tn) < 00, U C U’, [U'\U| > 0. Then T, % (T, Goo) with
*CooNU' CT, TN(Goo)! =0 iff

@) (('un)n C GSBD2(U"), Ju, CTnyvn =0in U\ U, vn — v)

= (Ju\T) C (Goo)!
(i) Jv, (vn)n C GSBD2(U') with vy, = v, Jy,, C T'pn, vy = 0in U’ \ U, and
Jy =T, {v=00} C G

strained films




Compactness for g, -convergence

-convergence (C.-Friedrich)

2
Osym
2

T C U, sup,, H41(T'n) < 00, U C U, [U/\ U| > 0. Then T'y =5 (T, Goo) with
*CooNU' CT, TN(Guo) =0 iff
() ((wn)n C GSBD2(U"), Ju, C T, v =0in U’ \ U, vy — v)

= (Ju\TI) C (G)!
(ii) v, (vn)n C GSBD2(U’) with v, — v, Jy,, C Tn, vn =0 in U’ \ U, and

Jy =T, {v =00} C Geo

Compactness (C.-Friedrich)

Every (I'n)n with sup,, HE=1(I'y) < oo, ngm converges, up to a subsequence, to

(T, Goo) with
HHT) < liminf HE (T .
n— oo

strained films




Lower limit and compactne

24 £

a9, a7y, Az

w Wy wa, '

2
UQ m
1st step: 9p,, — (I',0)

ned films



Lower limit and compactness for G

@4 @4
M M
a9, a7y, Az
Go
T
e * w wy WA, a

2
1st step: O, Ty (T, 0)
2
U= wx(—1, M +1), U = wx (=1, M), Ty := 0*Q, n U’ 281, U < < U’

1 Area Formula: [ #(Ay?)dHY1(y) = [, [va - eq| dHI™ =Ty (A)

ned films



Lower limit and compactness for G

o9, 27y, Aa

w wy wa, @’

ol
1st step: 0Qp,,, — =5 (T, 0)

Tsym

U :=wx(=1,M +1),U ::wx(—%,M), Ly =0, NU =3 T,U <y <U’

1 Area Formula: [ #(Ay?)dHY1(y) = [, [va - eq| dHI™ =Ty (A)
2 Iy (T) = Iy (Jy) < lim lnfn IV(JUH) liminf,, Iy (T'n) = H 1 (w)
for (vn)n, v as in (ii) o, Sym

3 vp = ¢xghn —1bxa, in (i) agym:> T'D(0*Goo NUHU (0", NTU' N (Goo)?)
4 Ty (D) > 2H4 Y wy) + H M (w)—HI N wa,) > HIHw) + HI (wy)

strained films



2nd step: X :=1'N Q}L is vertical in Q}Z, ie. (X +4teg) N Q}L cX

ined film:



2nd step: X :=1'N Q}L is vertical in Q}Z, ie. (X +4teg) N Q}L cX

For (vn)n, v as in (i) 02, also

v (z) = vn (2, 2q — txay,, (@) — V(@) == v(@’, za — t)xa, (@)

ained films



2nd step: X :=1'N Q}L is vertical in Q}Z, ie. (X +4teg) N Q}L cX
For (vn)n, v as in (i) 02, also

v (z) = vn (2, 2q — t)xe,, () — V(@) == v(@’, za — t)xa, (@)
((Q) in Us2ym) + (Jyr, CTn) = Jyy C T, s0

(S+teq)NQL = (C+teg) NQf = (Jo+teg) NQL =J,NQL CTNQL =2

ained films



2nd step: X :=1'N Q}E is vertical in Q;Z, ie. (X +4teg) N Q}L cX

For (vp)n, v as in (ii) 02,,,, also

sym?
v (z) = vn (2, 2q — t)xe,, () — V(@) == v(@’, za — t)xa, (@)

((Q) in agym) + (Jyr, CTn) = Jyy C T, s0
(S+teq)NQL = (C+teg) NQf = (Jo+teg) NQL =J,NQL CTNQL =2
3rd step: For (vn)n, v as in (i) 62,,,, we apply Isc for voids (surface part) to

En =Q\Qp,,, E=Q\Q, vnXa\E,, VXo\g- Then

HELH*Q, N Q) + 21 (D) < 1%@;'7{"1*1(69%)

lly strained films



2nd step: X :=1'N Q}E is vertical in Q;Z, ie. (X +4teg) N Q}L cX

For (vn)n, v as in (i) 02, also
v (z) = vn (2, 2q — txay,, (@) — V(@) == v(@’, za — t)xa, (@)
((Q) in agym) + (Jyr, CTn) = Jyy C T, s0

(S+teq)NQL = (C+teg) NQf = (Jo+teg) NQL =J,NQL CTNQL =2
3rd step: For (vn)n, v as in (i) 62,,,, we apply Isc for voids (surface part) to

En =Q\Qp,,, E=Q\Q, vnXa\E,, VXo\g- Then

HEL(9* Q) N Q) + 21 H(D) < liminf HI~H(Qy,,)
n— oo

Final step: Lsc for volume part from that for voids +

(i) in 62, for upn, u = J, NQ} := (Ju +Reg) NQ} C T

lly strained films



Upper limit for G

Theorem (C.-Friedrich)

G(u,h) = /Q+ Ce(u) : e(u)dz +/ \/1+ |Vh(z)|2dz’
3 w
heC}k (w; [0, M), u|Q: EHl(Q;{), u=0 in (wa*)\QJ’, u=wup in wx(0,1)
relaxes into
G(u,h) = /Q+ Ce(u) : e(u)dz + HI™H(*Q, N Q) + 21T, NQ})
h

if u=1uxq,, v =uo in wx(—1,0), h € BVp(w; [0, M]), J/, := Ju + Rt eq,

lly strained films



Step 1: smooth function g approximating h (in L!-norm) —> possible set with
small diffuse measure in Qg

For Step 2 clean up the jump set 'remaining below’: careful use of ’quantitative’
Poincaré-Korn inequality

lo,  lu—arPdz < Cr [, le(w)] da,




limit for G

Step 1: smooth function g approximating h (in L!-norm) —> possible set with
small diffuse measure in Qg

For Step 2 clean up the jump set 'remaining below’: careful use of ’quantitative’
Poincaré-Korn inequality

er\wr lu —ar|?2dz < Cr la. le(u)[?dz,  |wr| < CrHY Y (TN Q)




limit for G

Step 1: smooth function g approximating h (in L!-norm) —> possible set with
small diffuse measure in Qg

For Step 2 clean up the jump set 'remaining below’: careful use of ’quantitative’
Poincaré-Korn inequality

er\wr lu —ar|?2dz < Cr la. le(u)[?dz,  |wr| < CrHY Y (TN Q)

2 HE L (Ju)\? 2
[ et +oxe) s o) = et gl ds < e (F ) [ et as,




limit for G

Step 1: smooth function g approximating h (in L!-norm) —> possible set with
small diffuse measure in Qg

For Step 2 clean up the jump set 'remaining below’: careful use of ’quantitative’
Poincaré-Korn inequality

er\wr lu —ar|?2dz < Cr la. le(u)[?dz,  |wr| < CrHY Y (TN Q)

2 HE L (Ju)\? 2
[ et +oxe) s o) = et gl ds < e (F ) [ et as,

Put 0 in cubes with ’large’ jump set and with ’small’ jump set and ’small’ |Q,11|
for verticality




Remarks and other applications

Generalized compactness (Chambolle-C.’20 Preprint)
Let u, € GSBD?(Q) with [q, |e(u,)|? dz + H4"(Ju, ) < M. Then there are
P = (Pj); a Caccioppoli partition, (an)n with an = ZjeN a‘lepj and

la? (z) — al, (z)| = 400 for -ae. z € Q, foralli#j,
pw infinitesimal rigid motions, u € GSBD?(Q) s.t. (up to a subsequence)

Un — Ap — U a.e. in

e(un) — e(u) in L2(Q;M3%4)

sym

HN(Ju U™ P) <liminf HO ™ (Ju,) .
n— oo

e This permits to deal with non-homogeneous bulk energies.
Refined aszym-convergence in couples (u,P)? Problems in the topology, since
we pass to modifications

ned films



Remarks and other applications

Generalized compactness (Chambolle-C.’20 Preprint)
Let u, € GSBD?(Q) with [q, |e(u,)|? dz + H4"(Ju, ) < M. Then there are
P = (Pj); a Caccioppoli partition, (an)n with an = ZjeN a‘lepj and

la? (z) — al, (z)| = 400 for -ae. z € Q, foralli#j,
pw infinitesimal rigid motions, u € GSBD?(Q) s.t. (up to a subsequence)

Un — Ap — U a.e. in

e(un) — e(u) in L2(Q;M3%4)

sym

HN(Ju U™ P) <liminf HO ™ (Ju,) .
n— oo

e This permits to deal with non-homogeneous bulk energies.

Refined aszym-convergence in couples (u,P)? Problems in the topology, since
we pass to modifications

o First application of o?-convergence: existence of quasi-static evolution for non

convex elastic energies in brittle fracture

ned films



Remarks and other applications

Generalized compactness (Chambolle-C.’20 Preprint)
Let u, € GSBD?(Q) with [q, |e(u,)|? dz + H4"(Ju, ) < M. Then there are
P = (P5); a Caccioppoli partition, (an)n With an =3,y a‘lepj and

la? (z) — al, (z)| = 400 for -ae. z € Q, foralli#j,
pw infinitesimal rigid motions, u € GSBD?(Q) s.t. (up to a subsequence)

Un — Ap — U a.e. in

e(un) — e(u) in L2(Q;M3%4)

sym

HN(Ju U™ P) <liminf HO ™ (Ju,) .
n— oo

e This permits to deal with non-homogeneous bulk energies.
Refined Ufym—convergence in couples (u,P)? Problems in the topology, since
we pass to modifications

o First application of o?-convergence: existence of quasi-static evolution for non

convex elastic energies in brittle fracture

e Regularity issues in 3d: even prove that the graph of equilibria is closed is
hard

ned films



THANK YOU!




Phase-field approximation for Griffith

(1-v)?

D, (u,v) := / (v Ce(u): e(u) + e

Q

+5|Vv|2) dz  in H: (RY) x V!

uQ Ne

with V. ={n. <v <1, trv=10ndpQ}, H, ={u€ H': tru=trug on dpQ},

[-converge as ¢ — 0 (with = — 0) to
|

D(u,1) _/(Ce w)dz 4+ H L (JLUOpQ N {tru # trug}))

strained films



Phase-field approximation for G

W(0)=W(1)=0,W >0in (0,1), = —fO\/ s)ds, Q@ =wx(—1,M +1)

|Vv|2)) dz

N ™

Getw)i= [ (<v2 + 1) fle(®)) + ew

w€ HYQ;RY), w=uwupinwx(—1,0),
ve HY(Q;0,1]), v=1inwx(—1,0), v =0 in wx(M, M+1) 8qv <0a.e.in Q,

“I'-converge” (in the sense that v- — xq, ) as € = 0 to

Cluh) = /Q+ Ce(u) : e(w)de + HE1(@*Qp N Q) + 211 (I, N QL)
h

if u=wuxq,, v =ug in wx(—1,0), he BV (w; [0, M]), J;, := Ju + RTeq

M

strained films



