EQUILIBRIUM CONFIGURATIONS FOR EPITAXIALLY STRAINED CRYSTALLINE FILMS AND MATERIAL VOIDS

Vito Crismale

work in collaboration with M. Friedrich (University of Münster)

CMAP, École Polytechnique Marie Skłodowska Curie project n.793018 Bri(ttle)Co(hesive)Fra(ctures)

CNA Seminar

October 27, 2020

Stress Driven Rearrangement Instabilities (SDRI): morphological instabilities of interfaces between elastic phases generated by the competition between elastic and (hyper)surface energies of perimeter type

Stress Driven Rearrangement Instabilities (SDRI): morphological instabilities of interfaces between elastic phases generated by the competition between elastic and (hyper)surface energies of perimeter type

Examples:

- epitaxially strained crystalline thin films;
- material voids inside elastically stressed solids;
- · capillary droplets;
- Griffith and failure models.

Stress Driven Rearrangement Instabilities (SDRI): morphological instabilities of interfaces between elastic phases generated by the competition between elastic and (hyper)surface energies of perimeter type

Examples:

- epitaxially strained crystalline thin films;
- material voids inside elastically stressed solids;
- · capillary droplets;
- · Griffith and failure models.

Terminology by Grinfeld '93; in physical literature at least from Asaro-Tiller '72. A unified model proposed in Kholmatov-Piovano '19.

Stress Driven Rearrangement Instabilities (SDRI): morphological instabilities of interfaces between elastic phases generated by the competition between elastic and (hyper)surface energies of perimeter type

Examples:

- epitaxially strained crystalline thin films;
- material voids inside elastically stressed solids;
- · capillary droplets;
- · Griffith and failure models.

Terminology by Grinfeld '93; in physical literature at least from Asaro-Tiller '72. A unified model proposed in Kholmatov-Piovano '19.

Here: minimization and approximation for static energies in any space dimension, in the context of linearized elasticity.

Stress Driven Rearrangement Instabilities (SDRI): morphological instabilities of interfaces between elastic phases generated by the competition between elastic and (hyper)surface energies of perimeter type

Examples:

- · epitaxially strained crystalline thin films;
- material voids inside elastically stressed solids;
- capillary droplets;
- Griffith and failure models.

Terminology by Grinfeld '93; in physical literature at least from Asaro-Tiller '72. A unified model proposed in Kholmatov-Piovano '19.

Here: minimization and approximation for static energies in any space dimension, in the context of linearized elasticity. Available results either in 2d for 1d 'discontinuity curves' with a bounded number of connected components or in simplified settings for elastic energy.

Epitaxially strained crystalline films

Etero-epitaxy: different lattice parameters between substrate and film crystals

Epitaxially strained crystalline films

Competition between elastic bulk energy and surface tension energy

Epitaxially strained crystalline films

Competition between elastic bulk energy and surface tension energy

Bonnetier-Chambolle '02:

$$G(u, h) = \int_{\Omega_h^+} \mathbb{C} e(u) : e(u) \, \mathrm{d}x + \int_{\omega} \sqrt{1 + |\nabla h(x_1, x_2)|^2} \, \mathrm{d}(x_1, x_2).$$

where
$$e(u) = \frac{1}{2}(\nabla u + (\nabla u)^T)$$
 and

$$h \in C^{1}(\omega; [0, M]), ||h||_{1} = m, \, \omega \subset \mathbb{R}^{2}, \, \Omega_{h}^{+} := \{x \in \omega \times \mathbb{R} : 0 < x_{3} < h(x_{1}, x_{2})\},$$
$$u|_{\Omega_{h}^{+}} \in H^{1}(\Omega_{h}^{+}), \ u = 0 \text{ in } (\omega \times (0, M+1)) \setminus \Omega_{h}^{+}, \ u = u_{0} \text{ in } \omega \times (0, 1)$$

In 2D (so
$$x_1$$
 instead of (x_1, x_2) in G): for $\Omega = \omega \times (-1, M + 1)$

$$\Omega \setminus \Omega_{h_n} \xrightarrow{\mathcal{H}} \Omega \setminus \Omega_h \quad \text{ for some } h \colon \omega \to \mathbb{R}^+ \text{ lsc}$$

$$\partial\Omega_{h_n} \xrightarrow{\mathcal{H}} K \supset \partial\Omega_h = \partial\overline{\Omega}_h \cup (\partial\Omega_h \setminus \partial\overline{\Omega}_h)$$

Golab Theorem (since $\partial\Omega_{h_n}$ connected in 1d): $\mathcal{H}^1(K) \leq \liminf_n \mathcal{H}^1(\partial\Omega_{h_n})$

In 2D (so
$$x_1$$
 instead of (x_1, x_2) in G): for $\Omega = \omega \times (-1, M+1)$
 $\Omega \setminus \Omega_{h_n} \xrightarrow{\mathcal{H}} \Omega \setminus \Omega_h$ for some $h \colon \omega \to \mathbb{R}^+$ lsc
 $\partial \Omega_{h_n} \xrightarrow{\mathcal{H}} K \supset \partial \Omega_h = \partial \overline{\Omega}_h \cup (\partial \Omega_h \setminus \partial \overline{\Omega}_h)$

 $\begin{array}{l} \textbf{Gołab Theorem} \text{ (since $\partial\Omega_{h_n}$ connected in 1d): $\mathcal{H}^1(K) \leq \liminf_n \mathcal{H}^1(\partial\Omega_{h_n})$} \\ \textbf{Geometric argument to say $\mathcal{H}^1(\partial\overline{\Omega}_h) + 2\mathcal{H}^1(\partial\Omega_h \setminus \partial\overline{\Omega}_h) \leq \liminf_n \mathcal{H}^1(\partial\Omega_{h_n})$} \end{array}$

In 2D (so
$$x_1$$
 instead of (x_1, x_2) in G): for $\Omega = \omega \times (-1, M + 1)$
 $\Omega \setminus \Omega_{h_n} \xrightarrow{\mathcal{H}} \Omega \setminus \Omega_h$ for some $h : \omega \to \mathbb{R}^+$ lsc

$$\partial\Omega_{h_n} \xrightarrow{\mathcal{H}} K \supset \partial\Omega_h = \partial\overline{\Omega}_h \cup (\partial\Omega_h \setminus \partial\overline{\Omega}_h)$$

Gołab Theorem (since $\partial\Omega_{h_n}$ connected in 1d): $\mathcal{H}^1(K) \leq \liminf_n \mathcal{H}^1(\partial\Omega_{h_n})$ Geometric argument to say $\mathcal{H}^1(\partial\overline{\Omega}_h) + 2\mathcal{H}^1(\partial\Omega_h \setminus \partial\overline{\Omega}_h) \leq \liminf_n \mathcal{H}^1(\partial\Omega_{h_n})$

 $e(u_n) \rightharpoonup \mathcal{E}$ in L^2 (up to a subsequence) + Korn Inequality in any $A \subset \Omega_h$ Lipschitz $\Longrightarrow u_n \rightharpoonup u$ in $H^1_{loc}(\Omega_h; \mathbb{R}^2)$ and $e(u) = \mathcal{E}$ (in particular u is independent of further subsequences)

In 2D (so
$$x_1$$
 instead of (x_1, x_2) in G): for $\Omega = \omega \times (-1, M + 1)$

$$\Omega \setminus \Omega_{h_n} \xrightarrow{\mathcal{H}} \Omega \setminus \Omega_h$$
 for some $h : \omega \to \mathbb{R}^+$ lsc

$$\partial\Omega_{h_n} \xrightarrow{\mathcal{H}} K \supset \partial\Omega_h = \partial\overline{\Omega}_h \cup (\partial\Omega_h \setminus \partial\overline{\Omega}_h)$$

Golab Theorem (since $\partial\Omega_{h_n}$ connected in 1d): $\mathcal{H}^1(K) \leq \liminf_n \mathcal{H}^1(\partial\Omega_{h_n})$ Geometric argument to say $\mathcal{H}^1(\partial\overline{\Omega}_h) + 2\mathcal{H}^1(\partial\Omega_h \setminus \partial\overline{\Omega}_h) \leq \liminf_n \mathcal{H}^1(\partial\Omega_{h_n})$

$$e(u_n) \rightharpoonup \mathcal{E}$$
 in L^2 (up to a subsequence) + Korn Inequality in any $A \subset \Omega_h$ Lipschitz $\Longrightarrow u_n \rightharpoonup u$ in $H^1_{loc}(\Omega_h; \mathbb{R}^2)$ and $e(u) = \mathcal{E}$ (in particular u is independent of further subsequences)

Therefore COMPACTNESS for (u_n, h_n) with $G(u_n, h_n) \leq M$ and

$$\widetilde{G}(u,h) := \int_{\Omega_h^+} \mathbb{C} \, e(u) : e(u) \, \mathrm{d}x + \mathcal{H}^1(\partial \overline{\Omega}_h) + 2\mathcal{H}^1(\partial \Omega_h \setminus \partial \overline{\Omega}_h) \leq \liminf_n G(u_n,h_n)$$

Material voids in linearly elastic materials

Braides-Chambolle-Solci '07:

$$F(u,\underline{E}) = \int_{\Omega \setminus \underline{E}} \mathbb{C} \, e(u) : e(u) \, \mathrm{d}x + \int_{\Omega \cap \partial \underline{E}} \varphi(\nu_{\underline{E}}) \, \mathrm{d}\mathcal{H}^{d-1} \, .$$

where φ is a norm and represents a possibly anisotropic density. Minimization under Dirichlet b.c. on $\partial_D \Omega \subset \partial \Omega$ and a volume constraint on E.

Equilibrium configurations for material voids

In 2D: assuming an equibounded number of connected components for voids, one may still use Gołab Theorem to say

$$\widetilde{F}(u,\underline{E}) := \int\limits_{\Omega \backslash \underline{E}} \mathbb{C} \, e(u) : e(u) \, \mathrm{d}x + \int\limits_{\Omega \cap \partial \underline{E}} \varphi(\nu_{\underline{E}}) \, \mathrm{d}\mathcal{H}^1 + \int\limits_{J_u \cap \Omega \backslash \underline{E}} 2\varphi(\nu_u) \mathrm{d}\mathcal{H}^1 \leq \liminf_n F(u_n,\underline{E}_n)$$

Equilibrium configurations for material voids

In 2D: assuming an equibounded number of connected components for voids, one may still use Gołab Theorem to say

$$\widetilde{F}(u, \underline{E}) := \int\limits_{\Omega \backslash \underline{E}} \mathbb{C} \, e(u) : e(u) \, \mathrm{d}x + \int\limits_{\Omega \cap \partial \underline{E}} \varphi(\nu_{\underline{E}}) \, \mathrm{d}\mathcal{H}^1 + \int\limits_{J_u \cap \Omega \backslash \underline{E}} 2\varphi(\nu_u) \mathrm{d}\mathcal{H}^1 \leq \liminf_n F(u_n, \underline{E}_n)$$

Without this restriction, one could even have $\partial E_n \xrightarrow{\mathcal{H}} \Omega$!

Equilibrium configurations for material voids

In 2D: assuming an equibounded number of connected components for voids, one may still use Golab Theorem to say

$$\widetilde{F}(u, \underline{E}) := \int\limits_{\Omega \backslash \underline{E}} \mathbb{C} \, e(u) : e(u) \, \mathrm{d}x + \int\limits_{\Omega \cap \partial \underline{E}} \varphi(\nu_{\underline{E}}) \, \mathrm{d}\mathcal{H}^1 + \int\limits_{J_u \cap \Omega \backslash \underline{E}} 2\varphi(\nu_u) \mathrm{d}\mathcal{H}^1 \leq \liminf_n F(u_n, \underline{E}_n)$$

Without this restriction, one could even have $\partial E_n \xrightarrow{\mathcal{H}} \Omega$!

The situation may be reproduced for connected surfaces (like graphs) in 3D

 Chambolle, Bonnetier, Braides, Solci '02-'07: relaxation and phase-field approximation (from next slide)

- Chambolle, Bonnetier, Braides, Solci '02-'07: relaxation and phase-field approximation (from next slide)
- Fonseca, Fusco, Leoni, Morini '07–'15 / Chambolle, Larsen / Goldman, Zwicknagl, Bella '14-'15 / Davoli-Piovano '18: regularity for equilibria for epitaxially strained films (Finite number of vertical points and cuts; analytic profile outside, for $x_2 > 0$; study of wetting);

- Chambolle, Bonnetier, Braides, Solci '02-'07: relaxation and phase-field approximation (from next slide)
- Fonseca, Fusco, Leoni, Morini '07-'15 / Chambolle, Larsen / Goldman, Zwicknagl, Bella '14-'15 / Davoli-Piovano '18: regularity for equilibria for epitaxially strained films (Finite number of vertical points and cuts; analytic profile outside, for $x_2 > 0$; study of wetting);
- Fusco-Morini '12 / Bonacini '13-'15: local stability of the flat configuration (depending on the anisotropy of φ and on the film thickness) Bonacini'15 3D

- Chambolle, Bonnetier, Braides, Solci '02-'07: relaxation and phase-field approximation (from next slide)
- Fonseca, Fusco, Leoni, Morini '07-'15 / Chambolle, Larsen / Goldman, Zwicknagl, Bella '14-'15 / Davoli-Piovano '18: regularity for equilibria for epitaxially strained films (Finite number of vertical points and cuts; analytic profile outside, for $x_2 > 0$; study of wetting);
- Fusco-Morini '12 / Bonacini '13-'15: local stability of the flat configuration (depending on the anisotropy of φ and on the film thickness) Bonacini'15 3D
- Fonesca-Fusco-Leoni-Millot '11: regularity for material voids (depending on the anisotropy of φ)

- Chambolle, Bonnetier, Braides, Solci '02-'07: relaxation and phase-field approximation (from next slide)
- Fonseca, Fusco, Leoni, Morini '07-'15 / Chambolle, Larsen / Goldman, Zwicknagl, Bella '14-'15 / Davoli-Piovano '18: regularity for equilibria for epitaxially strained films (Finite number of vertical points and cuts; analytic profile outside, for $x_2 > 0$; study of wetting);
- Fusco-Morini '12 / Bonacini '13-'15: local stability of the flat configuration (depending on the anisotropy of φ and on the film thickness) Bonacini'15 3D
- Fonesca-Fusco-Leoni-Millot '11: regularity for material voids (depending on the anisotropy of φ)
- Piovano '14, Fonseca-Fusco-Leoni-Morini '15, Fusco-Julin-Morini '18-'19: evolution, also in 3D

- Chambolle, Bonnetier, Braides, Solci '02-'07: relaxation and phase-field approximation (from next slide)
- Fonseca, Fusco, Leoni, Morini '07-'15 / Chambolle, Larsen / Goldman, Zwicknagl, Bella '14-'15 / Davoli-Piovano '18: regularity for equilibria for epitaxially strained films (Finite number of vertical points and cuts; analytic profile outside, for $x_2 > 0$; study of wetting);
- Fusco-Morini '12 / Bonacini '13-'15: local stability of the flat configuration (depending on the anisotropy of φ and on the film thickness) Bonacini'15 3D
- Fonesca-Fusco-Leoni-Millot '11: regularity for material voids (depending on the anisotropy of φ)
- Piovano '14, Fonseca-Fusco-Leoni-Morini '15, Fusco-Julin-Morini '18-'19: evolution, also in 3D
- Piovano, Davoli, Kreutz: derivation of epitaxial models

- Chambolle, Bonnetier, Braides, Solci '02-'07: relaxation and phase-field approximation (from next slide)
- Fonseca, Fusco, Leoni, Morini '07-'15 / Chambolle, Larsen / Goldman, Zwicknagl, Bella '14-'15 / Davoli-Piovano '18: regularity for equilibria for epitaxially strained films (Finite number of vertical points and cuts; analytic profile outside, for $x_2 > 0$; study of wetting);
- Fusco-Morini '12 / Bonacini '13-'15: local stability of the flat configuration (depending on the anisotropy of φ and on the film thickness) Bonacini'15 3D
- Fonesca-Fusco-Leoni-Millot '11: regularity for material voids (depending on the anisotropy of φ)
- Piovano '14, Fonseca-Fusco-Leoni-Morini '15, Fusco-Julin-Morini '18-'19: evolution, also in 3D
- Piovano, Davoli, Kreutz: derivation of epitaxial models
- Ambrosio, Novaga, Paolini / Fonseca, Pratelli, Zwicknagl / Dal Maso, Fonseca, Leoni / Caroccia, Cristoferi: related energies

We look for the biggest lower semicontinuous functionals \overline{F} and \overline{G} with $\overline{F} \leq F$ and $\overline{G} \leq G$, wrt convergence in measure for u and in L^1 for χ_E or h.

We look for the biggest lower semicontinuous functionals \overline{F} and \overline{G} with $\overline{F} \leq F$ and $\overline{G} \leq G$, wrt convergence in measure for u and in L^1 for χ_E or h. To prove that

• if $u_n \to u$ a.e. in Ω , $\chi_{E_n} \to \chi_E$ in $L^1(\Omega)$ then

$$\overline{F}(u, \underline{E}) \leq \liminf_{n \to \infty} F(u_n, \underline{E}_n);$$

• for all (u, E) with $\overline{F}(u, E) < +\infty$, there are $(u_n, E_n) \to (u, E)$ with

$$\overline{F}(u, \underline{E}) \ge \limsup_{n \to \infty} F(u_n, \underline{E}_n).$$

We look for the biggest lower semicontinuous functionals \overline{F} and \overline{G} with $\overline{F} \leq F$ and $\overline{G} \leq G$, wrt convergence in measure for u and in L^1 for χ_E or h. To prove that

• if $u_n \to u$ a.e. in Ω , $\chi_{E_n} \to \chi_E$ in $L^1(\Omega)$ then

$$\overline{F}(u, \underline{E}) \leq \liminf_{n \to \infty} F(u_n, \underline{E}_n);$$

• for all (u, E) with $\overline{F}(u, E) < +\infty$, there are $(u_n, E_n) \to (u, E)$ with

$$\overline{F}(u, E) \ge \limsup_{n \to \infty} F(u_n, E_n).$$

and that

• if $u_n \to u$ a.e. in Ω , $h_n \to h$ in $L^1(\Omega)$ then

$$\overline{G}(u, h) \leq \liminf_{n \to \infty} G(u_n, h_n);$$

• for all (u, h) with $\overline{G}(u, h) < +\infty$, there are $(u_n, h_n) \to (u, h)$ with

$$\overline{G}(u, h) \ge \limsup_{n \to \infty} G(u_n, h_n).$$

We look for the biggest lower semicontinuous functionals \overline{F} and \overline{G} with $\overline{F} \leq F$ and $\overline{G} \leq G$, wrt convergence in measure for u and in L^1 for χ_E or h. To prove that

• if $u_n \to u$ a.e. in Ω , $\chi_{E_n} \to \chi_E$ in $L^1(\Omega)$ then

$$\overline{F}(u, \underline{E}) \leq \liminf_{n \to \infty} F(u_n, \underline{E}_n);$$

• for all (u, E) with $\overline{F}(u, E) < +\infty$, there are $(u_n, E_n) \to (u, E)$ with

$$\overline{F}(u, E) \ge \limsup_{n \to \infty} F(u_n, E_n).$$

and that

• if $u_n \to u$ a.e. in Ω , $h_n \to h$ in $L^1(\Omega)$ then

$$\overline{G}(u, h) \leq \liminf_{n \to \infty} G(u_n, h_n);$$

• for all (u, h) with $\overline{G}(u, h) < +\infty$, there are $(u_n, h_n) \to (u, h)$ with

$$\overline{G}(u, h) \ge \limsup_{n \to \infty} G(u_n, h_n).$$

Bon-Cha '02: d=2 for G; Cha-Sol '07: any d but ∇u in place of e(u) for G; Bra-Cha-Sol '07: any d but ∇u in place of e(u) for F.

Form of \overline{F} and minimization

Theorem (C.-Friedrich)

$$F_{\mathrm{Dir}}(u, \underline{E}) = \int_{\Omega \setminus \underline{E}} \mathbb{C} e(u) : e(u) \, \mathrm{d}x + \int_{(\Omega \cup \partial_D \Omega) \cap \partial \underline{E}} \varphi(\nu_E) \, \mathrm{d}\mathcal{H}^{d-1}$$

$$\text{if $\underline{\pmb{E}}$ Lipschitz, $|\underline{\pmb{E}}|=m\in(0,|\Omega|)$, $u|_{\Omega\backslash\overline{\pmb{E}}}\in H^1(\Omega\setminus\underline{\pmb{E}};\mathbb{R}^d)$, $u|_{E}=0$, $u|_{\widetilde{\Omega}\backslash\Omega}=u_0$ }$$

relaxes into

$$\overline{F}_{\mathrm{Dir}}(u,\underline{E}) = \int\limits_{\Omega \backslash \underline{E}} \mathbb{C} \, e(u) : e(u) \, \mathrm{d}x + \int\limits_{(\Omega \cup \partial_D \Omega) \cap \partial^* \underline{E}} \varphi(\nu_E) \, \mathrm{d}\mathcal{H}^{d-1} + \int\limits_{J_{u'} \cap (\Omega \cup \partial_D \Omega) \backslash \underline{E}^1} 2\varphi(\nu_u) \mathrm{d}\mathcal{H}^{d-1}$$

if
$$|\mathbf{E}| = m$$
, $\mathcal{H}^{d-1}(\partial^* \mathbf{E}) < +\infty$, $u = u\chi_{\mathbf{E}_0}$, for $u' := u_0$ on $\widetilde{\Omega} \setminus \Omega$.

Form of \overline{F} and minimization

Theorem (C.-Friedrich)

$$F_{\mathrm{Dir}}(u, \underline{E}) = \int_{\Omega \setminus \underline{E}} \mathbb{C} e(u) : e(u) \, \mathrm{d}x + \int_{(\Omega \cup \partial_D \Omega) \cap \partial \underline{E}} \varphi(\nu_E) \, \mathrm{d}\mathcal{H}^{d-1}$$

 $\text{if \underline{E} Lipschitz, $|\underline{E}|=m\in(0,|\Omega|)$, $u|_{\Omega\backslash\overline{E}}\in H^1(\Omega\setminus\underline{E};\mathbb{R}^d)$, $u|_E=0$, $u|_{\widetilde{\Omega}\backslash\Omega}=u_0$ }$

relaxes into

$$\overline{F}_{\mathrm{Dir}}(u,E) = \int\limits_{\Omega \backslash E} \mathbb{C}\,e(u) : e(u)\,\mathrm{d}x + \int\limits_{(\Omega \cup \partial_D\Omega) \cap \partial^*E} \varphi(\nu_E)\,\mathrm{d}\mathcal{H}^{d-1} + \int\limits_{u'} 2\varphi(\nu_u)\mathrm{d}\mathcal{H}^{d-1}$$

if $|\underline{E}| = m$, $\mathcal{H}^{d-1}(\partial^*\underline{E}) < +\infty$, $u = u\chi_{\underline{E}_0}$, for $u' := u_0$ on $\widetilde{\Omega} \setminus \Omega$.

Moreover, \overline{F}_{Dir} admits minimizers

Form of \overline{G} and compactness

 $\Omega = \omega \times (-1, M+1)$

Theorem (C.-Friedrich)

$$G(u, \mathbf{h}) = \int_{\Omega_h^+} \mathbb{C} e(u) : e(u) \, \mathrm{d}x + \int_{\omega} \sqrt{1 + |\nabla h(x')|^2} \, \mathrm{d}x'$$

 $\underset{h}{h} \in C^1_m(\omega;[0,M]), \ u|_{\Omega^+_h} \in H^1(\Omega^+_h), \ u=0 \text{ in } (\omega \times \mathbb{R}^+) \backslash \Omega^+_h, \ u=u_0 \text{ in } \omega \times (0,1)$

relaxes into

$$\overline{G}(u,h) = \int_{\Omega_h^+} \mathbb{C} e(u) : e(u) \, \mathrm{d} x + \mathcal{H}^{d-1}(\partial^* \Omega_h \cap \Omega) + 2\mathcal{H}^{d-1}(J_u' \cap \Omega_h^1)$$

if
$$u = u\chi_{\Omega_h}$$
, $u = u_0$ in $\omega \times (-1, 0)$, $h \in BV_m(\omega; [0, M])$, $J'_u := J_u + \mathbb{R}^+ e_d$,

Form of \overline{G} and compactness

$$\Omega = \omega \times (-1, M+1)$$

Theorem (C.-Friedrich)

$$G(u, \mathbf{h}) = \int_{\Omega_{h}^{+}} \mathbb{C} e(u) : e(u) \, \mathrm{d}x + \int_{\omega} \sqrt{1 + |\nabla h(x')|^2} \, \mathrm{d}x'$$

 $\underset{h}{h} \in C^1_m(\omega;[0,M]), \ u|_{\Omega^+_h} \in H^1(\Omega^+_h), \ u=0 \text{ in } (\omega \times \mathbb{R}^+) \backslash \Omega^+_h, \ u=u_0 \text{ in } \omega \times (0,1)$

relaxes into

$$\overline{G}(u,h) = \int_{\Omega_+^+} \mathbb{C} \, e(u) : e(u) \, \mathrm{d} x + \mathcal{H}^{d-1}(\partial^* \Omega_h \cap \Omega) + 2\mathcal{H}^{d-1}(J_u' \cap \Omega_h^1)$$

if $u = u\chi\Omega_h$, $u = u_0$ in $\omega \times (-1,0)$, $h \in BV_m(\omega;[0,M])$, $J'_u := J_u + \mathbb{R}^+ e_d$,

Moreover, any (u_n, h_n) with $\overline{G}(u_n, h_n) < M$ has a converging subsequence

$$\begin{split} E \text{ set of finite perimeter } & (\chi_E \in BV(\Omega)) \\ E^s &= \{x \in \mathbb{R}^d \colon \lim_{\varrho \to 0} \frac{|E \cap B_\varrho(x)|}{|B_\varrho(x)|} = s \} \\ & \partial^* E = \mathbb{R}^d \setminus (E^0 \cup E^1) \text{ essential boundary} \end{split}$$

$$\overline{F}(u,\underline{E}),\,\overline{G}(u,\underline{h})\sim\int\limits_{\Omega}\mathbb{C}\underline{e(u)}\colon\underline{e(u)}\,\mathrm{d}x+\mathcal{H}^{d-1}(J_u)=:\mathrm{Gr}(u)$$
 (recall $u=u\chi_{E_0}$ or $u=u\chi_{\Omega_h}$)

$$\overline{F}(u, E), \overline{G}(u, h) \sim \int_{\Omega} \mathbb{C}e(u) : e(u) dx + \mathcal{H}^{d-1}(J_u) =: Gr(u)$$

(recall $u = u\chi_{E_0}$ or $u = u\chi_{\Omega_h}$)

• Control of $e(u) \hookrightarrow BD(\Omega) := \{u \in L^1(\Omega; \mathbb{R}^d) : Eu \in \mathcal{M}_b(\Omega; \mathbb{M}_{sym}^{d \times d})\} = \{u : \sup_{|\varphi| \le 1} \int_{\Omega} u \cdot E\varphi < \infty\}$ $u \in BD(\Omega) \Longrightarrow Eu = e(u)\mathcal{L}^d + (u^+ - u^-) \odot \nu_u \mathcal{H}^{d-1} \lfloor J_u + E^c u \rfloor$ $SBD^2(\Omega) := \{u \in BD(\Omega) : E^c u = 0, e(u) \in L^2, \mathcal{H}^{d-1}(J_u) < \infty\}$

$$\overline{F}(u, E), \overline{G}(u, h) \sim \int_{\Omega} \mathbb{C}e(u) : e(u) dx + \mathcal{H}^{d-1}(J_u) =: Gr(u)$$

(recall $u = u\chi_{E_0}$ or $u = u\chi_{\Omega_h}$)

- Control of $e(u) \hookrightarrow BD(\Omega) := \{u \in L^1(\Omega; \mathbb{R}^d) : Eu \in \mathcal{M}_b(\Omega; \mathbb{M}_{sym}^{d \times d})\} = \{u : \sup_{|\varphi| \le 1} \int_{\Omega} u \cdot E\varphi < \infty\}$ $u \in BD(\Omega) \Longrightarrow Eu = e(u)\mathcal{L}^d + (u^+ u^-) \odot \nu_u \mathcal{H}^{d-1} \lfloor J_u + E^c u \rfloor$ $SBD^2(\Omega) := \{u \in BD(\Omega) : E^c u = 0, e(u) \in L^2, \mathcal{H}^{d-1}(J_u) < \infty\}$
- But no L¹ control of u → GSBD(Ω) Dal Maso '12
 (u ∈ GSBV if truncations in SBV, now they destroy control on Eu)

The functional framework

$$\overline{F}(u, E), \overline{G}(u, h) \sim \int_{\Omega} \mathbb{C} \underline{e(u)} : \underline{e(u)} \, \mathrm{d}x + \mathcal{H}^{d-1}(J_u) =: \mathrm{Gr}(u)$$

(recall $u = u\chi_{E_0}$ or $u = u\chi_{\Omega_h}$)

- Control of $e(u) \hookrightarrow BD(\Omega) := \{u \in L^1(\Omega; \mathbb{R}^d) : Eu \in \mathcal{M}_b(\Omega; \mathbb{M}_{sym}^{d \times d})\} = \{u : \sup_{|\varphi| \le 1} \int_{\Omega} u \cdot E\varphi < \infty\}$ $u \in BD(\Omega) \Longrightarrow Eu = e(u)\mathcal{L}^d + (u^+ u^-) \odot \nu_u \mathcal{H}^{d-1} \lfloor J_u + E^c u \rfloor$ $SBD^2(\Omega) := \{u \in BD(\Omega) : E^c u = 0, e(u) \in L^2, \mathcal{H}^{d-1}(J_u) < \infty\}$
- But no L^1 control of $u \leadsto GSBD(\Omega)$ Dal Maso '12 $(u \in GSBV)$ if truncations in SBV, now they destroy control on Eu) J_u still (d-1)-countably rectifiable and for \mathcal{L}^d -a.e. x, e(u)(x) s.t.

$$\mathop{\rm ap\,lim}_{y\to x} \frac{\left(u(y)-u(x)-\frac{e(u)}{(x)(y-x)\right)\cdot(y-x)}}{|y-x|^2}=0\,,$$

Relaxation for F

Theorem (C.-Friedrich)

$$F_{\mathrm{Dir}}(u, \underline{E}) = \int_{\Omega \setminus \underline{E}} \mathbb{C} e(u) : e(u) \, \mathrm{d}x + \int_{(\Omega \cup \partial_D \Omega) \cap \partial \underline{E}} \varphi(\nu_E) \, \mathrm{d}\mathcal{H}^{d-1} \,.$$

 $\text{if \underline{E} Lipschitz, $|\underline{E}|=m\in(0,|\Omega|)$, $u|_{\Omega\setminus\overline{E}}\in H^1(\Omega\setminus\underline{E};\mathbb{R}^d)$, $u|_E=0$, $u|_{\widetilde{\Omega}\setminus\Omega}=u_0$, $u|_{\Omega\setminus\overline{E}}=u_0$, $u|_{\Omega\setminus\overline{E}}=u_0$,$

relaxes into

$$\overline{F}_{\mathrm{Dir}}(u,E) = \int\limits_{\Omega \backslash E} \mathbb{C} \, e(u) : e(u) \, \mathrm{d}x + \int\limits_{(\Omega \cup \partial_D \Omega) \cap \partial^* E^1} \varphi(\nu_E) \, \mathrm{d}\mathcal{H}^{d-1} + \int\limits_{J_{u'} \cap (\Omega \cup \partial_D \Omega) \backslash E} \!\!\! 2\varphi(\nu_u) \mathrm{d}\mathcal{H}^{d-1}$$

if
$$|\underline{E}| = m$$
, $\mathcal{H}^{d-1}(\partial^*\underline{E}) < +\infty$, $u = u\chi_{\underline{E}_0}$, for $u' := u_0$ on $\widetilde{\Omega} \setminus \Omega$

Relaxation for F

Theorem (C.-Friedrich)

$$F_{\mathrm{Dir}}(u, E) = \int_{\Omega \setminus E} \mathbb{C} e(u) : e(u) \, \mathrm{d}x + \int_{(\Omega \cup \partial_D \Omega) \cap \partial E} \varphi(\nu_E) \, \mathrm{d}\mathcal{H}^{d-1}.$$

$$\text{if \underline{E} Lipschitz, $|\underline{E}|=m\in(0,|\Omega|)$, $u|_{\Omega\setminus\overline{\underline{E}}}\in H^1(\Omega\setminus\underline{E};\mathbb{R}^d)$, $u|_{\underline{E}}=0$, $u|_{\widetilde{\Omega}\setminus\Omega}=u_0$ }$$

relaxes into

$$\overline{F}_{\mathrm{Dir}}(u,\underline{E}) = \int\limits_{\Omega \backslash \underline{E}} \mathbb{C} \, e(u) : e(u) \, \mathrm{d}x + \int\limits_{(\Omega \cup \partial_D \Omega) \cap \partial^* \underline{E}} \varphi(\nu_E) \, \mathrm{d}\mathcal{H}^{d-1} + \int\limits_{J_{u'} \cap (\Omega \cup \partial_D \Omega) \backslash \underline{E}^1} 2\varphi(\nu_u) \mathrm{d}\mathcal{H}^{d-1}$$

if
$$|\underline{E}| = m$$
, $\mathcal{H}^{d-1}(\partial^*\underline{E}) < +\infty$, $u = u\chi_{\underline{E_0}}$, for $u' := u_0$ on $\widetilde{\Omega} \setminus \Omega$

Relaxation for F

Theorem (C.-Friedrich)

$$F_{\mathrm{Dir}}(u, E) = \int_{\Omega \backslash E} \mathbb{C} \, e(u) : e(u) \, \mathrm{d}x + \int_{(\Omega \cup \partial_D \Omega) \cap \partial E} \varphi(\nu_E) \, \mathrm{d}\mathcal{H}^{d-1} \, .$$

 $\text{if \underline{E} Lipschitz, $|\underline{E}|=m\in(0,|\Omega|)$, $u|_{\Omega\setminus\overline{\underline{E}}}\in H^1(\Omega\setminus\underline{E};\mathbb{R}^d)$, $u|_{\underline{E}}=0$, $u|_{\widetilde{\Omega}\setminus\Omega}=u_0$ }$

relaxes into

$$\overline{F}_{\mathrm{Dir}}(u, \underline{E}) = \int\limits_{\Omega \backslash \underline{E}} \mathbb{C} \, e(u) : e(u) \, \mathrm{d}x + \int\limits_{(\Omega \cup \partial_D \Omega) \cap \partial^* \underline{E}} \varphi(\nu_E) \, \mathrm{d}\mathcal{H}^{d-1} + \int\limits_{J_{u'} \cap (\Omega \cup \partial_D \Omega) \backslash \underline{E}^1} 2\varphi(\nu_u) \mathrm{d}\mathcal{H}^{d-1}$$

if
$$|\underline{E}| = m$$
, $\mathcal{H}^{d-1}(\partial^*\underline{E}) < +\infty$, $u = u\chi_{\underline{E}_0}$, for $u' := u_0$ on $\widetilde{\Omega} \setminus \Omega$

Proven similarly to Ambrosio-Tortorelli approximation for Griffith with Dirichlet b.c. in Chambolle-C. '19

- lim inf by slicing argument (separately for bulk and surface part)
- lim sup by an adaptation of density of Chambolle-C. '19 + BraChaSol'07

Density in GSBD (Chambolle-C. '19)

$$\forall u \text{ t.q. } \operatorname{Gr}_{\operatorname{Dir}}(u) < \infty \quad \exists u_k \text{ t.q. } J_{u_k} \text{ of class } C^1, u_k \in C^{\infty}(\Omega \setminus J_{u_k}), \text{ and}$$

$$u_k \longrightarrow u \text{ a.e.}, \qquad \operatorname{Gr}_{\operatorname{Dir}}(u_k) \longrightarrow \operatorname{Gr}_{\operatorname{Dir}}(u)$$

Compactness for F

Compactness (Chambolle-C.)

Let $u_n \in GSBD^2(\Omega)$ with

$$\int_{\Omega} |e(u_n)|^2 dx + \mathcal{H}^{d-1}(J_{u_n}) < M.$$

Then, up to a subsequence, for $A := \{x : |u_n(x)| \to \infty\}$, there is $u \in GSBD^2(\Omega)$, u = 0 in A s.t.

$$u_n \to u \quad \text{a.e. in } \Omega \setminus A \,,$$

$$\underbrace{e(u_n) \to e(u)}_{} \quad \text{in } L^2(\Omega \setminus A; \mathbb{M}^{d \times d}_{sym}) \,,$$

$$\mathcal{H}^{d-1}(J_u \cup \partial^* A) \le \liminf_{n \to \infty} \mathcal{H}^{d-1}(J_{u_n}) \,.$$

Relaxation for G

Much more difficult both in \liminf and in \limsup , due to constraints on the jump set

To prove the verticality we use a variant of the

σ^2 -convergence (Dal Maso-Francfort-Toader '05, Giacomini-Ponsiglione '06)

$$\Gamma_n \subset U$$
, $\sup_n \mathcal{H}^{d-1}(\Gamma_n) < \infty$. Then $\Gamma_n \xrightarrow{\sigma^2} \Gamma$ iff

(i)
$$((v_n)_n \subset SBV^2(U), J_{v_n} \subset \Gamma_n, v_n \to v) \Longrightarrow J_v \subset \Gamma$$

(ii)
$$\exists v, (v_n)_n \subset SBV^2(U)$$
 with $v_n \to v, J_{v_n} \subset \Gamma_n, J_v = \Gamma$

Relaxation for G

Much more difficult both in \liminf and in \limsup , due to constraints on the jump set

To prove the verticality we use a variant of the

σ^2 -convergence (Dal Maso-Francfort-Toader '05, Giacomini-Ponsiglione '06)

$$\Gamma_n \subset U$$
, $\sup_n \mathcal{H}^{d-1}(\Gamma_n) < \infty$. Then $\Gamma_n \xrightarrow{\sigma^2} \Gamma$ iff

(i)
$$(v_n)_n \subset SBV^2(U), J_{v_n} \subset \Gamma_n, v_n \to v \Longrightarrow J_v \subset \Gamma$$

(ii)
$$\exists v, (v_n)_n \subset SBV^2(U)$$
 with $v_n \to v, J_{v_n} \subset \Gamma_n, J_v = \Gamma$

We introduce an analogous notion of sets convergence for the "Griffith energy space" $GSBD^2$ in place of SBV^2 , that we call σ_{sym}^2 -convergence.

New technical point: consider also a limit set G_{∞} with finite perimeter and $\partial^* G_{\infty} \subset \Gamma$, inside which we do not control anything

Relaxation for G

Much more difficult both in \liminf and in \limsup , due to constraints on the jump set

To prove the verticality we use a variant of the

σ^2 -convergence (Dal Maso-Francfort-Toader '05, Giacomini-Ponsiglione '06)

$$\Gamma_n \subset U$$
, $\sup_n \mathcal{H}^{d-1}(\Gamma_n) < \infty$. Then $\Gamma_n \xrightarrow{\sigma^2} \Gamma$ iff

(i)
$$((v_n)_n \subset SBV^2(U), J_{v_n} \subset \Gamma_n, v_n \to v) \Longrightarrow J_v \subset \Gamma$$

(ii) $\exists v, (v_n)_n \subset SBV^2(U)$ with $v_n \to v, J_{v_n} \subset \Gamma_n, J_v = \Gamma$

σ_{sym}^2 -convergence (C.-Friedrich)

 $\Gamma_n \subset U$, $\sup_n \mathcal{H}^{d-1}(\Gamma_n) < \infty$, $U \subset U'$, $|U' \setminus U| > 0$. Then $\Gamma_n \stackrel{\sigma_{\text{sym}}^2}{\longrightarrow} (\Gamma, G_\infty)$ with

$$\partial^* G_{\infty} \cap U' \subset \Gamma$$
, $\Gamma \cap (G_{\infty})^1 = \emptyset$ iff

- (i) $((v_n)_n \subset GSBD^2(U'), J_{v_n} \subset \Gamma_n, v_n = 0 \text{ in } U' \setminus U, v_n \to v)$ $\Longrightarrow (J_v \setminus \Gamma) \subset (G_\infty)^1$
- (ii) $\exists v, (v_n)_n \subset GSBD^2(U')$ with $v_n \to v, J_{v_n} \subset \Gamma_n, v_n = 0$ in $U' \setminus U$, and $J_v = \Gamma$, $\{v = \infty\} \subset G_\infty$

Compactness for σ_{sym}^2 -convergence

σ_{sym}^2 -convergence (C.-Friedrich)

 $\Gamma_n \subset U$, $\sup_n \mathcal{H}^{d-1}(\Gamma_n) < \infty$, $U \subset U'$, $|U' \setminus U| > 0$. Then $\Gamma_n \xrightarrow{\sigma_{\text{sym}}^2} (\Gamma, G_\infty)$ with

$$\partial^* G_{\infty} \cap U' \subset \Gamma, \quad \Gamma \cap (G_{\infty})^1 = \emptyset \quad \text{iff}$$

- (i) $(v_n)_n \subset GSBD^2(U'), J_{v_n} \subset \Gamma_n, v_n = 0 \text{ in } U' \setminus U, v_n \to v$ $\Longrightarrow (J_v \setminus \Gamma) \subset (G_\infty)^1$
- (ii) $\exists v, (v_n)_n \subset GSBD^2(U')$ with $v_n \to v, J_{v_n} \subset \Gamma_n, v_n = 0$ in $U' \setminus U$, and $J_v = \Gamma, \{v = \infty\} \subset G_\infty$

Compactness (C.-Friedrich)

Every $(\Gamma_n)_n$ with $\sup_n \mathcal{H}^{d-1}(\Gamma_n) < \infty$, σ^2_{sym} converges, up to a subsequence, to (Γ, G_∞) with

$$\mathcal{H}^{d-1}(\Gamma) \leq \liminf_{n \to \infty} \mathcal{H}^{d-1}(\Gamma_n)$$
.

Lower limit and compactness for ${\cal G}$

1st step:
$$\partial\Omega_{h_n}\stackrel{\sigma^2_{\mathrm{sym}}}{\longrightarrow}(\Gamma,\emptyset)$$

Lower limit and compactness for G

1st step:
$$\partial\Omega_{h_n}\stackrel{\sigma_{\mathrm{sym}}^2}{\longrightarrow}(\Gamma,\emptyset)$$

$$U':=\omega\times(-1,M+1),\,U:=\omega\times(-\tfrac{1}{2},M),\,\Gamma_n:=\partial^*\Omega_{h_n}\cap U'\overset{\sigma^2_{\mathrm{sym}}}{\longrightarrow}\Gamma,\,U\prec\psi\prec U'$$

1 Area Formula:
$$\int_{\omega} \#(\Lambda_y^{e_d}) \, \mathrm{d}\mathcal{H}^{d-1}(y) = \int_{\Lambda} |\nu_{\Lambda} \cdot e_d| \, \mathrm{d}\mathcal{H}^{d-1} =: \mathrm{I}_V(\Lambda)$$

Lower limit and compactness for G

1st step:
$$\partial\Omega_{h_n} \stackrel{\sigma_{\mathrm{sym}}^2}{\longrightarrow} (\Gamma, \emptyset)$$

$$U' := \omega \times (-1, M+1), \, U := \omega \times (-\tfrac{1}{2}, M), \, \Gamma_n := \partial^* \Omega_{h_n} \cap U' \overset{\sigma^2_{\text{sym}}}{\longrightarrow} \Gamma, \, U \prec \psi \prec U'$$

- 1 Area Formula: $\int_{\omega} \#(\Lambda_y^{e_d}) d\mathcal{H}^{d-1}(y) = \int_{\Lambda} |\nu_{\Lambda} \cdot e_d| d\mathcal{H}^{d-1} =: I_V(\Lambda)$
- 2 $I_V(\Gamma) = I_V(J_v) \le \liminf_n I_V(J_{v_n}) \le \liminf_n I_V(\Gamma_n) = \mathcal{H}^{d-1}(\omega)$ for $(v_n)_n$, v as in (ii) σ^2_{sym}
- $3\ v_n = \psi \chi_{\Omega_{h_n}} \to \psi \chi_{\Omega_h} \text{ in (i) } \sigma^2_{\text{sym}} \Longrightarrow \Gamma \supset (\partial^* G_\infty \cap U') \cup (\partial^* \Omega_h \cap U' \cap (G_\infty)^0)$

$$4~\mathrm{I}_V(\Gamma) \geq 2\mathcal{H}^{d-1}(\omega_\Psi) + \mathcal{H}^{d-1}(\omega) - \mathcal{H}^{d-1}(\omega_{\Lambda_2}) \geq \mathcal{H}^{d-1}(\omega) + \mathcal{H}^{d-1}(\omega_\psi)$$

2nd step: $\Sigma:=\Gamma\cap\Omega^1_h$ is vertical in $\Omega^1_h,$ i.e. $(\Sigma+te_d)\cap\Omega^1_h\subset\Sigma$

2nd step: $\Sigma := \Gamma \cap \Omega_h^1$ is vertical in Ω_h^1 , i.e. $(\Sigma + te_d) \cap \Omega_h^1 \subset \Sigma$

For $(v_n)_n$, v as in (ii) σ_{sym}^2 , also

$$v_n'(x):=v_n(x',x_d-t)\chi_{\Omega_{h_n}}(x)\to v'(x):=v(x',x_d-t)\chi_{\Omega_h}(x)$$

2nd step: $\Sigma := \Gamma \cap \Omega_h^1$ is vertical in Ω_h^1 , i.e. $(\Sigma + te_d) \cap \Omega_h^1 \subset \Sigma$

For $(v_n)_n$, v as in (ii) σ_{sym}^2 , also

$$v'_n(x) := v_n(x', x_d - t)\chi_{\Omega_{h_n}}(x) \to v'(x) := v(x', x_d - t)\chi_{\Omega_h}(x)$$

((i) in
$$\sigma_{\text{sym}}^2$$
) + $(J_{v'_n} \subset \Gamma_n) \Longrightarrow J_{v'} \subset \Gamma$, so

$$(\Sigma + te_d) \cap \Omega_h^1 = (\Gamma + te_d) \cap \Omega_h^1 = (J_v + te_d) \cap \Omega_h^1 = J_{v'} \cap \Omega_h^1 \subset \Gamma \cap \Omega_h^1 = \Sigma$$

2nd step: $\Sigma := \Gamma \cap \Omega_h^1$ is vertical in Ω_h^1 , i.e. $(\Sigma + te_d) \cap \Omega_h^1 \subset \Sigma$ For $(v_n)_n$, v as in (ii) σ_{sym}^2 , also

$$v'_n(x) := v_n(x', x_d - t)\chi_{\Omega_{h_n}}(x) \to v'(x) := v(x', x_d - t)\chi_{\Omega_h}(x)$$

((i) in
$$\sigma_{\text{sym}}^2$$
) + $(J_{v_n'} \subset \Gamma_n) \Longrightarrow J_{v'} \subset \Gamma$, so

$$(\Sigma+te_d)\cap\Omega^1_h=(\Gamma+te_d)\cap\Omega^1_h=(J_v+te_d)\cap\Omega^1_h=J_{v'}\cap\Omega^1_h\subset\Gamma\cap\Omega^1_h=\Sigma$$

3rd step: For $(v_n)_n$, v as in (ii) σ_{sym}^2 , we apply lsc for voids (surface part) to $E_n = \Omega \setminus \Omega_h$, $E = \Omega \setminus \Omega_h$, $v_n \chi_{\Omega \setminus E_n}$, $v \chi_{\Omega \setminus E}$. Then

$$\mathcal{H}^{d-1}(\partial^*\Omega_h \cap \Omega) + 2\mathcal{H}^{d-1}(\Sigma) \le \liminf_{n \to \infty} \mathcal{H}^{d-1}(\partial \Omega_{h_n})$$

2nd step: $\Sigma := \Gamma \cap \Omega_h^1$ is vertical in Ω_h^1 , i.e. $(\Sigma + te_d) \cap \Omega_h^1 \subset \Sigma$ For $(v_n)_n$, v as in (ii) σ_{sym}^2 , also

$$v'_n(x) := v_n(x', x_d - t)\chi_{\Omega_{h_n}}(x) \to v'(x) := v(x', x_d - t)\chi_{\Omega_h}(x)$$

((i) in
$$\sigma_{\text{sym}}^2$$
) + $(J_{v_n'} \subset \Gamma_n) \Longrightarrow J_{v'} \subset \Gamma$, so

$$(\Sigma + te_d) \cap \Omega^1_h = (\Gamma + te_d) \cap \Omega^1_h = (J_v + te_d) \cap \Omega^1_h = J_{v'} \cap \Omega^1_h \subset \Gamma \cap \Omega^1_h = \Sigma$$

3rd step: For $(v_n)_n$, v as in (ii) σ_{sym}^2 , we apply lsc for voids (surface part) to $E_n = \Omega \setminus \Omega_h$, $E = \Omega \setminus \Omega_h$, $v_n \chi_{\Omega \setminus E_n}$, $v \chi_{\Omega \setminus E}$. Then

$$\mathcal{H}^{d-1}(\partial^*\Omega_h\cap\Omega)+2\mathcal{H}^{d-1}(\Sigma)\leq \liminf_{n\to\infty}\mathcal{H}^{d-1}(\partial\Omega_{h_n})$$

Final step: Lsc for volume part from that for voids +

(i) in
$$\sigma_{\text{sym}}^2$$
 for u_n , $u \Longrightarrow J'_u \cap \Omega^1_h := (J_u + \mathbb{R}e_d) \cap \Omega^1_h \subset \Sigma$

Theorem (C.-Friedrich)

$$G(u, h) = \int_{\Omega_h^+} \mathbb{C} e(u) : e(u) dx + \int_{\omega} \sqrt{1 + |\nabla h(x')|^2} dx'$$

$$\underset{h}{h} \in C^1_m(\omega;[0,M]), \ u|_{\Omega_h^+} \in H^1(\Omega_h^+), \ u=0 \text{ in } (\omega \times \mathbb{R}^+) \backslash \Omega_h^+, \ \ u=u_0 \text{ in } \omega \times (0,1)$$

relaxes into

$$\overline{G}(u, \underline{h}) = \int_{\Omega_h^+} \mathbb{C} e(u) : e(u) \, \mathrm{d}x + \mathcal{H}^{d-1}(\partial^* \Omega_h \cap \Omega) + 2\mathcal{H}^{d-1}(J_u' \cap \Omega_h^1)$$

$$\text{if } u=u\chi_{\Omega_h},\, u=u_0 \text{ in } \omega\times(-1,0),\, \textcolor{red}{h}\in BV_m(\omega;[0,M]),\, \textcolor{red}{J_u'}:=J_u+\mathbb{R}^+e_d,$$

Step 1: smooth function g approximating h (in L^1 -norm) -> possible set with small diffuse measure in Ω_q

For Step 2 clean up the jump set 'remaining below': careful use of 'quantitative' Poincaré-Korn inequality

$$\int_{Q_r} |u - a_r|^2 dx \le Cr \int_{Q_r} |e(u)|^2 dx,$$

Step 1: smooth function g approximating h (in L^1 -norm) -> possible set with small diffuse measure in Ω_q

For Step 2 clean up the jump set 'remaining below': careful use of 'quantitative' Poincaré-Korn inequality

$$\int_{Q_r \setminus \omega_r} |u - a_r|^2 dx \le Cr \int_{Q_r} |e(u)|^2 dx, \quad |\omega_r| \le Cr \mathcal{H}^{d-1}(J_u \cap Q_r)$$

Step 1: smooth function g approximating h (in L^1 -norm) -> possible set with small diffuse measure in Ω_q

For Step 2 clean up the jump set 'remaining below': careful use of 'quantitative' Poincaré-Korn inequality

$$\int_{Q_r \setminus \omega_r} |u - a_r|^2 dx \le Cr \int_{Q_r} |e(u)|^2 dx, \quad |\omega_r| \le Cr \mathcal{H}^{d-1}(J_u \cap Q_r)$$

$$\int_{Q_r''} |e((u\chi_{Q_r'\setminus\omega} + a\chi_\omega) * \varphi_r) - e(u) * \varphi_r|^2 dx \le c \left(\frac{\mathcal{H}^{d-1}(J_u)}{r^{d-1}}\right)^q \int_{Q_r} |e(u)|^2 dx,$$

Step 1: smooth function g approximating h (in L^1 -norm) -> possible set with small diffuse measure in Ω_g

For Step 2 clean up the jump set 'remaining below': careful use of 'quantitative' Poincaré-Korn inequality

$$\int_{Q_r \setminus \omega_r} |u - a_r|^2 dx \le Cr \int_{Q_r} |e(u)|^2 dx, \quad |\omega_r| \le Cr \mathcal{H}^{d-1}(J_u \cap Q_r)$$

$$\int_{Q_r''} |e((u\chi_{Q_r'\setminus\omega} + a\chi_\omega) * \varphi_r) - e(u) * \varphi_r|^2 dx \le c \left(\frac{\mathcal{H}^{d-1}(J_u)}{r^{d-1}}\right)^q \int_{Q_r} |e(u)|^2 dx,$$

Put 0 in cubes with 'large' jump set and with 'small' jump set and 'small' $|\Omega_h^1|$ for verticality

Remarks and other applications

Generalized compactness (Chambolle-C.'20 Preprint)

Let $u_n \in GSBD^2(\Omega)$ with $\int_{\Omega} |e(u_n)|^2 dx + \mathcal{H}^{d-1}(J_{u_n}) < M$. Then there are $\mathcal{P} = (P_j)_j$ a Caccioppoli partition, $(a_n)_n$ with $a_n = \sum_{j \in \mathbb{N}} a_n^j \chi_{P_j}$ and

$$|a_n^j(x) - a_n^i(x)| \to +\infty \quad \text{for -a.e. } x \in \Omega, \text{ for all } i \neq j\,,$$

pw infinitesimal rigid motions, $u \in GSBD^2(\Omega)$ s.t. (up to a subsequence)

$$\begin{split} u_n - a_n &\to u &\quad \text{a.e. in } \Omega\,, \\ \frac{e(u_n) & \rightharpoonup e(u)}{e(u)} &\quad \text{in } L^2(\Omega; \mathbb{M}^{d\times d}_{sym})\,, \\ \mathcal{H}^{d-1}(J_u \cup \partial^*\mathcal{P}) &\leq \liminf_{n \to \infty} \mathcal{H}^{d-1}(J_{u_n})\,. \end{split}$$

• This permits to deal with non-homogeneous bulk energies. Refined σ^2_{sym} -convergence in couples (u, \mathcal{P}) ? Problems in the topology, since we pass to modifications

Remarks and other applications

Generalized compactness (Chambolle-C.'20 Preprint)

Let $u_n \in GSBD^2(\Omega)$ with $\int_{\Omega} |e(u_n)|^2 dx + \mathcal{H}^{d-1}(J_{u_n}) < M$. Then there are $\mathcal{P} = (P_j)_j$ a Caccioppoli partition, $(a_n)_n$ with $a_n = \sum_{j \in \mathbb{N}} a_n^j \chi_{P_j}$ and

$$|a_n^j(x) - a_n^i(x)| \to +\infty$$
 for -a.e. $x \in \Omega$, for all $i \neq j$,

pw infinitesimal rigid motions, $u \in GSBD^2(\Omega)$ s.t. (up to a subsequence)

$$\begin{split} u_n - a_n &\to u &\quad \text{a.e. in } \Omega\,, \\ \frac{e(u_n) & \rightharpoonup e(u)}{e(u)} &\quad \text{in } L^2(\Omega; \mathbb{M}^{d\times d}_{sym})\,, \\ \mathcal{H}^{d-1}(J_u \cup \partial^*\mathcal{P}) &\leq \liminf_{n \to \infty} \mathcal{H}^{d-1}(J_{u_n})\,. \end{split}$$

- This permits to deal with non-homogeneous bulk energies. Refined σ^2_{sym} -convergence in couples (u, \mathcal{P}) ? Problems in the topology, since we pass to modifications
- First application of σ^2 -convergence: existence of quasi-static evolution for non convex elastic energies in brittle fracture

Remarks and other applications

Generalized compactness (Chambolle-C.'20 Preprint)

Let $u_n \in GSBD^2(\Omega)$ with $\int_{\Omega} |e(u_n)|^2 dx + \mathcal{H}^{d-1}(J_{u_n}) < M$. Then there are $\mathcal{P} = (P_j)_j$ a Caccioppoli partition, $(a_n)_n$ with $a_n = \sum_{j \in \mathbb{N}} a_n^j \chi_{P_j}$ and

$$|a_n^j(x) - a_n^i(x)| \to +\infty$$
 for -a.e. $x \in \Omega$, for all $i \neq j$,

pw infinitesimal rigid motions, $u \in GSBD^2(\Omega)$ s.t. (up to a subsequence)

$$\begin{split} u_n - a_n &\to u &\quad \text{a.e. in } \Omega\,, \\ \frac{e(u_n) & \rightharpoonup e(u)}{e(u)} &\quad \text{in } L^2(\Omega; \mathbb{M}^{d \times d}_{sym})\,, \\ \mathcal{H}^{d-1}(J_u \cup \partial^* \mathcal{P}) &\leq \liminf_{n \to \infty} \mathcal{H}^{d-1}(J_{u_n})\,. \end{split}$$

- This permits to deal with non-homogeneous bulk energies. Refined σ^2_{sym} -convergence in couples (u, \mathcal{P}) ? Problems in the topology, since we pass to modifications
- First application of σ^2 -convergence: existence of quasi-static evolution for non convex elastic energies in brittle fracture
- Regularity issues in 3d: even prove that the graph of equilibria is closed is hard

THANK YOU!

Phase-field approximation for Griffith

$$D_{\varepsilon}(u,v) := \int_{\Omega} \left(v \, \mathbb{C}e(u) \colon e(u) + \frac{(1-v)^2}{4 \, \varepsilon} + \varepsilon |\nabla v|^2 \right) \mathrm{d}x \quad \text{ in } H^1_{u_0}(\Omega;\mathbb{R}^d) \times V^1_{\eta_{\varepsilon}}$$

with $V_{\eta_{\varepsilon}}^1 = \{ \eta_{\varepsilon} \leq v \leq 1, \, \operatorname{tr} v = 1 \text{ on } \partial_D \Omega \}, \, H_{u_0}^1 = \{ u \in H^1 \colon \operatorname{tr} u = \operatorname{tr} u_0 \text{ on } \partial_D \Omega \},$

 $\Gamma\text{-converge}$ as $\varepsilon\to 0$ (with $\frac{\eta_\varepsilon}{\varepsilon}\to 0)$ to

$$D(u,1) := \int_{\Omega} \mathbb{C}e(u) : e(u) \, \mathrm{d}x + \mathcal{H}^{d-1}(J_u \cup (\partial_D \Omega \cap \{\operatorname{tr} u \neq \operatorname{tr} u_0\}))$$

Phase-field approximation for \overline{G}

$$W(0) = W(1) = 0, W > 0 \text{ in } (0,1), \frac{1}{c_W} = \int_0^1 \sqrt{2W(s)} \, \mathrm{d}s, \Omega = \omega \times (-1, M+1)$$

$$\begin{split} G_{\varepsilon}(u,v) := \int_{\Omega} \left((v^2 + \eta_{\varepsilon}) f(e(u)) + c_W \left(\frac{W(v)}{\varepsilon} + \frac{\varepsilon}{2} |\nabla v|^2 \right) \right) \mathrm{d}x \\ u \in H^1(\Omega;\mathbb{R}^d) \,, \quad u = u_0 \text{ in } \omega \times (-1,0) \,, \\ v \in H^1(\Omega;[0,1]) \,, \quad v = 1 \text{ in } \omega \times (-1,0) \,, \, v = 0 \text{ in } \omega \times (M,M+1) \quad \partial_d v \leq 0 \text{ a.e. in } \Omega \,, \end{split}$$

"\Gamma-converge" (in the sense that $v_{\varepsilon} \to \chi_{\Omega_h}$) as $\varepsilon \to 0$ to

$$\overline{G}(u, {\color{red}h}) = \int_{\Omega_+^+} \mathbb{C}\,e(u) : e(u)\,\mathrm{d}x + \mathcal{H}^{d-1}(\partial^*\Omega_h \cap \Omega) + 2\mathcal{H}^{d-1}(J_u' \cap \Omega_h^1)$$

if $u = u\chi_{\Omega_h}$, $u = u_0$ in $\omega \times (-1,0)$, $h \in BV_m(\omega; [0,M])$, $J'_u := J_u + \mathbb{R}^+ e_d$

