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Representative Classical Results

Blasche Theorem (1916)
An upper-semicontinuous function u is subharmonic if and only
if

lim sup
ε→0

1
ε2

[∫
∂B(x ,ε)

u(y) dσ(y)− u(x)

]
≥ 0.

Privaloff’s Theorem (1925)
An upper-semicontinuous function u is subharmonic if and only
if

lim sup
ε→0

1
ε2

[∫
B(x ,ε)

u(y) dy − u(x)

]
≥ 0.

Application: The sum of two subharmonic functions is
subharmonic.



Modern Linear results

Case of constant coefficients
If we replace the Laplace equation ∆u = 0 by a linear elliptic
equation with constant coefficients Lu =

∑
i,j aijuxi xj = 0 then

mean value formulas now hold for appropriate ellipsoids
instead of balls.

Linear Subelliptic case
Bonfiglioli and Lanconelli (JEMS 2012) proved extensions of
Blasche and Privalov Theorems to the subelliptic case.
They use a definition of W. Kozakiewicz, Un théorèm sur les
opérateurs et son application à la théorie des Laplacians
généralisés, C.R. Soc. Varsovie 26 (1933), that is equivalent to
the modern notion of viscosity solution.



A view from 30,000 ft

MVP⇐⇒ DPP⇐⇒ PDE
For an appropriate real function u we have a meta-equivalence
among

1 u satisfies a Mean Value Property (in an appropriate
asymptotic sense)

2 u satisfies a Dynamic Programming Principle associated to
a game or control problem

3 u solves a (possibly nonlinear) PDE

Flexibility of this approach
Euclidean spaces, Riemannian manifolds, Sub-Riemannian
manifolds (Heisenberg group), graphs (trees), metric-measure
spaces, parabolic versions.
But limited to scalar R-valued functions.



Example: Trees

A directed tree with regular 3-branching T consists of

• the empty set ∅,
• 3 sequences of length 1 with terms chosen from the set
{0,1,2},

• 9 sequences of length 2 with terms chosen from the set
{0,1,2},

• · · ·
• 3r sequences of length r with terms chosen from the et
{0,1,2}

and so on. The elements of T are called vertices.



Example: Trees



Calculus on Trees
Each vertex v al level r has three children (successors)

v0, v1, v2.

Let u : T 7→ R be a real valued function.

Gradient
The gradient of u at the vertex v is the vector in R3

∇u(v) = {u(v0)− u(v),u(v1)− u(v),u(v2)− u(v)}.

Divergence
The averaging operator or divergence of a vector
X = (x , y , z) ∈ R3 as

div(X ) =
x + y + z

3
.



Harmonic Functions on Trees

Harmonic functions
A function u is harmonic if satisfies the Laplace equation

div(∇u) = 0.

The Mean Value Property
A function u is harmonic if and only if it satisfies the mean value
property

u(v) =
u(v0) + u(v1) + u(v2)

3
.

Thus the values of harmonic function at level r determine its
values at all levels smaller than r .



The boundary of the tree

Branches and boundary
A branch of T is an infinite sequence of vertices, each followed
by one of its immediate successors (this corresponds to the
level r =∞.) The collection of all branches forms the boundary
of the tree T is denoted by ∂T .

The mapping g : ∂T 7→ [0,1] given by

g(b) =
∞∑

r=1

br

3r (also denoted by b)

is (almost) a bijection (think of an expansion in base 3 of the
numbers in [0,1]).



The Dirichlet problem

•We have a natural metric and natural measure in ∂T inherited
from the interval [0,1].
• The classical Cantor set C is the subset of ∂T formed by
branches that don’t go through any vertex labeled 1.

The Dirichlet problem
Given a (continuous) function f : ∂T 7→ R find a harmonic
function u : T 7→ R such that

lim
r→∞

u(br ) = f (b)

for every branch b = (br ) ∈ ∂T .



Dirichlet problem, II

Given a vertex v ∈ T consider the subset of ∂T consisting of all
branches that start at v . This is always an interval that we
denote by Iv .

Solution to the Dirichlet problem, p = 2
The we have

u(v) =
1
|Iv |

∫
Iv

f (b) db.

Note that u is a martingale.
We see that we can in fact solve the Dirichlet problem for
f ∈ L1([0,1]).



Where are the nonlinear PDEs?
Setting

div∞(X ) =
1
2

(max{x , y , z}+ min{x , y , z})

we obtain the∞-Laplacian

div∞ (∇u) = 0

Choose α, β ∈ (0,1) such at α + β = 1 and set

divα,β(X ) =
α

2
(max{x , y , z}+ min{x , y , z}) + β

(
x + y + z

3

)
.

We obtain the (α, β)-Laplacian

divα,β (∇u) = 0.

This operator is the homogeneous (α, β)-Laplacian.



The (homogeneous) p-Laplacian
The equations

div2(∇u) = 0, divp(∇u) = 0, div∞(∇u) = 0

MVP

u(v) =
α

2

(
max

i
{u(vi)}+ min

i
{u(vi)}

)
+β

(
u(v0) + u(v1) + u(v2)

3

)
.

In general we have p = p(α, β, geometry)

1 The case p = 2 corresponds to α = 0, β = 1.
2 The case p =∞ corresponds to α = 1, β = 0.
3 In general, there is no explicit solution formulas for p 6= 2



Formulas for f monotone, p =∞

Suppose that f is monotonically increasing. Let us play
tug-of-war in the tree with pay-off function f . Starting at the
vertex vk at level k

vk = 0.b1b2 . . . bk , bj ∈ {0,1,2}

players always move either left (adding a 0) or right (adding a
1). In this case Iv is a Cantor-like set
Iv = {0.b1b2 . . . bkd1d2 . . .}, dj ∈ {0,2}

Formula for p =∞

u(v) = sup
SI

inf
SII

Ev
SI ,SII

[f (b)] = Ev
S?

I ,S
?
II
[f (b)] =

∫
Iv

f (b)dCv (b)



Mean Value Properties in Rn, I
We start by observing that in order to characterize continuous
harmonic functions it is enough to ask that the mean value
property holds in an asymptotic sense

u(x) =

∫
B(x ,ε)

u(y) dy + o(ε2) as ε→ 0. (1)

In fact, even a weaker viscosity notion suffices.

Lemma
An upper semicontinuous function u : Ω ⊂ Rn → R is
subharmonic in Ω if for every x ∈ Ω and test function φ ∈ C2(Ω)
that touches u from above at x we have that

φ(x) ≤
∫

B(x ,ε)
φ(y) dy + o(ε2) as ε→ 0. (2)

Notice that the characterization (2) gives a simple proof of
Privaloff’s characterization.



Mean Value Properties, II

Lemma (M-Parviainen-Rossi)
Solutions to the p-Laplace equation are characterized by

u(x) =
p − 2

2(p + n)

{
max
B(x ,ε)

u + min
B(x ,ε)

u

}
+

n + 2
n + p

∫
B(x ,ε)

u(y) dy+o(ε2)

(3)
in the viscosity sense, for p in the range 1 < p ≤ ∞.
That is, we have the analogue of Privaloff’s characterization for
p-subharmonic functions by replacing the regular solid average
with the nonlinear average in (3) and using expansions in the
viscosity sense.

Ferrari-Liu-M.
Similar characterization in the Heisenberg group for 1 < p <∞.



Calculus in the Heisenberg group
• H: the Heisenberg group is just R3 with the group

operation for p = (x , y , z) and p′ = (x ′, y ′, z ′) given by

p ? p′ = (x + x ′, y + y ′, z + z ′ +
1
2

(xy ′ − x ′y)).

• X = ∂x − (y/2)∂z , Y = ∂y + (x/2)∂z , and Z = ∂z are a
basis for left-invariant vector fields.

• [X ,Y ] = Z
• For u : H 7→ R, the horizontal gradient of u is the vector

field
∇Hu = (Xu)X + (Yu)Y = (Xu,Yu).

• For F : H 7→ R2, the horizontal divergence of
F = F 1X + F 2Y + F 3Z is the scalar

divH(F ) = XF 1 + YF 2.



Level-sets and Horizonta Mean
Curvature Flow

Take u : H× [0,∞)→ R such that

Γt = {p ∈ H : u(p, t) = 0} for all t ≥ 0.

The horizontal mean curvature of Γt is given by

κH = divH

(
∇Hu
|∇Hu|

)
.

The horizontal normal velocity is

VH =
ut

|∇Hu|
and .

Horizontal mean curvature flow equation

VH = κH



Mean Curvature Flow in the
Heisenberg group

We obtain the level set equation

ut = tr
[(

I − ∇Hu ⊗∇Hu
|∇Hu|2

)
(∇2

Hu)∗
]
.

cf. [Evans-Spruck, ’91] and [Chen-Giga-Goto, ’91] for well-posedness in Rn.



Wellposedness of the Level set
Equation

Problem: Existence and uniqueness of viscosity solutions of

(MCF)

 ut − tr
[(

I − ∇Hu ⊗∇Hu
|∇Hu|2

)
(∇2

Hu)∗
]

= 0 in H× (0,∞)

u(p,0) = u0(p) ∈ BC(H) in H.

Main difficulty lies at the characteristic set (always 6= ∅):

{(p, t) ∈ H × (0,∞) : ∇Hu(p, t) = 0}.

Known Results:

[Capogna-Citti, ’09]: Uniqueness and existence for a special class of
solutions vertically separated at the boundary. [Dirr-Dragoni-Renesse, ’10]:
Existence via a stochastic control



Vertical Axial Symmetry
The function u is spatially symmetry about the vertical axis if

u(x , y , z, t) = u(x ′, y ′, z, t) when (x ′)2 + (y)2 = x2 + y2.

Examples include spheres, tori and other compact surfaces.

Example (A solution initiated from the gauge sphere)
For p = (x , y , z) ∈ H, R > 0

u(p, t) = (x2 + y2)2 + 12t(x2 + y2) + 16z2 + 12t2 − R4

is a solution of (MCF) with

u0(p) = G(p) = |p|4H − R4 = (x2 + y2)2 + 16z2 − R4.

The zero level set of u(·, t) shrinks and disappears in finite time.
Question: Is this solution unique?



Definition of Viscosity Solutions

F (η,Y ) = − tr
((

I − η ⊗ η
|η|2

)
Y
)
, η ∈ R2, Y ∈ R2×2 symmetric

Definition (Definition of subsolutions)
A bounded upper semicontinuous function u is a subsolution in
O ⊂ H× (0,∞) if for any smooth function φ and (p̂, t̂) ∈ O s.t.

max
O

(u − φ) = (u − φ)(p̂, t̂),

the function φ satisfies at (p̂, t̂){
φt + F (∇Hφ, (∇2

Hφ)∗) ≤ 0 if ∇Hφ(p̂, t̂) 6= 0,
φt ≤ 0 if∇Hφ(p̂, t̂) = 0, (∇2

Hφ)∗(p̂, t̂) = 0.



Definition of Viscosity Solutions

F (η,Y ) = − tr
((

I − η ⊗ η
|η|2

)
Y
)
, η ∈ R2, Y ∈ R2×2 symmetric

Definition (Definition of supersolutions)
A bounded lower semicontinuous function u is a supersolution in
O ⊂ H× (0,∞) if for any smooth function φ and (p̂, t̂) ∈ O s.t.

min
O

(u − φ) = (u − φ)(p̂, t̂),

the function φ satisfies at (p̂, t̂){
φt + F (∇Hφ, (∇2

Hφ)∗) ≥ 0 if ∇Hφ(p̂, t̂) 6= 0,
φt ≥ 0 if ∇Hφ(p̂, t̂) = 0, (∇2

Hφ)∗(p̂, t̂) = 0.



Uniqueness for Axisymmetric
Solutions

Theorem (Comparison Theorem)
Let u and v be respectively a subsolution and a supersolution of

ut − tr
[(

I − ∇Hu ⊗∇Hu
|∇Hu|2

)
(∇2

Hu)∗
]

= 0

inH× (0,T ) for any T > 0.
? Assume that u − a and v − b are compactly supported for some
a,b ∈ R with a ≤ b.
?? Assume that one of u or v is spatially axisymmetric about the
vertical axis.
Then, we have that

u(p,0) ≤ v(p,0) for all p ∈ H =⇒ u ≤ v inH× [0,T ).



Strategy for the proof
• Double the variables for u − v and take the auxiliary

function:

u(p, t)−
(

v(qα, sα) + αw(p,qα) + α(t − sα)2 +
σ

T − t

)
,

where α > 0 large, σ > 0 small and w is of class C2.
• Consider the maximizer (pα, tα,qα, sα) and get test

functions of (p, t).
• Compare the viscosity inequalities and derive a

contradiction.

It is helpful if we have w satisfying

(1) ∇pw(p,q) = −∇qw(p,q);

(2) ∇pw(p,q) = 0 ⇒ ∇2
pw(p,q) = 0.

The Euclidean choice is w(p,q) = |p − q|4.
Neither |p · q−1|4 nor |q−1 · p|4 works in the Heisenberg group.



Axial Symmetry

Lemma (Tests for axisymmetric solutions)
Let u be a axisymmetric subsolution. Suppose that there exists
(p̂, t̂) ∈ O ⊂ H× (0,∞) and φ ∈ C2(O) such that

max
O

(u − φ) = (u − φ)(p̂, t̂)

If p̂ = (x̂ , ŷ , ẑ) satisfies x̂2 + ŷ2 6= 0, then there exists k ∈ R such
that

∂

∂x
φ(p̂, t̂) = x̂k and

∂

∂y
φ(p̂, t̂) = ŷk .

The choice w(p,q) = |p · q−1|4 now works for the proof.



Existence by Discrete Games

• p: starting position
• ε > 0: step size
• u0: objective function

• t : duration of the game
• N(= [t/ε2]): total steps

Player I and Player II follow the repeated rules below.

(1) Player I chooses in H a unit horizontal vector v , i.e.,
v = (x , y ,0) satisfying |v |2 = 1.

(2) Player II chooses b = ±1;
(3) The marker is moved from

p 7→ p.e
√

2εbv ,

which is denoted simply by p · (
√

2εbv).



Existence by Discrete Games, II

• The game states are p = y0, y1, . . . , yN .

• The game value is

uε(p, t) := min
v1

max
b1

min
v2

max
b2

. . .min
vN

max
bN

u0(yN).

uε(p, t) = min
v1

max
b1

uε
(

p · (
√

2εb1v1), t − ε2
)
.

• Dynamic Programming Principle

uε(p, t) = minv∈S1
H

maxb=±1 uε
(

p · (
√

2εbv), t − ε2
)



Existence by Discrete Games, III

Theorem (Existence theorem by games)
Assume that u0 is uniformly continuous function inH and is constant
c ∈ R outside a compact set. Assume also that u0 is spatially
axisymmetric about the vertical axis. Let uε be the associated game
value. Then uε converges, as ε→ 0, to the unique axisymmetric
viscosity solution of (MCF) uniformly on compacta ofH× [0,∞).



Finite-time Extinction

Theorem
Suppose that {Γt}t≥0 denotes an axisymmetric surface evolving
by the horizontal mean curvature flow. If Γ0 ⊂ Br for some
r > 0, then we have that Γt = ∅ for t > r2/

√
12.

Here Br is the so-called Korány ball

Br = {p = (x , y , z) : (x2 + y2)2 + z2 < r4}.

The proof is based on the comparison with evolution from ∂Br .



Asymptotic Profile

Theorem
If Γt ⊂ H (t ≥ 0) is the horizontal mean curvature flow with
initial condition a Korány sphere Γ0 = {p ∈ H : |p| = r}. Then
the the normalized flow

Γt√
r4 − 12t2

→ ET

as t → T , where ET is given by

ET := {p ∈ H : 12T (x2 + y2) + 16z2 = 1}.

and the extinction time T = r2
√

12
.




