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!D. Blazevski and R. de la Llave, Time-dependent scattering theory for
ODEs and applications to reaction dynamics, Journal of Physics A:
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functions, i.e. F(/,0) =60 or F(/,0) =1.
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H(t)U(t) we can

(uy|slu_) = / )stou_(x)dx (2.19)

Theory: does this probabilistically.

Existence,
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L m For Hamiltonians H = Hy + €H; one can prove that
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;
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clomleltintg 1 1 1
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m And consider the time-dependent perturbation 2
H = Hy + &£(t) exp(—ax® — By?) (3.2)

and £(t) is smooth and supported in [—4.2,4.2].

m Hp has 3 unstable fixed points and according to transition
state theory their stable and unstable manifolds separate
regions of phase space leading to an outcome of a reaction
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25, Kawai, A. Bandrauk, C. Jaffe, T. Bartsch, J. Palacian, and T. Uzer,
Transition state theory for laser-driven reactions, The Journal of Chemical
Physics 126 (2007), no. 16, 164306
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m In this case, we have QE = Ui’T V%[T, where T = 4.2

m Recall Ny, = (Q%)7}(My,), and thus the invariant objects
are obtained by integrating trajectories for a finite time
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Unperturbed invariant objects

Classical
scattering
theory and . . .

el @ m We fix the energy to be e = 1/12 and consider a Poincare
computing .
invariant section
manifolds in
chemistry
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Applications m That is, we take initial condition (0, y, px(y, py), py) and
o chemistry i yo.
compute “crossings”, i.e. when x = 0.



Perturbed invariant objects

Classical We use the conjugacy Qj‘f with tg = —4.2 3

scattering
theory and
applications to
computing
invariant
manifolds in
chemistry

perturbed

EE=Ecscech

.

Applications

to chemistry D(_y7 py) = H (Q:(_)

) Lo Id|| Symmetry is broken

3D. Blazevski and J. Franklin, Classical scattering theory and invariant
manifolds for the laser-driven henon-heiles system, In:preparation
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could explain the formation of trans-Neptunian binaries
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m Extension to infinite dimensions, e.g. new results for
Schroedinger's equation
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“A. G. Sudrez, D. Hestroffer, and D. Farrelly, Formation of the extreme
Kuiper-belt binary 2001 QW s2o through adiabatic switching of orbital element
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Thank You!

Classical
scattering
theory and

applications to
computing
invariant
manifolds in
chemistry

Thank you for your attention!
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