D. Blazevski

Background: Definitions o the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry Classical scattering theory and applications to computing invariant manifolds in chemistry

Daniel Blazevski^{1,2} joint with Rafael de la Llave² and Jennifer Franklin ¹

¹Department of Mathematics UT-Austin

²Department of Mathematics Georgia Institute of Technology

February 23, 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Table of contents

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions o the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

1 Background: Definitions of the wave and scattering maps

2 Theory: Existence, intertwining relations, and perturbative calculations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

3 Applications to chemistry

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry ■ We consider a general vector field U in ℝⁿ subject to a perturbation P that is localized in time

$$\mathcal{V}(x,t) = \mathcal{U}(x,t) + \mathcal{P}(x,t) \tag{1.1}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry ■ We consider a general vector field U in ℝⁿ subject to a perturbation P that is localized in time

$$\mathcal{V}(x,t) = \mathcal{U}(x,t) + \mathcal{P}(x,t) \tag{1.1}$$

• where, for instance, $|\mathcal{P}(x,t)| \leq Ce^{-\lambda|t|}$, \mathcal{P} is compactly supported in time, etc.

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

■ We consider a general vector field U in ℝⁿ subject to a perturbation P that is localized in time

$$\mathcal{V}(x,t) = \mathcal{U}(x,t) + \mathcal{P}(x,t) \tag{1.1}$$

- where, for instance, $|\mathcal{P}(x,t)| \leq Ce^{-\lambda|t|}$, \mathcal{P} is compactly supported in time, etc.
- We expect the flow U^t_{t0} of U to behave like the flow V^t_{t0} of V for |t| large

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry ■ We consider a general vector field U in ℝⁿ subject to a perturbation P that is localized in time

$$\mathcal{V}(x,t) = \mathcal{U}(x,t) + \mathcal{P}(x,t) \tag{1.1}$$

- where, for instance, $|\mathcal{P}(x,t)| \leq Ce^{-\lambda|t|}$, \mathcal{P} is compactly supported in time, etc.
- We expect the flow U^t_{t0} of U to behave like the flow V^t_{t0} of V for |t| large
- Example: Laser-manipulated chemical reactions

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

■ We consider a general vector field U in ℝⁿ subject to a perturbation P that is localized in time

$$\mathcal{V}(x,t) = \mathcal{U}(x,t) + \mathcal{P}(x,t) \tag{1.1}$$

- where, for instance, $|\mathcal{P}(x,t)| \leq Ce^{-\lambda|t|}$, \mathcal{P} is compactly supported in time, etc.
- We expect the flow $U_{t_0}^t$ of \mathcal{U} to behave like the flow $V_{t_0}^t$ of \mathcal{V} for |t| large
- Example: Laser-manipulated chemical reactions
- Example: A satellite being perturbed by the passage of an asteroid or comet

The Wave and scattering maps

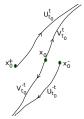
Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry We make precise the notion that the V^t_{t0} behaves like U^t_{t0} for large |t|.



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

The Wave and scattering maps

Classical scattering theory and applications to computing invariant manifolds in chemistry

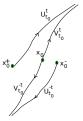
D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

We make precise the notion that the V^t_{t0} behaves like U^t_{t0} for large |t|.



• The wave maps compute x_0^+ and x_0^- knowing x_0

$$\Omega_{\pm}^{t_0} = \lim_{T \to \pm \infty} U_T^{t_0} \circ V_{t_0}^T$$
(1.2)

(日)、

The Wave and scattering maps

Classical scattering theory and applications to computing invariant manifolds in chemistry

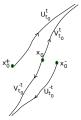
D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

We make precise the notion that the V^t_{t0} behaves like U^t_{t0} for large |t|.



• The wave maps compute x_0^+ and x_0^- knowing x_0

$$\Omega_{\pm}^{t_0} = \lim_{T \to \pm \infty} U_T^{t_0} \circ V_{t_0}^T$$
(1.2)

• The scattering map takes x_0^- to x_0^+

$$s^{t_0} = \Omega^{t_0}_+ \circ \left(\Omega^{t_0}_-\right)^{-1} \tag{1.3}$$

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

The Omega maps exist when, roughly speaking, the decay rate of *P* is larger than the growth rate ||*DU*^t_{t0}|| of *U*^t_{t0}
 (More Later!)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- The Omega maps exist when, roughly speaking, the decay rate of *P* is larger than the growth rate ||*DU*^t_{t0}|| of *U*^t_{t0}
 (More Later!)
- Implications of the existence of the Omega maps: The intertwining relations

$$\Omega^s_{\pm} \circ V^s_{t_0} = U^s_{t_0} \circ \Omega^{t_0}_{\pm} \tag{2.1}$$

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- The Omega maps exist when, roughly speaking, the decay rate of *P* is larger than the growth rate ||*DU*^t_{t0}|| of *U*^t_{t0}
 (More Later!)
- Implications of the existence of the Omega maps: The intertwining relations

$$\Omega^s_{\pm} \circ V^s_{t_0} = U^s_{t_0} \circ \Omega^{t_0}_{\pm} \tag{2.1}$$

• We then obtain the time-dependent conjugacy: $V_{t_0}^s = (\Omega_{\pm}^s)^{-1} \circ U_{t_0}^s \circ \Omega_{\pm}^{t_0}$

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- The Omega maps exist when, roughly speaking, the decay rate of *P* is larger than the growth rate ||*DU*^t_{t0}|| of *U*^t_{t0} (More Later!)
- Implications of the existence of the Omega maps: The intertwining relations

$$\Omega^s_{\pm} \circ V^s_{t_0} = U^s_{t_0} \circ \Omega^{t_0}_{\pm} \tag{2.1}$$

- We then obtain the time-dependent conjugacy: $V_{t_0}^s = (\Omega_{\pm}^s)^{-1} \circ U_{t_0}^s \circ \Omega_{\pm}^{t_0}$
- If we "automonize" the flows, one can show that the flows $U_{t_0}^t$ and $V_{t_0}^t$ are conjugate in the extended phase space.

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

■ First consider the example: Let *U* be an autonomous flow and *x*₀ a fixed point.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- First consider the example: Let *U* be an autonomous flow and *x*₀ a fixed point.
- Question: what is the corresponding object in the for the non-autonomous flow V^t_{to}?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- First consider the example: Let *U* be an autonomous flow and *x*₀ a fixed point.
- Question: what is the corresponding object in the for the non-autonomous flow V^t_{to}?
- For each starting time, we have a point $\bar{x}_0(t_0)$ that satisfies

$$V_{t_0}^t(\bar{x}_0(t_0)) = \bar{x}_0(t) \tag{2.2}$$

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- First consider the example: Let *U* be an autonomous flow and *x*₀ a fixed point.
- Question: what is the corresponding object in the for the non-autonomous flow V^t_{t0}?
- For each starting time, we have a point $\bar{x}_0(t_0)$ that satisfies

$$V_{t_0}^t(\bar{x}_0(t_0)) = \bar{x}_0(t) \tag{2.2}$$

This property is called *Time-dependent invariance*

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- First consider the example: Let *U* be an autonomous flow and *x*₀ a fixed point.
- Question: what is the corresponding object in the for the non-autonomous flow V^t_{t0}?
- For each starting time, we have a point $\bar{x}_0(t_0)$ that satisfies

$$V_{t_0}^t(\bar{x}_0(t_0)) = \bar{x}_0(t) \tag{2.2}$$

- This property is called *Time-dependent invariance*
- If x₀ is hyperbolic and has stable and unstable manifolds W^s(x₀), W^u(x₀) then there are corresponding time dependent invariant stable manifolds W^s_{t0}(x
 ₀(t₀)), W^u_{t0}(x
 ₀(t₀))

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

 A more general notion: Start with a *time-dependent* normally hyperbolic invariant manifold (TDNHIM) of U^t_{t0}, i.e. a "normally hyperbolic" family M_{t0} satisfying

$$U_{t_0}^t(M_{t_0}) = M_t \tag{2.3}$$

Proposition

Let M_{t_0} be a TDNHIM for $U_{t_0}^t$ and assume that $\Omega_{\pm}^{t_0}$ exist. Then

$$N_{t_0}^{\pm} := \left(\Omega_{\pm}^{t_0}\right)^{-1} (M_{t_0})$$
(2.4)

is a TDNHIM for $V_{t_0}^t$. Similarly, $\Omega_{t_0}^{\pm}$ takes the stable and unstable manifolds of M_{t_0} to those of N_{t_0} .

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

 A more general notion: Start with a *time-dependent* normally hyperbolic invariant manifold (TDNHIM) of U^t_{t0}, i.e. a "normally hyperbolic" family M_{t0} satisfying

$$U_{t_0}^t(M_{t_0}) = M_t \tag{2.3}$$

Proposition

Let M_{t_0} be a TDNHIM for $U_{t_0}^t$ and assume that $\Omega_{\pm}^{t_0}$ exist. Then

$$N_{t_0}^{\pm} := \left(\Omega_{\pm}^{t_0}\right)^{-1} (M_{t_0}) \tag{2.4}$$

is a TDNHIM for $V_{t_0}^t$. Similarly, $\Omega_{t_0}^{\pm}$ takes the stable and unstable manifolds of M_{t_0} to those of N_{t_0} .

Since (Ω^{t₀}_±)⁻¹ ≈ V^{t₀}_T ∘ U^T_{t₀} one can use this to numerically compute invariant objects for V^t_{t₀}

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry To determine when Ω^{t₀}₊ exist, we consider the truncations of the limiting sequence:

$$\Omega_{+}^{t_{0},T} := U_{T}^{t_{0}} \circ V_{t_{0}}^{T}$$
(2.5)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry To determine when Ω^{t₀}₊ exist, we consider the truncations of the limiting sequence:

$$\Omega_{+}^{t_{0},T} := U_{T}^{t_{0}} \circ V_{t_{0}}^{T}$$
(2.5)

We show that the sequence {Ω^{t₀,N}₊} is Cauchy in C^k(B_R) for every ball B_R.

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry To determine when Ω^{t₀}₊ exist, we consider the truncations of the limiting sequence:

$$\Omega_{+}^{t_{0},T} := U_{T}^{t_{0}} \circ V_{t_{0}}^{T}$$
(2.5)

- We show that the sequence {Ω^{t₀,N}₊} is Cauchy in C^k(B_R) for every ball B_R.
- By the fundamental theorem of calculus we have

$$\Omega^{t_0, T+1}_+ - \Omega^{t_0, T}_+ = \int_T^{T+1} \frac{d}{d\sigma} \Omega^{t_0, \sigma}_+ d\sigma$$
 (2.6)

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

To determine when Ω^{t₀}₊ exist, we consider the truncations of the limiting sequence:

$$\Omega_{+}^{t_{0},T} := U_{T}^{t_{0}} \circ V_{t_{0}}^{T}$$
(2.5)

- We show that the sequence $\{\Omega_+^{t_0,N}\}$ is Cauchy in $C^k(B_R)$ for every ball B_R .
- By the fundamental theorem of calculus we have

$$\Omega^{t_0, T+1}_+ - \Omega^{t_0, T}_+ = \int_T^{T+1} \frac{d}{d\sigma} \Omega^{t_0, \sigma}_+ d\sigma$$
 (2.6)

We deduce that

$$\sum_{N>t_0} \left\| \Omega_+^{t_0,N+1} - \Omega_+^{t_0,N} \right\| \le \int_{t_0}^{\infty} \left\| \frac{d}{d\sigma} \Omega_+^{t_0,\sigma} \right\| d\sigma \qquad (2.7)$$

Computing
$$\frac{d}{d\sigma}\Omega^{t_0,\sigma}_+$$
 where $\Omega^{t_0,\sigma}_+ = U^{t_0}_{\sigma} \circ V^{\sigma}_{t_0}$

.

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry We just saw that if

$$\int_{t_0}^{\infty} \left\| \frac{d}{d\sigma} \Omega_+^{t_0,\sigma} \right\| d\sigma < \infty$$
 (2.8)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

Then $\Omega^{t_0}_+$ exists

Computing
$$rac{d}{d\sigma}\Omega^{t_0,\sigma}_+$$
 where $\Omega^{t_0,\sigma}_+ = U^{t_0}_\sigma \circ V^\sigma_{t_0}$

D. Blazevski

Background: Definitions o the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry We just saw that if

$$\int_{t_0}^{\infty} \left\| \frac{d}{d\sigma} \Omega_+^{t_0,\sigma} \right\| d\sigma < \infty$$
 (2.8)

Then $\Omega^{t_0}_+$ exists

 Ω^{t₀,σ}₊ is one-parameter (in σ) family of diffoemorphisms and we can define its *Generator* O⁺ by

$$\mathcal{O}_{\sigma}^{+}(\Omega_{+}^{t_{0},\sigma}(x)) = \frac{d}{d\sigma}\Omega_{+}^{t_{0},\sigma}(x)$$
(2.9)

Computing
$$rac{d}{d\sigma}\Omega^{t_0,\sigma}_+$$
 where $\Omega^{t_0,\sigma}_+ = U^{t_0}_\sigma \circ V^\sigma_{t_0}$

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

We just saw that if

$$\int_{t_0}^{\infty} \left\| \frac{d}{d\sigma} \Omega_+^{t_0,\sigma} \right\| d\sigma < \infty$$
 (2.8)

Then $\Omega^{t_0}_+$ exists

 Ω^{t₀,σ} is one-parameter (in σ) family of diffoemorphisms and we can define its *Generator* O⁺ by

$$\mathcal{O}_{\sigma}^{+}(\Omega_{+}^{t_{0},\sigma}(x)) = \frac{d}{d\sigma}\Omega_{+}^{t_{0},\sigma}(x)$$
(2.9)

Note that the generator of V^σ_{t0} is simply V_σ and we can use *Deformation theory* to compute the generators of compositions (e.g. U^{t0}_σ ∘ V^σ_{t0}) and inverses (e.g U^{t0}_σ = (U^σ_{t0})⁻¹)

Existence result

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

Theorem

¹ Suppose that

$$I_{\pm}(t_0) := \int_{t_0}^{\pm \infty} \| \left(DU_{\sigma}^{t_0} \left(\mathcal{V}_{\sigma} - \mathcal{U}_{\sigma} \right) \right) \circ V_{t_0}^{\sigma} \|_{C^k(B_R)} d\sigma < \infty$$

$$(2.10)$$

Then the wave maps exist and are in $C^k(B_R)$ for all R.

¹D. Blazevski and R. de la Llave, *Time-dependent scattering theory for ODEs and applications to reaction dynamics*, Journal of Physics A: Mathematical and Theoretical **44** (2011), no. 19, 195101

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

$$I_{\pm}(t_0) = \int_{t_0}^{\pm\infty} \| \left(DU_{\sigma}^{t_0} \left(\mathcal{V}_{\sigma} - \mathcal{U}_{\sigma} \right) \right) \circ V_{t_0}^{\sigma} \|_{C^k(B_R)} d\sigma < \infty$$

・ロト ・ 四ト ・ ヨト ・ ヨト

æ.

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions o the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

$$I_{\pm}(t_0) = \int_{t_0}^{\pm \infty} \| \left(DU_{\sigma}^{t_0} \left(\mathcal{V}_{\sigma} - \mathcal{U}_{\sigma} \right) \right) \circ V_{t_0}^{\sigma} \|_{\mathcal{C}^k(B_R)} d\sigma < \infty$$

 \blacksquare This holds if $\mathcal{P}_{\sigma}=\mathcal{V}_{\sigma}-\mathcal{U}_{\sigma}$ is compactly supported in σ

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

$$I_{\pm}(t_0) = \int_{t_0}^{\pm\infty} \| \left(DU_{\sigma}^{t_0} \left(\mathcal{V}_{\sigma} - \mathcal{U}_{\sigma} \right) \right) \circ V_{t_0}^{\sigma} \|_{\mathcal{C}^k(B_R)} d\sigma < \infty$$

• This holds if $\mathcal{P}_{\sigma} = \mathcal{V}_{\sigma} - \mathcal{U}_{\sigma}$ is compactly supported in σ • If $\|DU_{t_0}^t\| \leq Ce^{\mu t}$ and $|\mathcal{P}| \leq Ce^{-\lambda t}$ with $\mu < \lambda$

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

$$I_{\pm}(t_0) = \int_{t_0}^{\pm \infty} \| \left(DU_{\sigma}^{t_0} \left(\mathcal{V}_{\sigma} - \mathcal{U}_{\sigma} \right) \right) \circ V_{t_0}^{\sigma} \|_{C^k(B_R)} d\sigma < \infty$$

• This holds if $\mathcal{P}_{\sigma} = \mathcal{V}_{\sigma} - \mathcal{U}_{\sigma}$ is compactly supported in σ

• If
$$\|DU_{t_0}^t\| \leq Ce^{\mu t}$$
 and $|\mathcal{P}| \leq Ce^{-\lambda t}$ with $\mu < \lambda$

• If
$$||DU_{t_0}^t|| \leq Ct$$
 and $|\mathcal{P}| \leq C/(1+t^3)$

Invertibility, or asymptotic completeness

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

• When are $\Omega_{\pm}^{t_0}$ invertible?

Invertibility, or asymptotic completeness

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- When are $\Omega_{\pm}^{t_0}$ invertible?
- The intertwining relations imply: $\Omega^s_+ = U^s_{t_0} \circ \Omega^{t_0}_+ \circ V^{t_0}_s$

Invertibility, or asymptotic completeness

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- When are $\Omega^{t_0}_{\pm}$ invertible?
- The intertwining relations imply: $\Omega^{s}_{+} = U^{s}_{t_{0}} \circ \Omega^{t_{0}}_{+} \circ V^{t_{0}}_{s}$
 - Thus, invertibility for one t₀ implies invertibility for all s

Invertibility, or asymptotic completeness

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- When are $\Omega^{t_0}_{\pm}$ invertible?
- The intertwining relations imply: $\Omega^s_+ = U^s_{t_0} \circ \Omega^{t_0}_+ \circ V^{t_0}_s$
 - Thus, invertibility for one t_0 implies invertbility for all s
- Recall that we have

$$\Omega_{+}^{t_0,t} - \Omega_{+}^{t_0,s} = \int_{s}^{t} \frac{d}{d\sigma} \Omega_{+}^{\sigma} d\sigma \qquad (2.11)$$

Invertibility continued

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

$$\Omega^{t_0,t}_+ - \Omega^{t_0,s}_+ = \int_s^{t_0} rac{d}{d\sigma} \Omega^\sigma_+ d\sigma$$

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

æ.

Invertibility continued

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevsk

Background: Definitions o the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

$$\Omega^{t_0,t}_+ - \Omega^{t_0,s}_+ = \int_s^{t_0} rac{d}{d\sigma} \Omega^\sigma_+ d\sigma$$

• If $s = t_0$ then $\Omega^{t_0,t_0}_+(x) = x$ and we let $t \to \infty$

$$\|\Omega_{+}^{t_{0}} - \mathsf{Id}\| \leq I(t_{0}) = \int_{t_{0}}^{\infty} \|\left(DU_{\sigma}^{t_{0}}\left(\mathcal{V}_{\sigma} - \mathcal{U}_{\sigma}\right)\right) \circ V_{t_{0}}^{\sigma}\|d\sigma$$
(2.12)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Invertibility continued

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevsk

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

$$\Omega^{t_0,t}_+ - \Omega^{t_0,s}_+ = \int_s^{t_0} rac{d}{d\sigma} \Omega^\sigma_+ d\sigma$$

• If $s = t_0$ then $\Omega^{t_0,t_0}_+(x) = x$ and we let $t \to \infty$

$$\|\Omega_{+}^{t_{0}} - \mathsf{Id}\| \leq I(t_{0}) = \int_{t_{0}}^{\infty} \|\left(DU_{\sigma}^{t_{0}}\left(\mathcal{V}_{\sigma} - \mathcal{U}_{\sigma}\right)\right) \circ V_{t_{0}}^{\sigma}\|d\sigma$$
(2.12)

• Thus if $I(t_0) \to 0$ as $t_0 \to \infty$ then $\Omega^{t_0}_+$ becomes closer to the identity, and hence invertible

Proposition

If $\lim_{t_0\to\infty} I(t_0) = 0$ then $\Omega^{t_0}_+$ is invertible for all t_0

Perturbative calculations

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

• We will now consider the case of

$$\mathcal{V}_t^{\epsilon} = \mathcal{U}_t + \epsilon \mathcal{P}_t \tag{2.13}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

and expand $s_{\epsilon}^{t_0}$ in epsilon.

Perturbative calculations

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

• We will now consider the case of

$$\mathcal{V}_t^{\epsilon} = \mathcal{U}_t + \epsilon \mathcal{P}_t \tag{2.13}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

and expand $s_{\epsilon}^{t_0}$ in epsilon.

We write

$$s_{\epsilon}^{t_0} = \operatorname{Id} + \epsilon \left(\frac{d}{d\epsilon} s_{t_0}^{\epsilon} \right) + \mathcal{O}(\epsilon^2)$$
 (2.14)

Perturbative calculations

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

• We will now consider the case of

$$\mathcal{V}_t^{\epsilon} = \mathcal{U}_t + \epsilon \mathcal{P}_t \tag{2.13}$$

and expand $s_{\epsilon}^{t_0}$ in epsilon.

We write

$$s_{\epsilon}^{t_0} = \operatorname{Id} + \epsilon \left(\frac{d}{d\epsilon} s_{t_0}^{\epsilon} \right) + \mathcal{O}(\epsilon^2)$$
 (2.14)

 Again use deformation theory, though this time with respect to *ε*. Generator for V_ε is given using the variation of parameters formula

Fermi's Golden Rule

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry Let $U_{t_0}^t$ be the flow for the Hamiltonian H_0 and $V(\epsilon)$ the flow for $H = H_0 + \epsilon h$.

Theorem

Suppose that the wave maps $s_{\epsilon}^{t_0}$ exists and is smooth. Then $s_{\epsilon}^{t_0}$ is the time- ϵ map of the Hamiltonian

$$S_{\epsilon}^{t_0} = \lim_{T \to \infty} \int_{-T}^{T} h \circ V_{T}^{\sigma}(\epsilon) \circ U_{t_0}^{T} d\sigma \qquad (2.15)$$

Corollary

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

Corollary

As a consequence

$$s_{\epsilon}^{t_0} = Id + \epsilon J \nabla S_0^{t_0} + \mathcal{O}(\epsilon^2)$$
 (2.16)

and if F is any observable

$$F \circ s_{\epsilon}^{t_0} = F + \epsilon \left\{ F, S_0^{t_0} \right\} + \mathcal{O}(\epsilon^2)$$
(2.17)

Note that

$$S_0^{t_0} = \lim_{T \to \infty} \int_{-T}^{T} h \circ U_{t_0}^{\sigma} d\sigma$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

• Application to perturbations of integrable systems: $H(I, \theta) = H_0(I) + \epsilon h(I, \theta)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry Application to perturbations of integrable systems:
 H(I, θ) = H₀(I) + ϵh(I, θ)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• For H_0 the action I is conserved: $(I(t), \theta(t)) = (I_0, \theta_0 + \nabla H_0(I_0)t)$

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- Application to perturbations of integrable systems: $H(I, \theta) = H_0(I) + \epsilon h(I, \theta)$
- For H_0 the action I is conserved: $(I(t), \theta(t)) = (I_0, \theta_0 + \nabla H_0(I_0)t)$
- Using averaging or KAM theory one can estimate the slow variable *l*_ϵ(*t*) for the perturbed system for |*t*| large

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- Application to perturbations of integrable systems: $H(I, \theta) = H_0(I) + \epsilon h(I, \theta)$
- For H_0 the action I is conserved: $(I(t), \theta(t)) = (I_0, \theta_0 + \nabla H_0(I_0)t)$
- Using averaging or KAM theory one can estimate the slow variable $I_{\epsilon}(t)$ for the perturbed system for |t| large
- Using scattering theory we can compute the change in any variable, fast or slow, using

$$F \circ s_{\epsilon}^{t_0} = F + \epsilon \left\{ F, S_0^{t_0} \right\} + \mathcal{O}(\epsilon^2)$$
 (2.18)

which holds for *any* observable, including the coordinate functions, i.e. $F(I, \theta) = \theta$ or $F(I, \theta) = I$.

Comparison to quantum mechanics

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry • For Schroedinger's equation: $i\partial_t U(t) = H(t)U(t)$ we can still define the wave maps $\Omega^{t_0}_+$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Comparison to quantum mechanics

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- For Schroedinger's equation: $i\partial_t U(t) = H(t)U(t)$ we can still define the wave maps $\Omega_+^{t_0}$
- Classically, s^t₀ computes the asymptotic future knowing the asymptotic past, and quantum mechanically we have

$$\langle u_+|s^{t_0}|u_-\rangle = \int u_+(x)\overline{s^{t_0}u_-(x)}dx$$
 (2.19)

does this probabilistically.

Comparison to quantum mechanics

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- For Schroedinger's equation: $i\partial_t U(t) = H(t)U(t)$ we can still define the wave maps $\Omega^{t_0}_+$
- Classically, s₀^t computes the asymptotic future knowing the asymptotic past, and quantum mechanically we have

$$\langle u_+|s^{t_0}|u_-\rangle = \int u_+(x)\overline{s^{t_0}u_-(x)}dx$$
 (2.19)

does this probabilistically.

• For Hamiltonians $H = H_0 + \epsilon H_1$ one can prove that

$$\mathbf{s}_{\epsilon}^{t_0} = \mathbf{s}_0^{t_0} + \epsilon \lim_{T \to \infty} U_T^{t_0} \left(\int_{-T}^T i \mathcal{H}_1 U_{t_0}^T d\mathbf{s} \right) U_T^{t_0} + \mathcal{O}(\epsilon^2)$$
(2.20)

Application: Numerics for invariant manifolds in chemistry

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions o the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

We start with the Henon-Heiles Hamiltonian

$$H_0(x, y, p_x, p_y) = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$$
(3.1)

²S. Kawai, A. Bandrauk, C. Jaffe, T. Bartsch, J. Palacian, and T. Uzer, *Transition state theory for laser-driven reactions*, The Journal of Chemical Physics **126** (2007), no. 16, 164306

Application: Numerics for invariant manifolds in chemistry

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions o the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

We start with the Henon-Heiles Hamiltonian

$$H_0(x, y, p_x, p_y) = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$$
(3.1)

And consider the time-dependent perturbation ²

$$H = H_0 + \mathcal{E}(t) \exp(-\alpha x^2 - \beta y^2)$$
(3.2)

and $\mathcal{E}(t)$ is smooth and supported in [-4.2, 4.2].

²S. Kawai, A. Bandrauk, C. Jaffe, T. Bartsch, J. Palacian, and T. Uzer, *Transition state theory for laser-driven reactions*, The Journal of Chemical Physics **126** (2007), no. 16, 164306

Application: Numerics for invariant manifolds in chemistry

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

We start with the Henon-Heiles Hamiltonian

$$H_0(x, y, p_x, p_y) = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$$
(3.1)

And consider the time-dependent perturbation ²

$$H = H_0 + \mathcal{E}(t) \exp(-\alpha x^2 - \beta y^2)$$
(3.2)

and $\mathcal{E}(t)$ is smooth and supported in [-4.2, 4.2].

 H₀ has 3 unstable fixed points and according to *transition* state theory their stable and unstable manifolds separate regions of phase space leading to an outcome of a reaction

²S. Kawai, A. Bandrauk, C. Jaffe, T. Bartsch, J. Palacian, and T. Uzer, *Transition state theory for laser-driven reactions*, The Journal of Chemical Physics **126** (2007), no. 16, 164306

Application continued

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions o the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

We use scattering theory to compute invariant object for the laser-driven system knowing the invariant object for unperturbed system

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Application continued

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- We use scattering theory to compute invariant object for the laser-driven system knowing the invariant object for unperturbed system
- In this case, we have $\Omega^{t_0}_{\pm} = U^{t_0}_{\pm T} V^{\pm T}_{t_0}$, where T = 4.2

Application continued

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- We use scattering theory to compute invariant object for the laser-driven system knowing the invariant object for unperturbed system
- In this case, we have $\Omega^{t_0}_{\pm} = U^{t_0}_{\pm T} V^{\pm T}_{t_0}$, where T = 4.2
- Recall $N_{t_0} = (\Omega_{\pm}^{t_0})^{-1}(M_{t_0})$, and thus the invariant objects are obtained by integrating trajectories for a finite time

Unperturbed invariant objects

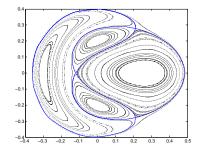
Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry • We fix the energy to be e = 1/12 and consider a Poincare section



(日)、

э

Unperturbed invariant objects

Classical scattering theory and applications to computing invariant manifolds in chemistry

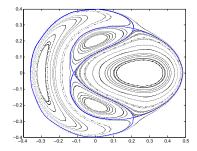
D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

• We fix the energy to be e = 1/12 and consider a Poincare section



■ That is, we take initial condition (0, y, p_x(y, p_y), p_y) and compute "crossings", i.e. when x = 0.

Perturbed invariant objects

Classical scattering theory and applications to computing invariant manifolds in chemistry

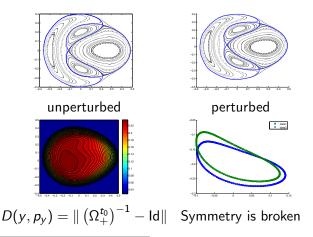
D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

We use the conjugacy $\Omega_+^{t_0}$ with $t_0=-4.2$ 3



³D. Blazevski and J. Franklin, *Classical scattering theory and invariant* manifolds for the laser-driven henon-heiles system, In preparation

Concluding remarks

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions o the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

New areas of applications: In celestial mechanics this could explain the formation of trans-Neptunian binaries⁴

⁴A. G. Suárez, D. Hestroffer, and D. Farrelly, *Formation of the extreme Kuiper-belt binary 2001* QW₃₂₂ *through adiabatic switching of orbital elements* Celestial Mech. Dynam. Astronom. **106** (2010), no. 3, 245–259.2600368

Concluding remarks

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

- New areas of applications: In celestial mechanics this could explain the formation of trans-Neptunian binaries⁴
- Extension to infinite dimensions, e.g. new results for Schroedinger's equation

⁴A. G. Suárez, D. Hestroffer, and D. Farrelly, *Formation of the extreme Kuiper-belt binary 2001* QW₃₂₂ *through adiabatic switching of orbital elements* Celestial Mech. Dynam. Astronom. **106** (2010), no. 3, 245–259, 2600368

Thank You!

Classical scattering theory and applications to computing invariant manifolds in chemistry

D. Blazevski

Background: Definitions of the wave and scattering maps

Theory: Existence, intertwining relations, and perturbative calculations

Applications to chemistry

Thank you for your attention!

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ