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Perturbations localized in time

We consider a general vector field U in Rn subject to a
perturbation P that is localized in time

V(x , t) = U(x , t) + P(x , t) (1.1)

where, for instance, |P(x , t)| ≤ Ce−λ|t|, P is compactly
supported in time, etc.

We expect the flow Ut
t0

of U to behave like the flow V t
t0

of
V for |t| large

Example: Laser-manipulated chemical reactions

Example: A satellite being perturbed by the passage of an
asteroid or comet
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The Wave and scattering maps

We make precise the notion that the V t
t0

behaves like Ut
t0

for large |t|.

x0
+

x0
x0
-

Ut
t

0

Ut
-t

0

Vt
t

0

Vt
-t

0

The wave maps compute x+
0 and x−0 knowing x0

Ωt0
± = lim

T→±∞
Ut0
T ◦ V

T
t0

(1.2)

The scattering map takes x−0 to x+
0

st0 = Ωt0
+ ◦

(
Ωt0
−
)−1

(1.3)
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Existence and Intertwining relations

The Omega maps exist when, roughly speaking, the decay
rate of P is larger than the growth rate ‖DUt

t0
‖ of Ut

t0

(More Later!)

Implications of the existence of the Omega maps: The
intertwining relations

Ωs
± ◦ V s

t0
= Us

t0
◦ Ωt0
± (2.1)

We then obtain the time-dependent conjugacy:
V s
t0

=
(
Ωs
±
)−1 ◦ Us

t0
◦ Ωt0
±

If we “automonize” the flows, one can show that the flows
Ut
t0

and V t
t0

are conjugate in the extended phase space.
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Applications to invariant manifolds

First consider the example: Let U be an autonomous flow
and x0 a fixed point.

Question: what is the corresponding object in the for the
non-autonomous flow V t

t0
?

For each starting time, we have a point x̄0(t0) that satisfies

V t
t0

(x̄0(t0)) = x̄0(t) (2.2)

This property is called Time-dependent invariance

If x0 is hyperbolic and has stable and unstable manifolds
W s(x0),W u(x0) then there are corresponding time
dependent invariant stable manifolds
W s

t0
(x̄0(t0)),W u

t0
(x̄0(t0))
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Application to invariant manifolds

A more general notion: Start with a time-dependent
normally hyperbolic invariant manifold (TDNHIM) of Ut

t0
,

i.e. a “normally hyperbolic” family Mt0 satisfying

Ut
t0

(Mt0) = Mt (2.3)

Proposition

Let Mt0 be a TDNHIM for Ut
t0
and assume that Ωt0

± exist. Then

N±t0
:=
(
Ωt0
±
)−1

(Mt0) (2.4)

is a TDNHIM for V t
t0
. Similarly, Ω±t0

takes the stable and
unstable manifolds of Mt0 to those of Nt0 .

Since (Ωt0
±)−1 ≈ V t0

T ◦ U
T
t0

one can use this to numerically
compute invariant objects for V t

t0
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Derivation of existence result: Cook’s method

To determine when Ωt0
+ exist, we consider the truncations

of the limiting sequence:

Ωt0,T
+ := Ut0

T ◦ V
T
t0

(2.5)

We show that the sequence {Ωt0,N
+ } is Cauchy in C k(BR)

for every ball BR .

By the fundamental theorem of calculus we have

Ωt0,T+1
+ − Ωt0,T

+ =

∫ T+1

T

d

dσ
Ωt0,σ

+ dσ (2.6)

We deduce that∑
N>t0

‖Ωt0,N+1
+ − Ωt0,N

+ ‖ ≤
∫ ∞
t0

∥∥∥∥ d

dσ
Ωt0,σ

+

∥∥∥∥ dσ (2.7)
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Computing d
dσΩt0,σ

+ where Ωt0,σ
+ = U t0

σ ◦ V σ
t0

We just saw that if∫ ∞
t0

∥∥∥∥ d

dσ
Ωt0,σ

+

∥∥∥∥ dσ <∞ (2.8)

Then Ωt0
+ exists

Ωt0,σ
+ is one-parameter (in σ) family of diffoemorphisms

and we can define its Generator O+ by

O+
σ (Ωt0,σ

+ (x)) =
d

dσ
Ωt0,σ

+ (x) (2.9)

Note that the generator of V σ
t0

is simply Vσ and we can
use Deformation theory to compute the generators of
compositions (e.g. Ut0

σ ◦ V σ
t0

) and inverses (e.g

Ut0
σ =

(
Uσ
t0

)−1
)
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Existence result

Theorem
1 Suppose that

I±(t0) :=

∫ ±∞
t0

‖
(
DUt0

σ (Vσ − Uσ)
)
◦ V σ

t0
‖C k (BR)dσ <∞

(2.10)
Then the wave maps exist and are in C k(BR) for all R.

1D. Blazevski and R. de la Llave, Time-dependent scattering theory for
ODEs and applications to reaction dynamics, Journal of Physics A:
Mathematical and Theoretical 44 (2011), no. 19, 195101



Classical
scattering
theory and

applications to
computing
invariant

manifolds in
chemistry

D. Blazevski

Background:
Definitions of
the wave and
scattering
maps

Theory:
Existence,
intertwining
relations, and
perturbative
calculations

Applications
to chemistry

Particular cases

I±(t0) =

∫ ±∞
t0

‖
(
DUt0

σ (Vσ − Uσ)
)
◦ V σ

t0
‖C k (BR)dσ <∞

This holds if Pσ = Vσ − Uσ is compactly supported in σ

If ‖DUt
t0
‖ ≤ Ceµt and |P| ≤ Ce−λt with µ < λ

If ‖DUt
t0
‖ ≤ Ct and |P| ≤ C/(1 + t3)



Classical
scattering
theory and

applications to
computing
invariant

manifolds in
chemistry

D. Blazevski

Background:
Definitions of
the wave and
scattering
maps

Theory:
Existence,
intertwining
relations, and
perturbative
calculations

Applications
to chemistry

Particular cases

I±(t0) =

∫ ±∞
t0

‖
(
DUt0

σ (Vσ − Uσ)
)
◦ V σ

t0
‖C k (BR)dσ <∞

This holds if Pσ = Vσ − Uσ is compactly supported in σ

If ‖DUt
t0
‖ ≤ Ceµt and |P| ≤ Ce−λt with µ < λ

If ‖DUt
t0
‖ ≤ Ct and |P| ≤ C/(1 + t3)



Classical
scattering
theory and

applications to
computing
invariant

manifolds in
chemistry

D. Blazevski

Background:
Definitions of
the wave and
scattering
maps

Theory:
Existence,
intertwining
relations, and
perturbative
calculations

Applications
to chemistry

Particular cases

I±(t0) =

∫ ±∞
t0

‖
(
DUt0

σ (Vσ − Uσ)
)
◦ V σ

t0
‖C k (BR)dσ <∞

This holds if Pσ = Vσ − Uσ is compactly supported in σ

If ‖DUt
t0
‖ ≤ Ceµt and |P| ≤ Ce−λt with µ < λ

If ‖DUt
t0
‖ ≤ Ct and |P| ≤ C/(1 + t3)



Classical
scattering
theory and

applications to
computing
invariant

manifolds in
chemistry

D. Blazevski

Background:
Definitions of
the wave and
scattering
maps

Theory:
Existence,
intertwining
relations, and
perturbative
calculations

Applications
to chemistry

Particular cases

I±(t0) =

∫ ±∞
t0

‖
(
DUt0

σ (Vσ − Uσ)
)
◦ V σ

t0
‖C k (BR)dσ <∞

This holds if Pσ = Vσ − Uσ is compactly supported in σ

If ‖DUt
t0
‖ ≤ Ceµt and |P| ≤ Ce−λt with µ < λ

If ‖DUt
t0
‖ ≤ Ct and |P| ≤ C/(1 + t3)



Classical
scattering
theory and

applications to
computing
invariant

manifolds in
chemistry

D. Blazevski

Background:
Definitions of
the wave and
scattering
maps

Theory:
Existence,
intertwining
relations, and
perturbative
calculations

Applications
to chemistry

Invertibility, or asymptotic completeness

When are Ωt0
± invertible?

The intertwining relations imply: Ωs
+ = Us

t0
◦ Ωt0

+ ◦ V t0
s

Thus, invertibility for one t0 implies invertbility for all s

Recall that we have

Ωt0,t
+ − Ωt0,s

+ =

∫ t

s

d

dσ
Ωσ

+dσ (2.11)
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Invertibility continued

Ωt0,t
+ − Ωt0,s

+ =

∫ t0

s

d

dσ
Ωσ

+dσ

If s = t0 then Ωt0,t0
+ (x) = x and we let t →∞

‖Ωt0
+ − Id ‖ ≤ I (t0) =

∫ ∞
t0

‖
(
DUt0

σ (Vσ − Uσ)
)
◦ V σ

t0
‖dσ

(2.12)

Thus if I (t0)→ 0 as t0 →∞ then Ωt0
+ becomes closer to

the identity, and hence invertible

Proposition

If limt0→∞ I (t0) = 0 then Ωt0
+ is invertible for all t0
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Perturbative calculations

We will now consider the case of

Vεt = Ut + εPt (2.13)

and expand st0
ε in epsilon.

We write

st0
ε = Id + ε

(
d

dε
sεt0

)
+O(ε2) (2.14)

Again use deformation theory, though this time with
respect to ε. Generator for Vε is given using the variation
of parameters formula
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Fermi’s Golden Rule

Let Ut
t0

be the flow for the Hamiltonian H0 and V (ε) the flow
for H = H0 + εh.

Theorem

Suppose that the wave maps st0
ε exists and is smooth. Then st0

ε

is the time-ε map of the Hamiltonian

S t0
ε = lim

T→∞

∫ T

−T
h ◦ V σ

T (ε) ◦ UT
t0
dσ (2.15)
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Corollary

Corollary

As a consequence

st0
ε = Id + εJ∇S t0

0 +O(ε2) (2.16)

and if F is any observable

F ◦ st0
ε = F + ε

{
F ,S t0

0

}
+O(ε2) (2.17)

Note that

S t0
0 = lim

T→∞

∫ T

−T
h ◦ Uσ

t0
dσ
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Perturbative calculations continued

Application to perturbations of integrable systems:
H(I , θ) = H0(I ) + εh(I , θ)

For H0 the action I is conserved:
(I (t), θ(t)) = (I0, θ0 +∇H0(I0)t)

Using averaging or KAM theory one can estimate the slow
variable Iε(t) for the perturbed system for |t| large

Using scattering theory we can compute the change in any
variable, fast or slow, using

F ◦ st0
ε = F + ε

{
F , S t0

0

}
+O(ε2) (2.18)

which holds for any observable, including the coordinate
functions, i.e. F (I , θ) = θ or F (I , θ) = I .
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Comparison to quantum mechanics

For Schroedinger’s equation: i∂tU(t) = H(t)U(t) we can
still define the wave maps Ωt0

±

Classically, st0 computes the asymptotic future knowing the
asymptotic past, and quantum mechanically we have〈

u+|st0 |u−
〉

=

∫
u+(x)st0u−(x)dx (2.19)

does this probabilistically.

For Hamiltonians H = H0 + εH1 one can prove that

st0
ε = st0

0 +ε lim
T→∞

Ut0
T

(∫ T

−T
iH1U

T
t0
ds

)
Ut0
T +O(ε2) (2.20)
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Application: Numerics for invariant manifolds in
chemistry

We start with the Henon-Heiles Hamiltonian

H0(x , y , px , py ) =
1

2
(p2

x + p2
y ) +

1

2
(x2 + y2) + x2y − 1

3
y3

(3.1)

And consider the time-dependent perturbation 2

H = H0 + E(t) exp(−αx2 − βy2) (3.2)

and E(t) is smooth and supported in [−4.2, 4.2].

H0 has 3 unstable fixed points and according to transition
state theory their stable and unstable manifolds separate
regions of phase space leading to an outcome of a reaction

2S. Kawai, A. Bandrauk, C. Jaffe, T. Bartsch, J. Palacian, and T. Uzer,
Transition state theory for laser-driven reactions, The Journal of Chemical
Physics 126 (2007), no. 16, 164306
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Physics 126 (2007), no. 16, 164306
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Application continued

We use scattering theory to compute invariant object for
the laser-driven system knowing the invariant object for
unperturbed system

In this case, we have Ωt0
± = Ut0

±TV
±T
t0

, where T = 4.2

Recall Nt0 = (Ωt0
±)−1(Mt0), and thus the invariant objects

are obtained by integrating trajectories for a finite time
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Unperturbed invariant objects

We fix the energy to be e = 1/12 and consider a Poincare
section

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

That is, we take initial condition (0, y , px(y , py ), py ) and
compute “crossings”, i.e. when x = 0.
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Perturbed invariant objects

We use the conjugacy Ωt0
+ with t0 = −4.2 3
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Thank You!

Thank you for your attention!
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