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Abstract5

Bubbles suspended in a fluid cause the suspension to have different rheological properties6

than the base fluid. Generally, the viscosity of the suspension increases as the volume fraction7

of the bubbles is increased. A current application, and motivation for this study, is in wellbore8

cements used for hydrocarbon extraction and carbon sequestration. In these settings, the gas9

bubbles are dispersed into the cement to reduce the density as well as improve the properties10

for specific conditions or wellbore issues. In this paper, we use Stokesian dynamics to nu-11

merically simulate the behavior of a large number of bubbles suspended in a Newtonian fluid.12

Going beyond prior work on simulating particles in suspension, we account for the nature of13

bubbles by allowing for slip on the bubble surface, the deflection on the bubble surface, and a14

bubble-bubble pairwise interaction that represents the surfactant physics; we do not account for15

bubble compressibility. We incorporate these interactions and simulate bubble suspensions of16

monodisperse size at several volume fractions. We find that the bubbles remain better dispersed17

compared to hard spherical particles that show a greater tendency to structure or cluster.18

Keywords: Stokesian Dynamics, dense suspension, foamed cement, rheology, bubble suspension.19

1 Introduction20

The motivation for this study is to better understand the rheology of well cement that has been21

foamed with an inert gas. Foaming the cement lowers the density, and is used in wells drilled22
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into weak or fractured rock formations [1]. Foamed cement is created by dispersing gas, typically23

nitrogen, into the cement slurry to create a suspension, which contains suspended cement particles,24

and dispersed bubbles. To ensure a stable foam that keeps the bubbles entrained, surfactants and25

sometimes other additives are included in the slurry base prior to injecting the gas to form the26

bubbles. In the wellbore, cement is placed between the steel casing at the center of the well and27

the rock formation to isolate and seal wells in carbon storage and hydrocarbon extraction. It also28

supports the casing placed in the center of the well. The process of foaming the cement slurry29

lowers the density of the cement as required for the conditions of the wellbore. Foaming the cement30

is advantageous because it lowers the density and increases the viscosity of the cement, while not31

significantly lowering the compressive strength nor changing the cement chemistry. To maintain32

isolation of the well, however, the bubbles should remain suspended in the cement and maintain33

dispersion. Structuring or clustering can lead to weak mechanical regions for crack propagation or34

pathways for gas migration.35

Cement slurry is a highly complex material with properties that change over time due to the curing36

process. The cement slurry (base fluid) is made from water that is mixed with the cement clinker, a37

powdery mix of materials with primarily lime, silica, alumina, and iron. Upon mixing with water,38

the chemical reaction processes begin in the form of a hydration process [2]. During the hydration39

process the chemical and the physical properties of the cement slurry are changing. However, the40

cement does have a period when little hydration occurs and this is when the cement is placed in the41

wellbore. During this induction period, the slurry properties remain fairly constant and the effect of42

chemical reactions can be neglected. The behavior is dominated by fluid mechanics. A key focus43

of this paper is the effect of the flow on the overall ordering of the bubbles that are added through44

foaming. There is a vast literature on the effective properties of suspensions, e.g. going back to45

Taylor, 1932 [3]; for more information see [4]. There is much less work on the structuring of the46

suspended bubbles.47

The bubbles’ distribution within the cement play a key role in the properties of the cement slurry [5].48

The foam should have well-dispersed bubbles, that remain in the suspension during placement49

without clustering, coalescing, or other configurations where the bubbles are arranged closely to-50

gether [1]. If the bubbles are close to each other, upon curing the bubbles can become intercon-51

nected and lead to failure of zonal isolation or even fracture of the cement [6, 7]. The American52

Petroleum Institute (API) recommended practices prescribes that the foamed cement slurries be53

designed to have an added gas volume fraction below 35% at the placement depth of the cement54

for the foam to remain stable and maintain the mechanical integrity for proper zonal isolation [8].55

Pressures vary throughout the cement process due to different depths in the well; we, therefore,56

study a range of volume fractions (10% to 50%).57

In [9], we studied the influence of the bubbles represented as hard no-slip spheres using the frame-58

work of Stokesian Dynamics [10] in the more efficient Fast Lubrication Dynamics (FLD) approx-59

imation [11–13]. This method enables us to track the location of all the suspended objects during60

the simulation, and thereby obtain insights into smaller scale phenomena such as the detailed spa-61

tial distribution. An important assumption that is required for Stokesian Dynamics is that the base62

fluid is Newtonian. Our aim in this paper is to develop better representations of the bubbles while63

working within this overall framework to include far- and near-range bubble interactions. In partic-64

ular, we account for the nature of bubbles by allowing for slip on the bubble surface, the deflection65
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on the bubble surface at the region where bubble pairs interact, and a bubble-bubble pairwise inter-66

action that represents the surfactant physics, which can be attractive or repulsive in nature [14]. For67

simplicity, in this paper particles shall refer to hard spherical particles that have no-slip boundary68

conditions on their surface; and bubbles shall refer to fluid-filled spheres with surface properties69

that allow slip and surface deflection in the interacting region, and a repulsive/attractive quality to70

represent the surfactant properties, but however are not compressible.71

The paper is organized as follows: in Section 2, we outline our assumptions and briefly describe72

the well-established Stokesian Dynamics framework and the FLD approximation; in Section 3, we73

provide the details of the bubble interaction modeling; in Section 4, we describe the molecular74

dynamics simulation method; in Section 5, we present the results of the numerical calculations75

on the relative viscosity of the bubble suspension; and in Section 6, we present the results of76

the numerical calculations comparing bubble suspensions to the rigid no-slip particle suspensions77

studied in [9] and examine several volume fractions with monodisperse size distributions.78

2 Model Assumptions and the Stokesian Dynamics Method79

2.1 Model Assumptions80

We make several assumptions about the bubbles and the system of interest.81

The bubbles are assumed to be spherical and discrete. Surfactants are an essential part of the ce-82

ment slurry design and the surfactant provides stability to the bubbles so that they remain suspended83

in the cement until is sets [5]. Bubbles stabilized by surfactants have a high surface tension and84

maintain a relatively spherical shape. It is assumed that the bubbles have and maintain a spherical85

shape during flow and are not distorted or become ellipsoid-like during shearing. Foamed cements86

made in the laboratory to the API testing standards and foamed under pressure show that the sur-87

factants and stabilizers added to the base fluid maintain fairly spherical, stable, discrete bubbles in88

the flow regime typically encountered in the well [15, 16]. However, the bubble surface is allowed89

to deflect locally on the surface a small amount in the region directly interacting with neighboring90

bubbles.91

The bubbles are considered to be neutrally buoyant. In an aqueous solution, bubbles will rise due92

to buoyancy. However, in a stable foamed cement slurry, bubbles in cement tend to remain in place93

unless they reach a critical size [16]. This has been observed experimentally [15–17]: in laboratory94

and field applications, the bubble sizes are kept below this critical size (typically around 10 − 10095

µm) and were observed to remain where placed during curing [16]. In addition, the cement particles96

in the slurry, which act as surface active foaming materials, help keep the bubbles entrained [18].97

The suspending fluid (cement slurry) is considered Newtonian. The cement slurry has cement98

particles suspended in it, and therefore it is generally observed that cement slurry has a yield stress99

and can behave as a nonlinear fluid [19, 20], or even behave as a solid [21]. However, it would100

not be feasible to numerically simulate a non-Newtonian suspension that tracks individual bubbles.101

We therefore expect that the simulation results reported here will have qualitative and quantitative102

differences compared to experiments. Even so, these simulations can provide useful insights into103
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the overall features that dictate the behavior of the real system, specifically the clustering of bubbles104

or rearrangement into more ordered placements which can potentially lead to bubble coalescence or105

bubble inter-connectivity upon cement curing. For simulations involving one or a small number of106

bubbles, sophisticated nonlinear models of the suspending medium can be applied [22]. However,107

for a large number of suspended objects as is our interest here, the methods depend in an essential108

way on the superposition principle and hence require linearity.109

2.2 Stokesian Dynamics110

In a suspension, the motion of each suspended object (particles or bubbles) is transmitted through111

the base fluid. In the quasi-static (creeping flow) limit, this is felt immediately throughout the112

entire system by all the other suspended objects. Therefore long-range effects should be carefully113

considered. For a dilute suspension where the suspended objects are far apart, the detailed shape114

and structure of the suspended objects does not matter to leading-order. The velocity disturbance115

of a suspended object decays like a point force as 1/r2, where r is the radial distance from the116

object [10]. When the suspended objects are close together, the interaction of each pair is dominated117

by a pairwise force which comes from lubrication theory [23]. The Stokesian Dynamics method118

accounts for the far-field interaction through multipole expansions and for the near-field interactions119

through pairwise interactions [10]. The Fast Lubrication Dynamics (FLD) method further increases120

the efficiency by using fast approximate methods for the far-field interaction [11, 12]. The broader121

idea of developing multiscale methods for long-range interactions by decomposing into far- and122

near- fields and then using multipole expansions for the far-field has been studied theoretically and123

numerically in the context of bubbly fluids [24] and electromagnetic interactions [25–27].124

For the flow of a Newtonian fluid when the inertial term is neglected in the balance of linear mo-125

mentum, we can obtain the Stokes flow regime. The governing equation is a linear biharmonic126

equation, thereby allowing superposition. Given a flow with multiple objects, the flow due to each127

is given by a fundamental solution denoted by a Stokeslet, and the interaction between them can be128

obtained by superposing appropriately the Stokeslets solutions. This enables an effective pairwise129

interaction where the influence of the mediating fluid is accounted through the Stokeslet. Bossis130

and Brady were the first to develop this idea and put this into the framework of pairwise molec-131

ular dynamics to enable the efficient simulation of suspensions [10, 28]. This method is denoted132

“Stokesian Dynamics”.133

Consider a general macroscopically-uniform flow v(x) = A·x+B, where x is the spatial location.134

The symmetric rate-of-strain tensor is defined E∞ := 1
2
(A+AT ), where A is the velocity gradient.135

The spin tensor is defined by W := 1
2
(A − AT ) and the corresponding axial vector is w. The136

generalized far-field velocity U∞ is defined by B and w. The forces can be determined by the137

relationship between the object velocities and the forces due to the base fluid by:138 (
FH

SH

)
= R ·

(
U∞ −U

E∞

)
(2.1)

The symmetric first moment of the force, SH , is called the Stresslet. R is the resistance matrix, and139

contains the object positions. The main outcome of Stokesian Dynamics is to efficiently compute140
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R so that large numbers of objects in a suspension can be simulated. This is described in numerous141

sources in the literature cited in this manusript, and therefore, we do not go into the details here.142

Stokesian Dynamics preserves all the relevant physics of the problem but is computationally intense143

for systems with a large number of suspended objects. To allow for larger systems while still main-144

taining the physics of the problem in accounting properly for far-field and near-field interactions,145

Fast Lubrication Dynamics (FLD) was developed [11, 12].146

FLD [11, 12] explicitly incorporates the lubrication interactions, following [29], but modifies the147

Stokesian Dynamics [10] to reduce the computation time. In FLD, the resistance matrix, denoted148

RFLD, is the sum of the near-field pairwise lubrication interactions and the far-field interactions149

from the diagonal components of an isotropic resistance tensor, RIso. RIso is assumed to be a150

multiple of the identity matrix. The multiplicative factor is assumed to be a function of the volume151

fraction, and is obtained by curve-fitting the short-time self-diffusivity results from FLD to those152

obtained from full Stokesian Dynamics. In this way, FLD aims to preserve the physics of the accu-153

rate Stokesian Dynamics approach while making the computation more efficient. The lubrication154

terms come from [23, 29, 30].155

We note an issue regarding the implementation of FLD in the molecular dynamics code LAMMPS.156

[29] give the expressions for the lubrication forces and torques of each suspended object in the157

pair interaction. However, LAMMPS uses truncated expressions that leave out some terms. FLD158

in LAMMPS has typically been applied in combination with other forces such as Brownian, col-159

loidal, electrostatic, and so on. The error due to the missing terms can be negligible if other inter-160

actions dominate. However, for the calculations here, we find that it is important to use the longer161

expressions, and therefore we have corrected LAMMPS.162

3 Bubble Interaction Modeling163

Our approach is to simulate fluid-filled spheres of the same diameter with bubble surface properties164

and an elastic-like quality. For the purposes of this study, we consider that the bubbles have hy-165

drodynamic interactions and some interaction due to the properties of a surfactant to keep bubbles166

from overlapping in the simulation. The attractive and repulsive qualities of the surfactant are also167

considered with this interaction. The bubbles’ surfaces are allowed to deform locally in an elastic168

way when approaching very close to each other (see Figure 5, and then the bubble surface shape169

is restored when the gap between the bubble pair increases, so that the spherical bubble shape is170

maintained during the simulation.171

The hydrodynamic interaction for a pair of bubbles, with the same size diameter, has been derived172

by [23] for the case of two bubbles of the same size approaching each other. The interaction due to173

the surfactant and elastic properties are determined and added here. For approaching hard spheres174

with no slip on the particle surface, the force between the particles goes as the inverse of the gap175

between them, so that as the particles approach each other, the force increases so much so that the176

particles will not touch in finite time. The force on approaching bubbles is weaker and will allow177

bubbles to touch in finite time. In simulations, without an additional direct force, bubble overlap178

will occur. However, the surfactant of real bubbles will provide an extra force that resists bubble179
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coalescence. The force between the bubbles should be such that it does not allow bubbles to overlap180

but does allow them to approach very close to each other.181

Bubbles have a mobile interface and, in theory, can have any level of slip and no shear traction on182

their surface boundaries. In a shearing interaction between bubble pairs, the bubbles should just183

slip past each other [23, 31]. To simulate surfactant stabilized bubbles, we need to have a mobile184

surface boundary and an additional realistic normal direct force to prevent bubble overlap as the185

surfactant does in real bubble suspensions.186

Bubble surface properties more representative of real bubbles stabilized by a surfactant has been187

developed here as an extension to the current capabilities of LAMMPS pair interactions.188

3.1 Summary of Near-Field Lubrication Interactions for Particles189

We briefly summarize the near-field interactions between particles to later compare to bubble inter-190

actions.191

Figure 1: Two particles are separated by a center-to-center vector, r, and n := r/|r|. The gap
between the particles is h.

Following Fig. 1, we consider a pair of particles 1 and 2, with equal radius, a, and a separation h
between the particle surfaces. The expressions for the lubrication forces fi and torques gi on the
particles i = 1, 2 follows [29]:

f1 = −f2 = −asqN · (v1 − v2)− ash
(
2

r

)2

P · (v1 − v2) +

(
2

r

)
ashn× P · (ω1 + ω2) (3.1a)

g1 = −
(
2

r

)
ashn× P · (v1 − v2)− ashP · (ω1 + ω2)− apuP · (ω1 − ω2)− atwN · (ω1 − ω2)

(3.1b)

g2 = −
(
2

r

)
ashn× P · (v1 − v2)− ashP · (ω1 + ω2) + apuP · (ω1 − ω2) + atwN · (ω1 − ω2)

(3.1c)

n is the unit vector directed along the line connecting the center of particle 1 pointing toward192

particle 2, N := n ⊗ n, and P := I − N. v and ω are the velocity and the angular velocity,193

respectively, of the particles. The forces f and torques g in (3.1) correspond to the generalized194

force and are linearly related to v and ω, and these latter quantities in turn correspond to the195

generalized velocity U . The linear resistance terms for hard spheres of differnt sizes with no-slip196

surfaces, asq, ash, apu, and atw, are defined in [9].197
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For bubbles, there is a squeezing resistance, asq, but it is assumed that there are no shearing re-198

sistances (i.e. ash = 0 and apu = 0). The hydrodynamic forces for a bubble are still linearly199

related to the velocity and the force is calculated in a similar way as the lubrication solution for200

hard sphere [9] (Equations (3.1)). The force between bubbles includes additional forces to account201

for the elastic nature of a bubble and the forces due to the surfactant.202

3.2 Near-Field Bubble Interactions: Interaction Force Between Approach-203

ing Bubbles204

Figure 2: The surface of bubbles have slip and therefore the velocity profile contains an additional
slip velocity (shown in gray).

The interaction force between approaching hard spheres with no-slip surfaces is sufficient to keep205

the particles from touching in finite time. But for two approaching bubbles, they will touch in finite206

time and can overlap. Figure 4 compares the gap as a function of time for particles and bubbles,207

without accounting for surface deflection of the latter. The velocity profile of a Newtonian fluid208

being squeezed from between the hard spheres has a parabolic shape. However, a bubble surface209

boundary has an extra slip velocity as depicted in Figure 2. The velocity profile of the fluid between210

the interacting bubbles is the sum of the parabolic velocity, up, and the additional slip velocity, ut,211

due to the bubble surface [23, 32]:212

v(x, z) = ut(x) + up(x, z) (3.2)

The parabolic velocity profile of the fluid that is squeezed out from between hard spheres with213

no-slip boundaries is given by the expression [23]:214

up(x, z) =
1

2µ

∂p

∂x
(z − za)(z − zb) (3.3)

Where za and zb are the surfaces of the two spheres a and b, respectively, µ is the viscosity of the215

base fluid, and ∂p
∂x

is the pressure gradient in the x direction. When the distance between the bubble216
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surfaces is small compared to the bubble radii, the surfaces can be approximated as flat disks and217

the surface traction is then given by [23]:218

ft = −(za − zb)
∂p

∂x
(3.4)

If µ is the viscosity of the base fluid, then by convention λµ is defined as the viscosity of the bubble.219

For a bubble, λ = 0. The traction boundary condition at the base fluid - bubble interface is [23]:220

µ
∂up
∂z

= λµ
∂v

∂z
(3.5)

The solution for two bubbles with equal diameters has been derived in bispherical coordinates221

by [23].222

The relationship between the force and velocity for approaching bubbles and squeezing flow is [23]:223

Fi
6πµaUi

=
1

3
log

a

h
+

2

3
(γEuler + log 2) +O(1) (3.6)

where γEuler is Euler’s constant (γEuler = 0.577216. . . ), a is the radius of the bubble, and h is the224

gap between the bubbles. This can then be rearranged to solve for the force, Fi, as a function of225

velocity, Ui, so that the remaining terms on the right become the resistance “squeeze” coefficient226

for a bubble, which is used instead of the asq coefficient derived by Ball and Melrose [29]. The227

force of bubble i is then:228

FBubble
i = 6πµaUi

(
1

3
log

a

h
+

2

3
(γEuler + log 2)

)
(3.7)

Equation (3.7) describes the normal force acting on bubble i, and therefore aBubblesq is given by:229

aBubblesq = πµa
(
2 log

a

h
+ 4 (γEuler + log 2)

)
(3.8)

Using this squeeze coefficient, for two bubbles being pushed together with an equal and opposite230

external force, the gap between their surfaces can be described as a function of time (Fig. 4).231

The leading term for the squeezing flow between hard spheres with no-slip surfaces is 1/h, and232

for bubbles it is log 1/h. To look at the effects of this difference, we consider two particles being233

pushed together by applying an external force in equal and opposite directions to each particle.234

According to the lubrication theory [23], hard spherical particles with no slip surfaces should not235

touch in finite time. In this squeezing flow, only the squeeze term is involved in the interaction, as236

the velocities of the particles are acting normal to the surface of the particles. The gap as a function237

of time with an external force of fx = 1, we define by:238

dh

dt
=

1

−asq
(3.9)

We define the total time by the integral, Iasq :=
∫
dt = −

∫
asqdh. For hard spheres with no-slip239

boundary conditions:240

Iasq =
27hπ

40
+

9h2π

224
+

27

40
hπ log

1

2h
+

9

112
h2 log

1

2h
+

3

8
π log h (3.10)
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Figure 3: Two hard spherical particles, with no-slip surfaces, of equal size (diameter = 1) are
being pushed together. a.) The starting positions of the particles. Their initial velocities in the
horizontal direction is shown by their color. b.) At the end of the simulation, with constant external
force pushing equally in opposite directions, the particles will approach very close to each other
but should not touch in finite time.

For a bubble with slip boundary conditions:241

IBubbleasq = 2πh+ 4γEulerπh+ 2πh log 4 + 2πh log
1

h
(3.11)

Define h0 = h(t = 0). This gives:242

t = Iasq(h0)− Iasq(h) (3.12)

The gap as a function of time using Equation (3.12) compares the lubrication interactions of two243

hard sphere particles with no-slip surfaces and two spherical bubbles with slip surfaces approaching244

each other due to equal and opposite forces (fx = ±1) acting on each particle/bubble (Figure 4).245

The diameter, d, was set to 1 for both particles/bubbles.246

Figure 3 shows the velocity at the beginning and end of the simulations for hard spheres. The247

hard spheres with no-slip surfaces should not touch in finite time. Figure 3 also shows the particle248

positions relative to each other and the arrows indicate the motion of the particles approaching each249

other. The velocity of the particles at the beginning and end of the short simulation are indicated250

by the color of the particles. Initially, the particle velocities are equal and opposite due to the linear251

relationship with the forces on the particles. At the end of the simulation, the external force remains252

the same on each particle but the velocity approaches zero as the particles approach very close to253

each other and the gap becomes nearly zero. But, due to the high lubrication forces, the particle254

surfaces will not touch in finite time.255

Figure 4 shows the gap from Figure 3 as a function of time. The hard spherical particles will come256

very close to each other but the high force due to the fluid between them will prevent them from257

touching in finite time. For bubbles, however, the force is weaker and the bubbles will overlap258

in finite time. In implementing this into simulations, for hard spheres with no slip boundaries, a259
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Figure 4: Gap between the approaching particles/bubbles as a function of time. Comparison be-
tween hard spheres with no-slip on the surfaces (black −, magenta −−) with bubbles with slip on
the surfaces (viscous bubble, blue −, cyan −−).

cutoff distance is used for the interactions. If the particle gap is less than the cutoff, the cutoff260

is used in place of the actual gap to calculate the forces and torques. Otherwise, the particles261

could overlap during the simulation. Another approach would be to make the timestep smaller262

and smaller to avoid overlaps [29]. For bubbles, especially at higher volume fractions where the263

bubbles interact more, as the suspension is sheared, the bubbles can overlap in an unphysical way.264

To keep the bubbles from overlapping completely, a direct force, FDirect, is also necessary. A real265

bubble surface is also not rigid so to account for this property, an elastic-like force, F Elastic, is266

also included. The total normal force on the bubble surface between interacting pairs is therefore267

described by:268

F Total = FBubble + F Elastic + FDirect (3.13)

FBubble is defined by Equation (3.7). We next describe the elastic and direct forces, F Elastic and269

FDirect, respectively.270
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Figure 5: The bubble surface can deflect by an amount, δ.

3.3 Near-Field Bubble Interactions: Elastic Force271

As noted above, an elastic force is required to model the distortions away from spherical of the
bubble due to the impingement of another bubble. The elastic force derivation follows [33]:

F Elastic = aElasEδ (3.14a)

aElas =
√
a(2h+ |δ|) (3.14b)

δ =
(2a+ h− r)

2
(3.14c)

Here, δ is the deflection of the bubble surface(Figure 5), aElas is the region of the bubble surface272

that is interacting in the lubrication force after deflection has caused the surface to become flattened,273

andE represents an effective modulus to deform the interface and bubble. In the simulations shown274

here, E was set to 102; this could in principle be calibrated to experiment. To limit the amount that275

the bubble surface can deflect, a maximum deflection value was set.276

3.4 Near-Field Bubble Interactions: Direct Force277

The direct force is necessary to keep the bubbles from overlapping during the simulation. It repre-278

sents the force due to the surfactant, which can be attractive and repulsive [14] depending on the279

properties of the surfactant and the separation of the bubbles. The surfactant forces can include van280

der Waals and hydrostatic attraction, electrostatic repulsion, steric repulsion, etc. [14], however,281

the properties of the surfactant are not the focus of this research and are not generally known as282

they are proprietary. Therefore, no specific surfactant will be considered. Herein, the direct force is283

represented by a Lennard-Jones potential force that acts normal to the bubble surface along the line284

between the center of interacting bubble pairs. Rognon and Gay [34, 35] developed soft dynamics285
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to simulate dense collections of elastic particles. Soft dynamics can only simulate closely interact-286

ing particles and a confining stress is used to keep the suspension in a dense configuration. Rognon,287

Einav, and Gay [33, 36] include a direct force that represents the steric repulsion between elastic288

particles. It increases steeply when the particles come in close contact and prevents the particles289

from overlapping. In the simulations shown here, a direct force is deployed in a similar way. The290

Lennard-Jones potential included with LAMMPS [37] was used as the direct force.291

Figure 6: Simple four-bubble configurations were used to explore the influence of the ε and σ
values of the Lennard-Jones potential. The force is applied to the bubble indicated by the arrow
in the first time frame. The configuration changes of the bubbles are displayed over a several time
steps. The left most frame is the starting configuration and the right most frame shows the center
bubbles at their limit of deflection due to the force applied. The combination of the ε and σ values
dictate the level that bubbles are allowed to deflect and the level of attraction of the bubbles. The
bubble force and the elastic force are also included in the interaction.

The Lennard-Jones potential is based on van der Waals interactions [33, 36] and includes both292

repulsive and attractive forces. A Lennard-Jones potential that was less repulsive than the standard293

Lennard-Jones potential was used here and is given by [37]:294

φLJ = 4ε

[(σ
r

)9
−
(σ
r

)6]
(3.15)

ε is the energy scale and σ is the length scale. The influence of the values of ε and σ on systems295

dynamics are described below.
(
σ
r

)9 is the repulsive part1 and
(
σ
r

)6 is the attractive portion. The296

1The standard Lennard-Jones potential is φLJ = 4ε
[(
σ
r

)12 − (σr )6]
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direct force, FDirect, between bubbles is then the derivative of Equation (3.15). Here, this force297

keeps the bubbles from overlapping completely but also allows for the elastic interaction.298

3.5 The Lennard-Jones Parameters for the Direct Force299

The values for ε and σ can be varied to adjust: (1) the amount that the bubbles’ surface can deflect,300

and (2) the level of attraction between the bubbles. To test the influence of ε and σ, four bubble301

configurations were used. A constant force of 1 was applied to the left most bubble and the images302

shown in Figure 7 show a snapshot in time of the simulation after the left-most bubble has started303

interacting with the other bubbles. Periodic boundary conditions were used so that once the center304

bubbles passed through the top and bottom bubbles, they were remapped into the simulation box305

on the left side. As the simulations progressed, the amount of deflection and attraction between the306

bubbles was observed.307

Figure 7: Simple four-bubble configurations were used to explore the influence of the ε and σ
values of the Lennard-Jones potential. The bubble direct force and the elastic force are included in
the interaction. a.) Shows the starting configuration of the bubbles. The arrow shows where the
force is applied. A force was only applied to the bubble indicated. b.), c.), d.), e.), f.), g.) and h.)
show the influence of changing the values of ε and σ.

Figure 6 shows the progression of the bubble configurations over several time steps. If the values308

of ε and σ are not chosen correctly, then the bubbles can overlap too much and do not represent the309
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system dynamics properly. Values of ε = 0.01 and σ = 0.2 allow too much overlap (deflection) of310

the bubbles in an unrealistic manner. Another observation is that the top and the bottom bubbles311

move close to each other and almost touch. The combination of ε and σ also dictate the amount312

of attraction between the bubbles. The lower the value of σ – which sets the length scale of the313

interaction – the greater the overlap, for a given value of ε. Figure 7 shows the influence of several314

parameter combinations. Figure 7a. shows the initial configuration of the bubbles. The lower the315

value of ε, the greater the overlap, but the slightly lower value of σ causes the bubbles to be more316

attractive and have a “softening” effect. In Figure 7g, as the force continues to push the left most317

bubble, the bubbles in the middle were also pushed because they were attracted to each other similar318

to what is observed in Figure 6a. The combination of the higher energy and length scale, are shown319

in Figure 7h. The combination of the Lennard-Jones potential ε = 0.1 and σ = 0.9 values, result320

in a direct force that does not allow the bubble surface to deflect. Effectively, the bubbles then act321

like hard spheres.322

The Lennard-Jones potential is being utilized as the direct force representing the surfactant prop-323

erties, which means that it must have the proper level of repulsion to keep the bubbles from com-324

pletely overlapping but also some attraction to represent the surfactant. Five combinations of ε and325

σ were considered to determine the values that best represent the physical properties of the bubbles.326

Figures 7c., d., e., g., and h. show the combinations that were simulated with full system sizes.327

Figure 7c. corresponds to ε = 0.001 and σ = 0.9, which allows the bubbles to deflect sufficiently328

but the attraction, though not pictured here, is high enough that the top and bottom bubbles approach329

close to each other when the center bubbles pass through. Lennard-Jones values of ε = 0.01 and330

σ = 0.85 (Figure 7e.) resulted in similar results as the combination of ε = 0.001 and σ = 0.9. For331

the values of ε = 0.1 and σ = 0.85 (Figure 7g.), the top and bottom bubbles touch after the center332

bubbles pass through. Figure 8a. shows the time progression of the bubbles’ motion from Figure333

7g. As the left-most bubble is pushing on the other bubbles, the deflection of the surface appears334

to be reasonable but when the center bubbles are pushed through the top and bottom bubbles, the335

top and bottom bubbles are excessively attracted to each other. For values of ε = 0.1 and σ = 0.9336

(Figure 7h. and Figure 8b.), the physics of the problem are similar to hard spheres. The bubbles337

can still slip by each other with no resistance tangent to the bubble surface but the higher σ value338

did not allow deflection of the bubbles’ surface so the results mimic those of hard spheres. So339

even without a shearing resistance in the interaction, the behavior of the bubbles is similar to hard340

spherical particles. The best combination of values was ε = 0.008 and σ = 0.9 (Figure 7d.), which341

allowed some deflection of the bubble surface and some attraction.342

4 Molecular Dynamics Simulation Method343

LAMMPS2 – the Large-scale Atomic/Molecular Massively Parallel Simulator – is an open-source344

classical (non-quantum) molecular dynamics code developed and maintained at Sandia National345

Labs [38]. We use LAMMPS with the FLD method3 combined with bubble surface properties.346

2lammps.sandia.gov
3As noted previously, we have extended LAMMPS to include bubble-like surface properties in the resistance terms.
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Figure 8: The configuration changes of the bubbles are displayed over a several time steps. a.)
Corresponds to Figure 11e. and b.) Corresponds to Figure 11f. The force is applied to the bubble
shown by the arrow in the first time frame. The left most frame is the starting configuration and the
right most frame shows the center bubbles at their limit of deflection due to the force applied. The
combination of the ε and σ values dictate the level that bubbles are allowed to deflect and the level
of attraction of the bubbles. The bubble force and elastic force are also included in the interaction.

4.1 Generation of Initial Configurations of Bubbles347

Bubble systems were generated by first creating smaller sets in a 10 × 10 × 10 box. The bubbles348

with a diameter of 1 were randomly placed to create different volume fractions (10%, 20%, 30%,349

40%, 45%, and 50%) of bubbles all having the same system volume. Once the bubbles are ran-350

domly placed, a soft potential is used with an energy minimization to remove overlaps in the initial351

configuration that are unphysical4. The energy of the soft potential is [37]:352

E = A

(
1 + cos

(
πr

rcut

))
, r < rcut (4.1)

where r is the distance between bubbles, A is the pre-factor in energy units that was initially set353

low and ramped up, and rcut is the cut off distance.354

To avoid effects from the system size, testing was done to determine the appropriate system size that355

shows no further size dependence. The system sizes were progressively doubled in all coordinate356

4We emphasize that the soft potential is used only in generating a physical initial configuration, and plays no role
once the simulation begins.
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directions until an appropriate size, where the system size did not impact the calculation of the357

relative viscosity, was achieved. It was determined that replicating the original system size of358

10 × 10 × 10 four times in each direction eliminated system size effects. Once this configuration359

was replicated, the bubbles were then moved around using the random Brownian pair interaction in360

LAMMPS to make the bubble arrangements random again. This step was not part of the dynamics361

but was simply to create a random placement of the bubbles after replicating the same arrangement362

of bubbles, for input into the simulations.363

4.2 Implementation of the Shearing Flow364

The shearing flow was implemented as described in [9]. Three dimensional simulations were per-365

formed using Lees-Edwards boundary conditions [39]. For Lees-Edwards boundary conditions and366

strains imposed in the xy-direction, the velocity of each bubble is then a function of its position in367

the y-direction as shown in Figure 9. When a bubble crosses the simulation boundary in any di-368

rection, the velocity of the bubble is remapped to correspond to the new position in the simulation369

box5. The suspensions of different volume fractions were all sheared as shown in Figure 9 until the370

stress reached a constant value and the value of γ̇×ttotal reached 200. ttotal is the length of time that371

the simulation was run and γ̇ × ttotal was used so that all simulations results were comparable. Ba-372

sically, all simulations were run till the box was sheared the same amount as opposed to being run373

for the same length of time. Testing different time steps revealed that the dimensionless time step374

should be kept below a value of 0.002 for the FLD simulations, however, a timestep of ∆t = 0.001375

was used for all simulations shown here. An explicit time-integration scheme was used.376

Figure 9: The bubble suspensions are sheared in the direction shown and when the side view is
shown, it is a view through the whole system of bubbles.

The total strain on the simulation box is defined as γ̇ × ∆t, the product of the strain rate γ̇ and377

timestep ∆t. For the quasi-static setting, given γ̇ ×∆t, the time-history of the stress and viscosity378

5See e.g. [40] for a discussion of this and [37] for the implementation, which uses a function called “fix deform” to
apply a strain rate to the simulation box in the specified orthogonal box directions.
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should be the same when time is appropriately re-scaled.379

The stress in the system is calculated by summing the stresses computed for each bubble. Ignoring380

the kinetic energy contributions that are negligible here, the stress on a bubble is defined by [37,41]:381

σi,αθ =
1

Vi
[−1

2

Np∑
n=1

(r1αF1θ + r2αF2θ)] (4.2)

where, α and θ run over the coordinate directions to compute the 6 components of the symmetric382

stress tensor. The sum runs over the Np neighbors of the bubble under consideration. r1 and383

r2 are the positions of every bubble pair that has pairwise interactions, and F1 and F2 are the384

corresponding forces.385

For a simulation box with volume, V , the stress from each bubble is summed to determine the total386

stress of the system of bubbles and is used to calculate the viscosity. With Lees-Edwards boundary387

conditions imposed, the relative viscosity (i.e., the viscosity ratio) is calculated from the average388

total stress once the system has reached steady state:389

µrelative =
µeffective

µ
=

∑
i σxy
γ̇µV

(4.3)

5 Viscosity Ratio of the Bubble Suspension390

An important reason to add bubbles to a fluid is to increase the effective viscosity. In this section, we391

examine the effect of the bubble volume fraction on the viscosity based on the molecular dynamics392

calculations.393

Recall the definition of the viscosity ratio in Equation (4.3). The viscosity ratio as a function of394

bubble volume fraction is shown in Figure 10. The initial configurations were all the same for395

comparison of the effects of the Lennard-Jones parameters ε and σ values on the viscosity. As396

described above, the choice of ε = 0.1 and σ = 0.85 did not display proper system dynamics and397

the relative viscosity calculated was significantly higher than the other simulations, which is also398

unrealistic. The choice of ε = 0.1 and σ = 0.9 produced physics that were not characteristic of399

bubbles and the relative viscosity values are also unrealistic as described above.400

The combination of the ε and σ values influence the level of bubble deflection and the level of401

attraction. The level of deflection and the level of attraction between the bubbles ultimately influ-402

ences the distance between bubbles and the force between bubble pairs, which is used to compute403

the stress on each bubble. The effect of ε and σ are shown in Figure 7c., d., e., g., and h. for the404

relative viscosity values displayed in Figure 10a. The relative viscosity is dependent on the stress405

in the system, which is a summation of the stresses on each bubble. Figure 11 shows the value of406

stress in the xy-direction, σi,xy, for each bubble at the final configuration of the simulation. Figure407

11a shows the stress per bubble at the beginning of the simulation. The results are only shown for408

the 0.50 bubble volume fraction suspensions because the close-range interactions that were devel-409

oped here are the most dominant in dense suspensions. Figure 11e., corresponding to the choice of410

ε = 0.1 and σ = 0.85, shows an overall higher stress on each bubble – when compared to the other411
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Figure 10: The relative viscosity or viscosity ratio is shown as a function of the volume fraction
of bubbles in the suspension. The lines in the figures are second order polynomial fits through the
calculated relative viscosity points shown and including the point (0, 1) a.) The influence of ε and σ
of the Lennard-Jones direct force in the bubble interaction are shown. b.) Hard sphere suspension
results [9] are compared with the results of bubble suspensions.

simulation results shown – which results in higher viscosity values than when the other Lennard-412

Jones parameters are used. The choice of ε = 0.1 and σ = 0.85 does not produce reasonable413

relative viscosity results and the problem dynamics are not physically realistic either as shown in414

7g.415

The final choice of ε = 0.008 and σ = 0.9 of the Lennard-Jones parameters were chosen based on416

allowing the bubbles to overlap slightly but also have only a small amount of attraction to represent417

the effects of the surfactant. The bubble properties described from this point further will assume to418

have ε = 0.008 and σ = 0.9 values for the Lennard-Jones potential. The bubble configurations used419

as inputs for the simulation results shown here are the same as those used for monodisperse hard420

spheres with no slip boundary conditions [9]. The viscosity ratio of monodisperse hard spheres with421

no-slip boundaries are shown in Figure 10b, for comparison to the viscosity calculated for bubbles422

with slip boundaries and the ability to deform elastically in the manner described in Section 3. With423

the parameters chosen for these simulations, the viscosity ratio of bubble suspensions – as modeled424

here – does not vary an appreciable amount from the viscosity ratio of monodisperse hard sphere425

suspensions.426

6 Structuring of Suspensions of Bubbles v. Particles427

As discussed above, the structuring or clustering of bubbles in suspension can lead to weak me-428

chanical regions for crack propagation or pathways for gas migration. In this section, we compare429

monodisperse bubble suspensions to monodisperse particle suspensions using molecular dynamics430
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Figure 11: The final configuration of the 0.50 volume fraction of bubbles is shown in b.), c.), d.),
e.), f.) and the initial configuration of the bubbles and stress per bubble is shown in a.). The color
of each bubble corresponds to the value of the stress per bubble (from Equation (4.2)). The bubbles
are shown at half size and form the view shown in Figure 9.

calculations.431

Using parameters in the simulations that maintain proper system dynamics, the numerical sim-432

ulations show that the relative viscosity calculated is not influenced a significant amount by the433
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properties of the bubble surface compared to hard sphere particle suspensions. Figure 12 com-434

pares monodisperse particles to monodisperse bubbles. The stress per particle/bubble is indicated435

by color. The input configurations are the same for comparison and only the 0.50 volume fraction436

is compared because it is the higher volume fraction where detrimental clustering or ordering [9].437

The resulting relative viscosity is the same for both particles and bubbles but the per particle stress438

varies more in the hard sphere particles. Because the summation of the stress results in similar total439

average stress, the relative viscosity is also similar for both particles and bubbles.440

The difference in the surface properties of particles versus bubbles affects the spatial arrangement.441

The monodisperse particles have a lubrication squeezing force that prevents them from touching.442

The hard spheres also have shearing resistance. The properties of monodisperse particle suspen-443

sions was explored previously [9], and it was shown that volume fractions of 0.47 and higher show444

rearrangement and ordering. Monodisperse hard spherical particles, with no-slip boundary con-445

ditions, in a suspension will go from a random placement to an ordered placement that locally446

resembles a crystalline packing. Figure 13 compares the qualitative results of monodisperse parti-447

cles to monodisperse bubbles. In Figure 13b, the re-arrangement and structuring of the particles can448

be observed. In Figure 13a, the alignment of the particles can also be seen in the form of chains of449

particles. However, the influence of the bubble surface properties keep the bubbles relatively well450

dispersed throughout the simulation. Figures 13c and d show the results of the bubble suspensions451

described here. Unlike the hard spheres, the bubbles have a softer force between them, no shearing452

resistance due to the slip surface, and a surface that is able to deflect. The effects of the bubble453

surface properties help to keep the bubbles dispersed and the same ordering of particles seen in454

Figure 13b is not observed in Figure 13d.455

In Figure 13, the correlation refers to the pair correlation function of each bubble. The pair correla-456

tion quantifies the number of neighboring bubbles in volumetric shells (of equal thickness) around457

each bubble. The pair correlation of each bubble was calculated using the expression:458

g(η) =
NS

N
V
VS

(6.1)

NS is the number of bubbles in the current shell, S. VS is the volume of the current shell and N
V

459

is the number density of bubbles in the whole simulation box. The pair correlation values of the460

particles/bubbles, shown in Figure 13, is the probability of finding neighboring particles/bubbles461

within a spherical radius, η, of 1.5 away from each particle/bubble. The pair correlation relates462

to the ordering of the particles/bubbles. The hard sphere suspensions that show ordering of the463

particles have a higher correlation value for the particles in those regions. The bubble suspensions464

maintain an overall lower level of correlation. The level of correlation of the bubbles is consistent465

throughout the whole simulation box.466

7 Discussion467

Due to the slip on the bubble surface, lack of shearing resistance, and by allowing the bubble surface468

to deflect a small amount, interacting bubble pairs can pass by each other with less restriction.469

This results in less jamming of the bubbles, which is what causes bubbles to start forming linear470
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Figure 12: The final configuration of 0.50 volume fraction of particles/bubbles simulations is
shown. Particles are compared to the bubbles. For the bubble results shown, the values of the
Lennard-Jones potential are ε = 0.008 and σ = 0.9.

structures (Figure 12b.). With application to foamed cements, it is desired to keep the bubbles471

dispersed throughout the cement slurry, during placement in the well and once placed. As shown472

in [9], the effect of the particle polydispersity is to reduce clustering. Also, monodisperse bubbles473

structure and cluster less when compared to monodisperse particles.474

One of the benefits of foaming the cement is the increase in the viscosity. The increased viscosity475

with the amount of added bubbles enhances the drilling mud removal [42], especially in the type476
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Figure 13: The final configuration of 0.50 volume fraction of particles/bubbles simulations is
shown. Particles are compared to bubbles. For the bubble results shown, the values of the Lennard-
Jones potential are ε = 0.008 and σ = 0.9.

of mud used in geothermal wells [43]. Our numerical calculations show that in both particle and477

bubble suspensions, the viscosity increases with the increase in volume fraction of suspending478

objects [44].479

It is expected – and will be explored in the future – that the combination of bubble surface properties480

with polydispersity in the bubbles sizes would further reduce the propensity for bubble clustering to481

occur. In application, it is difficult to create bubble dispersions of exactly equal bubbles so in actual482

foamed cement, the polydispersity of the bubbles in the foamed cement help to keep the bubbles483
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dispersed. However, simulations with polydisperse bubble sizes is a significant step beyond the484

monodisperse modeling presented here, and is an important goal for the future.485

The calculations here assume Newtonian suspending fluids, which is a limitation of the overall486

Stokesian Dynamics framework. Homogenization or mixture-theory based approaches, e.g. based487

on [4,45–53], may enable the formulation of continuum models that can provide insight into parti-488

cle structuring while also accounting for the complex rheology of cement paste.489
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