
LARGE DATA AND ZERO NOISE LIMITS OF GRAPH-BASED1

SEMI-SUPERVISED LEARNING ALGORITHMS ∗
2

MATTHEW M. DUNLOP † , DEJAN SLEPČEV ‡ , ANDREW M. STUART § , AND3
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Abstract. Scalings in which the graph Laplacian approaches a differential operator in the5

large graph limit are used to develop understanding of a number of algorithms for semi-supervised6

learning; in particular the extension, to this graph setting, of the probit algorithm, level set and7

kriging methods, are studied. Both optimization and Bayesian approaches are considered, based8

around a regularizing quadratic form found from an affine transformation of the Laplacian, raised9

to a, possibly fractional, exponent. Conditions on the parameters defining this quadratic form are10

identified under which well-defined limiting continuum analogues of the optimization and Bayesian11

semi-supervised learning problems may be found, thereby shedding light on the design of algorithms12

in the large graph setting. The large graph limits of the optimization formulations are tackled13

through Γ−convergence, using the recently introduced TLp metric. The small labelling noise limit14

of the Bayesian fomulations are also identified, and contrasted with pre-existing harmonic function15

approaches to the problem.16
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1. Introduction.20

1.1. Context. This paper is concerned with the semi-supervised learning prob-21

lem of determining labels on an entire set of (feature) vectors {xj}j∈Z , given (possibly22

noisy) labels {yj}j∈Z′ on a subset of feature vectors with indices j ∈ Z ′ ⊂ Z. To be23

concrete we will assume that the xj are elements of Rd, d ≥ 2, and consider the binary24

classification problem in which the yj are elements of {±1}. Our goal is to characterize25

algorithms for this problem in the large data limit where n = ∣Z ∣ → ∞; additionally26

we will study the limit where the noise in the label data disappears. Studying these27

limits yields insight into the classification problem and algorithms for it.28

Semi-supervised learning as a subject has been developed primarily over the last29

two decades and the references [51, 52] provide an excellent source for the historical30

context. Graph based methods proceed by forming a graph with n nodes Z, and use31

the unlabelled data {xj}j∈Z to provide an n × n weight matrix W quantifying the32

affinity of the nodes of the graph with one another. The labelling information on Z ′
33

is then spread to the whole of Z, exploiting these affinities. In the absence of labelling34

information we obtain the problem of unsupervised learning; for example the spectrum35

of the graph Laplacian L forms the basis of widely used spectral clustering methods36

[3, 34, 45]. Other approaches are combinatorial, and largely focussed on graph cut37

methods [8, 9, 36]. However relaxation and approximation are required to beat the38

combinatorial hardness of these problems [31] leading to a range of methods based39

on Markov random fields [30] and total variation relaxation [40]. In [52] a number40
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of new approaches were introduced, including label propagation and the generaliza-41

tion of kriging, or Gaussian process regression [47], to the graph setting [53]. These42

regression methods opened up new approaches to the problem, but were limited in43

scope because the underlying real-valued Gaussian process was linked directly to the44

categorical label data which is (arguably) not natural from a modelling perspective;45

see [33] for a discussion of the distinctions between regression and classification. The46

logit and probit methods of classification [48] side-step this problem by postulating a47

link function which relates the underlying Gaussian process to the categorical data,48

amounting to a model linking the unlabelled and labelled data. The support vector49

machine [7] makes a similar link, but it lacks a natural probabilistic interpretation.50

The probabilistic formulation is important when it is desirable to equip the clas-51

sification with measures of uncertainty. Hence, we will concentrate on the probit52

algorithm in this paper, and variants on it, as it has a probabilistic formulation.53

The statement of the probit algorithm in the context of graph based semi-supervised54

learning may be found in [6]. An approach bridging the combinatorial and Gaussian55

process approaches is the use of Ginzburg-Landau models which work with real num-56

bers but use a penalty to constrain to values close to the range of the label data {±1};57

these methods were introduced in [4], large data limits studied in [15, 42, 44], and58

given a probabilistic interpretation in [6]. Finally we mention the Bayesian level set59

method. This approach takes the idea of using level sets for inversion in the class of60

interface problems [11] and gives it a probabilistic formulation which has both theo-61

retical foundations and leads to efficient algorithms [28]; classification may be viewed62

as an interface problem on a graph (a graph cut is an interface for example) and thus63

the Bayesian level set method is naturally extended to this setting as shown in [6].64

As part of this paper we will show that the probit and Bayesian level set methods are65

closely related.66

A significant challenge for the field, both in terms of algorithmic development,67

and in terms of fundamental theoretical understanding, is the setting in which the68

volume of unlabelled data is high, relative to the volume of labelled data. One way69

to understand this setting is through the study of large data limits in which n = ∣Z ∣→70

∞. This limit is studied in [46], and was addressed more recently under different71

assumptions in [21]. Both papers assume that the unlabelled data is drawn i.i.d.72

from a measure with Lebesgue density on a subset of Rd, but the assumptions on73

graph construction differ: in [46] the graph bandwidth is fixed as n → ∞ resulting74

in the limit of the graph Laplacian being a non-local operator, whilst in [21] the75

bandwidth vanishes in the limit resulting in the limit being a weighted Laplacian76

(divergence form elliptic operator).77

In [32] it is demonstrated that algorithms based on use of the discrete Dirichlet78

energy computed from the graph Laplacian can behave poorly for d ≥ 2, in the large79

data limit, if they attempt pointwise labelling. In [50] it is argued that use of quadratic80

forms based on powers α > d
2

of the graph Laplacian can ameliorate this problem.81

Our work, which studies a range of algorithms all based on optimization or Bayesian82

formulations exploiting quadratic forms, will take this body of work considerably83

further, proving large data limit theorems for a variety of algorithms, and showing84

the role of the parameter α in this infinite data limit. In doing so we shed light85

on the difficult question of how to scale and tune algorithms for graph based semi-86

supervised learning; in particular we state limit theorems of various kinds which87

require, respectvely, either α > d
2

or α > d to hold. We also study the small noise88

limit and show how both the probit and Bayesian level set algorithms coincide and,89

furthermore, provide a natural generalization of the harmonic functions approach of90
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[53, 54], one which is arguably more natural from a modeling perspective.91

Our large data limit theorems concern the maximum a posteriori (MAP) estimator92

rather than a Bayesian posterior distribution. However two remarkable recent papers93

[20, 19] demonstrate a methodology for proving limit theorems concerning Bayesian94

posterior distributions themselves, exploiting the variational characterization of Bayes95

theorem; extending the work in those papers to the algorithms considered in this paper96

would be of great interest.97

1.2. Our Contribution. We derive a canonical continuum inverse problem98

which characterizes graph based semi-supervised learning: find function u ∶ Ω ⊂ Rd ↦99

R from knowledge of sign(u) on Ω′ ⊂ Ω. 1 The latent variable u characterizes the100

unlabelled data and its sign is the labelling information. This highly ill-posed inverse101

problem is potentially solvable because of the very strong prior information provided102

by the unlabelled data; we characterize this information via a mean zero Gaussian103

process prior on u with covariance operator C ∝ (L + τ2I)−α. The operator L is a104

weighted Laplacian found as a limit of the graph Laplacian, and as a consequence105

depends on the distribution of the unlabelled data.106

In order to derive this canonical inverse problem we study the probit and Bayesian107

level set algorithms for semi-supervised learning. We build on the large unlabelled108

data limit setting of [21]. In this setting there is an intrinsic scaling parameter εn that109

characterizes the length scale on which edge weights between nodes are significant;110

the analysis identifies a lower bound on εn which is necessary in order for the graph111

to remain connected in the large data limit and under which the graph Laplacian112

L converges to a differential operator L of weighted Laplacian form. The work uses113

Γ−convergence in the TL2 optimal transport metric, introduced in [21], and proves114

convergence of the quadratic form defined by L to one defined by L. We make the115

following contributions which significantly extend this work to the semi-supervised116

learning setting.117

● We prove Γ−convergence in TL2 of the quadratic form defined by (L+ τ2I)α118

to that defined by (L + τ2I)α and identify parameter choices in which the119

limiting Gaussian measure with covariance (L + τ2I)−α is well-defined. See120

Theorems 1, 4 and Proposition 5.121

● We introduce large data limits of the probit and Bayesian level set problem122

formulations in which the volume of unlabelled data n = ∣Z ∣ → ∞, distin-123

guishing between the cases where the volume of labelled data ∣Z ′∣ is fixed and124

where ∣Z ′∣/n is fixed. See section 4 for the function space analogues of the of125

the graph based algorithms introduced in 3.126

● We use the theory of Γ−convergence to derive a continuum limit of the probit127

algorithm when employed in MAP estimation mode; this theory demonstrates128

the need for α > d
2

and an upper bound on εn in the large data limit where129

the volume of labelled data ∣Z ′∣ is fixed. See Theorems 10 and 11130

● We use the properties of Gaussian measures on function spaces to write down131

well defined limits of the probit and Bayesian level set algorithms, when em-132

ployed in Bayesian probabilistic mode, to determine the posterior distribution133

on labels given observed data; this theory demonstrates the need for α > d
2

in134

order for the limiting probability distribution to be meaningful for both large135

data limits; indeed, depending on the geometry of the domain from which the136

feature vectors are drawn, it may require α > d for the case where the volume137

1 We note that throughout the paper Ω is the physical domain, and not the set of events of a
probability space.
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of labelled data is fixed. See Theorem 4 and Proposition 5 for these condi-138

tions on α, and for details of the limiting probability measures see equations139

(21), (22), (23) and (24).140

● We show that the probit and Bayesian level set method have a common141

Bayesian inverse problem limit, mentioned above, by studying their weak142

limits as noise levels on the label data tends to zero. See Theorems 8 and 14.143

● We provide careful numerical experiments which illusrate the large graph144

limits introduced and studied in this paper; see section 5.145

1.3. Paper Structure. In section 2 we study a family of quadratic forms which146

arise naturally in all the algorithms that we study. By means of the Γ−convergence147

techniques pioneered in [21] we show that these quadratic forms have a limit defined148

by families of differential operators in which the finite graph parameters appear in an149

explicit and easily understood fashion. Section 3 is devoted to the definition of the150

three graph based algorithms that we study in this paper: the probit and Bayesian151

level set algorithms, and the graph analogue of kriging. In section 4 we write down the152

function space limits of these algorithms, obtained when the volume n of unlabelled153

data tends to infinity, and in the case of the maximum a posteriori estimator for154

probit use Γ−convergence to study large graph limits rigorously; we also show that155

the probit and Bayesian level set algorithms have a common zero noise limit. Section 5156

contains numerical experiments for the function space limits of the algorithms, in both157

optimization (MAP) and sampling (fully Bayesian MCMC) modalities. We conclude158

in section 6 with a summary and directions for future research. All proofs are given159

in the Appendix, section 7. This choice is made in order to separate the form and160

implications of the theory from the proofs; both the statements and proofs comprise161

the contributions of this work, but since they may be of interest to different readers162

they are separated, by use of the Appendix.163

2. Key Quadratic Form and Its Limits.164

2.1. Graph Setting. From the unlabelled data {xj}nj=1 we construct a weighted165

graph G = (Z,W ) where Z = {1,⋯, n} are the vertices of the graph and W the edge166

weight matrix; W is assumed to have entries {wij} between nodes i and j given by167

wij = ηε(∣xi − xj ∣).

We will discuss choice of the function ηε ∶ R ↦ R+ in detail below; heuristically it168

should be thought of as proportional to a mollified Dirac mass, or a characteristic169

function of a small interval. From W we construct the graph Laplacian as follows.170

We define the diagonal matrix D = diag{dii} with entries dii = ∑j∈Z wij . We can then171

define the unnormalized graph Laplacian L =D −W . Our results may be generalized172

to the normalized graph Laplacian L = I −D− 1
2WD− 1

2 and we will comment on this173

in the conclusions.174

2.2. Quadratic Form. We view u ∶ Z ↦ R as a vector in Rn and define the175

quadratic form176

⟨u,Lu⟩ = 1

2
∑
i,j∈Z

wij ∣u(i) − u(j)∣2;

here ⟨⋅, ⋅⟩ denotes the standard Euclidean inner-product on Rn. This is the discrete177

Dirichlet energy defined via the graph Laplacian L and appears as a basic quantity178

in many unsupervised and semi-supervised learning algorithms. In this paper our179
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interest focusses on forms based on powers of L:180

J(α,τ)n (u) = 1

2n
⟨u,A(n)u⟩

where181

(1) A(n) = (snL + τ2I)α.

The sequence parameters sn will be chosen appropriately to ensure that the quadratic182

form J
(α,τ)
n (u) converges to a well-defined limit as n→∞.183

In addition to working in a set-up which results in a well-defined limit, we will184

also ask that this limit results in a quadratic form defined by a differential operator.185

This, of course, requires some form of localization and we will encode this as follows:186

we will assume that ηε(⋅) = ε−dη(⋅/ε), inducing a Dirac mass approximation as ε→ 0;187

later we will discuss how to relate ε to n. For now we state the assumptions on η that188

we employ throughout the paper:189

Assumptions 1 (on η). The edge weight profile function η satisfies:190

(K1) η(0) > 0 and η(⋅) continuous at the origin;191

(K2) η non-increasing;192

(K3) ∫
∞

0 η(r)rd+1dr <∞;193

Notice that assumption (K3) implies that194

(2) ση ∶=
1

d
∫
Rd
η(h)∣h∣2dh <∞ and βη ∶= ∫

Rd
η(h)dh <∞.

A notable fact about the limits that we study in the remainder of the paper is that195

they depend on η only through the constants ση, βη, provided Assumptions 1 hold196

and ε = εn and sn are chosen as appropriate functions of n.197

2.3. Limiting Quadratic Form.198

The limiting quadratic form is defined on an open and bounded set Ω ⊂ Rd.199

Assumptions 2 (on Ω). We assume that Ω is a connected, open and bounded200

subset of Rd. We also assume that Ω has C1,1boundary. 2
201

Assumptions 3 (on density ρ). We assume that n feature vectors xj ∈ Ω are202

sampled i.i.d. from a probability measure µ supported on Ω with smooth Lebesgue203

density ρ bounded above and below by finite strictly positive constants ρ± uniformly204

on Ω.205

We index the data by Z = {1,⋯, n} and let Ωn = {xi}i∈Z be the data set. This206

data set induces the empirical measure207

µn =
1

n
∑
i∈Z

δxi .

2The assumption that Ω is connected is not essential but makes stating the results simpler. We
remark that a number of the results, and in particular the convergence of Theorem 1, hold if we only
assume that the boundary of Ω is Lipschitz. We need the stronger assumption in order to be able to
employ elliptic regularity to characterize functions in fractional Sobolev spaces, see Section 2.4 and
Lemma 16; this is essential to be able to define Gaussian measures on function spaces, and therefore
needed to define a Bayesian approach in whch uncertainty of classifiers may be estimated.
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Given a measure ν on Ω we define the weighted Hilbert space L2
ν = L2

ν(Ω;R) with208

inner-product209

(3) ⟨a, b⟩ν = ∫
Ω
a(x)b(x)ν(dx)

and induced norm defined by the identity ∥ ⋅ ∥2
L2
ν
= ⟨⋅, ⋅⟩ν . Note that with these defini-210

tions we have211

J(α,τ)n ∶ L2
µn ↦ [0,+∞), J(α,τ)n (u) = 1

2
⟨u,A(n)u⟩µn .

In what follows we apply a form of Γ−convergence to establish that for large n the212

quadratic form J
(α,τ)
n is well approximated by the limiting quadratic form213

J(α,τ)∞ ∶ L2
µ ↦ [0,+∞) ∪ {+∞}, J(α,τ)∞ (u) = 1

2
⟨u,Au⟩µ.

Here µ is the measure on Ω with density ρ, and we define the L2
µ self-adjoint differential214

operator L by215

(4) Lu = −1

ρ
∇ ⋅ (ρ2∇u), x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω.

The operator A is then defined by A = (L + τ2I)α.216

We may now relate the quadratic forms defined by A(n) and A. The TL2 topology217

is introduced in [21] and defined in the Appendix section 7.2.2 for convenience. The218

following theorem is proved in section 7.4.219

Theorem 1. Let Assumptions 1–3 hold. Let {εn}n=1,2,... be a positive sequence220

converging to zero, and such that221

(5)

lim
n→∞

( logn

n
)

1/d 1

εn
= 0 if d ≥ 3,

lim
n→∞

( logn

n
)

1/2 (logn) 1
4

εn
= 0 if d = 2,

and assume that the scale factor sn is defined by222

(6) sn =
2

σηnε2
n

.

Then, with probability one, we have223

1. Γ- limn→∞ J
(α,τ)
n = J(α,τ)∞ with respect to the TL2 topology;224

2. if τ = 0, any sequence {un} with un ∶ Ωn → R satisfying supn ∥un∥L2
µn

< ∞225

and supn∈N J
(α,0)
n (un) <∞ is pre-compact in the TL2 topology;226

3. if τ > 0, any sequence {un} with un ∶ Ωn → R satisfying supn∈N J
(α,τ)
n (un) <∞227

is pre-compact in the TL2 topology.228

Remark 2. As we discuss in section 7.2.1 of the appendix, Γ-convergence and pre-229

compactness allow one to show that minimizers of a sequence of functionals converge230

to the minimizer of the limiting functional. The results of Theorem 1 provide the231

Γ-convergence and pre-compactness of fractional Dirichlet energies, which are the key232

term of the functionals, such as (10) below, that define the learning algorithms that we233

study. In particular Theorem 1 enables us to prove the convergence, in the large data234

limit n → ∞, of minimizers of functionals such as (10) (i.e. of outcomes of learning235

algorithms), as shown in Theorem 10.236

6



2.4. Function Spaces. The operator L given by (4) is uniformly elliptic as a237

consequence of the assumptions on ρ, and is self-adjoint with respect to the inner238

product (3) on L2
µ. By standard theory, it has a discrete spectrum: 0 = λ1 < λ2 ≤ ⋯,239

where the fact that 0 < λ2 uses the connectedness of the domain and the uniform240

positivity of ρ on the domain. Let ϕi for i = 1, . . . be the associated L2
µ-orthonormal241

eigenfunctions. They form a basis of L2
µ.242

By Weyl’s law the eigenvalues of {λj}j≥1 of L satisfy λj ≍ j2/d. For completeness a243

simple proof is proved in Lemma 27; the analogous and more general results applicable244

to the Laplace-Beltrami operator may be found in, Hörmander [27].245

Spectrally defined Sobolev spaces. For s ≥ 0 we define246

Hs(Ω) = {u ∈ L2
µ ∶

∞
∑
k=1

λska
2
k <∞}

where ak = ⟨u,ϕk⟩µ and thus u = ∑k akϕk in L2
µ. We note that Hs(Ω) is a Hilbert247

space with respect to the inner product248

⟪u, v⟫s,µ = a1b1 +
∞
∑
k=1

λskakbk

where bk = ⟨v,ϕk⟩µ. It follows from the definition that for any s ≥ 0, Hs(Ω) is249

isomorphic to a weighted `2(N) space, where the weights are formed by the sequence250

1, λs2, λ
s
3, . . . .251

In Lemma 16 in the Appendix section 7.1 we show that for any integer s >252

0, Hs(Ω) ⊂ Hs(Ω) where Hs(Ω) is the standard fractional Sobolev space. More253

precisely we characterize Hs(Ω) as the set of those functions in Hs(Ω) which satisfy254

the appropriate boundary condition and show that the norms of Hs(Ω) and Hs(Ω)255

are equivalent on Hs(Ω).256

We also note that for any integer s and θ ∈ (0,1) the space Hs+θ is a interpolation257

space between Hs and Hs+1. In particular Hs+θ = [Hs,Hs+1]θ,2, where the real258

interpolation space used is as in Definition 3.3 of Abels [1]. This identification of259

Hs follows from the characterization of interpolation spaces of weighted Lp spaces by260

Peetre [35], as referenced by Gilbert [24]. Together these facts allow us to characterize261

the Hölder regularity of functions in Hs(Ω).262

Lemma 3. Under Assumptions 2–3, for all s ≥ 0 there exists a bounded, linear,263

extension mapping E ∶ Hs(Ω) → Hs(Rd). That is for all f ∈ Hs(Ω), E(f)∣Ω = f a.e.264

Furthermore:265

(i) if s < d
2

then Hs(Ω) embeds continuously in Lq(Ω) for any q ≤ 2d
d−2s

;266

(ii) if s > d
2

then Hs(Ω) embeds continuously in C0,γ(Ω) for any γ < min{1, s− d
2
}.267

The proof is presented in the Appendix 7.1.268

We note that this implies that when α > d
2

pointwise evaluation is well-defined in269

the limiting quadratic form J
(α,τ)
∞ ; this will be used in what follows to show that the270

the limiting labelling model obtained when ∣Z ′∣ is fixed is well-posed.271

2.5. Gaussian Measures of Function Spaces. Using the ellipticity of L,272

Weyl’s law, and Lemma 3 allows us to characterize the regularity of samples of Gaus-273

sian measures on L2
µ. The proof of the following theorem is a straightforward ap-274

plication of the techniques in [17, Theorem 2.10] to obtain the Gaussian measures275

on Hs(Ω). Concentration of the measure on Hs and on C0,γ(Ω) then follows from276
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Lemma 3. When τ = 0 we work on the space orthogonal to constants in order that C277

(defined in the theorem below) is well defined.278

Theorem 4. Let Assumptions 2–3 hold. Let L be the operator defined in (4),279

and define C = (L + τ2I)−α. For any fixed α > d
2

and τ ≥ 0, the Gaussian measure280

N(0,C) is well-defined on L2
µ. Draws from this measure are almost surely in Hs(Ω)281

for any s < α − d
2

, and consequently in C0,γ(Ω) for any γ < min{1, α − d} if α > d.282

We note that if the operator L has eigenvectors which are as regular as those of283

the Laplacian on a flat torus then the conclusions of Theorem 4 can be strengthened.284

Namely if in addition to what we know about L, there is C > 0 such that285

(7) sup
j≥1

(∥ϕj∥L∞ + 1

j1/dLip(ϕj)) ≤ C,

then the Kolmogorov continuity technique [17, Section 7.2.5] can be used to show286

additional Hölder continuity.287

Proposition 5. Let Assumptions 2–3 hold. Assume the operator L satisfies con-288

dition (7) and define C = (L + τ2I)−α. For any fixed α > d/2 and τ ≥ 0, the Gaussian289

measure N(0,C) is well-defined on L2
µ. Draws from this measure are almost surely in290

Hs(Ω;R) for any s < α − d/2, and in C0,γ(Ω;R) for any γ < min{1, α − d
2
} if α > d

2
.291

We note that in general one cannot expect that the operator L satisfies the bound292

(7). For example, for the ball there is a sequence of eigenfunctions which satisfy293

∥ϕk∥L∞ ∼ λ(d−1)/4
k ∼ k(d−2)/(2d), see [25]. In fact this is the largest growth of eigen-294

functions possible, as on general domains with smooth boundary ∥ϕk∥L∞ ≲ λ(d−1)/4
k ,295

as follows from the work of Grieser, [25]. Analogous bounds have first been estab-296

lished for operators on manifolds without boundary by Hörmander, [27]. This bound297

is rarely saturated as shown by Sogge and Zeldtich [39], but determining the scaling298

for most sets and manifolds remains open. Establishing the conditions on Ω under299

which the Theorem 4 can be strengthened as in Proposition 5 is of great interest.300

3. Graph Based Formulations. We now assume that we have access to label301

data defined as follows. Let Ω′ ⊂ Ω and let Ω± be two subsets of Ω′ such that302

Ω+ ∪Ω− = Ω′, Ω+ ∩Ω− = ∅.

We will consider two labelling scenarios:303

● Labelling Model 1. ∣Z ′∣/n → r ∈ (0,∞). We assume that Ω± have positive304

Lebesgue measure. We assume that the {xj}j∈N are drawn i.i.d. from measure305

µ. Then if xj ∈ Ω+ we set yj = 1 and if xj ∈ Ω− then yj = −1. The label306

variables yj are not defined if xj ∈ Ω/Ω′ where Ω′ = Ω+ ∪ Ω−. We assume307

dist(Ω+,Ω−) > 0 and define Z ′ ⊂ Z to be the subset of indices for which we308

have labels.309

Labelling Model 2. ∣Z ′∣ fixed as n → ∞. We assume that Ω± comprise a310

fixed number of points, n± respectively. We assume that the {xj}j>n++n− are311

drawn i.i.d. from measure µ whilst {xj}1≤j≤n+ are a fixed set of points in312

Ω+ and {xj}n++1≤j≤n++n− are a fixed set of points in Ω−. We label these fixed313

points by y ∶ Ω± ↦ {±1} as in Labelling Model 1. We define Z ′ ⊂ Z to be314

the subset of indices {1,⋯, n++n−} for which we have labels and Ω′ = Ω+∪Ω−.315

In both cases j ∈ Z ′ if and only if xj ∈ Ω′. But in Model 1 the xj are drawn i.i.d. and316

assigned labels when they lie in Ω′, assumed to have positive Lebesgue measure; in317
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Model 2 the {(xj , yj)}j∈Z′ are provided, in a possibly non-random way, independently318

of the unlabelled data.319

We will identify u ∈ Rn and u ∈ L2
µn(Ω;R) by uj = u(xj) for each j ∈ Z. Similarly,320

we will identify y ∈ Rn++n− and y ∈ L2
µn(Ω

′;R) by yj = y(xj) for each j ∈ Z ′. We may321

therefore write, for example,322

1

n
⟨u,Lu⟩Rn = ⟨u,Lu⟩µn

where u is viewed as a vector on the left-hand side and a function on Z on the323

right-hand side.324

The algorithms that we study in this paper have interpretations through both
optimization and probability. The labels are found from a real-valued function u ∶
Z ↦ R by setting y = S ○ u ∶ Z ↦ R with S the sign function defined by

S(0) = 0; S(u) = 1, u > 0; and S(u) = −1, u < 0.

The objective function of interest takes the form

J(n)(u) = 1

2
⟨u,A(n)u⟩µn + rnΦ(n)(u).

The quadratic form depends only on the unlabelled data, while the function Φ(n) is325

determined by the labelled data. Choosing rn = 1
n

in Labeling Model 1 and rn = 1326

in Labeling Model 2 ensures that the total labelling information remains of O(1) in327

the large n limit. Probability distributions constructed by exponentiating multiples328

of J(n)(u) will be of interest to us; the probability is then high where the objective329

function is small, and vice-versa. Such probabilities represent the Bayesian posterior330

distribution on the conditional random variable u∣y.331

3.1. Probit. The probit algorithm on a graph is defined in [6] and here gener-332

alized to a quadratic form based on A(n) rather than L. We define333

(8) Ψ(v;γ) = 1√
2πγ2

∫
v

−∞
exp ( − t2/2γ2)dt

and then334

(9) Φ(n)p (u;γ) = − ∑
j∈Z′

log(Ψ(yjuj ;γ)).

The function Ψ and its logarithm are shown in Figure 1 in the case γ = 1. The probit335

objective function is336

(10) J(n)p (u) = J(α,τ)n (u) + rnΦ(n)p (u;γ).

where rn = 1
n

in Labeling Model 1 and rn = 1 in Labeling Model 2. The proof of337

Proposition 1 in [6] is readily modified to prove the following.338

Proposition 6. The objective function J
(n)
p is strictly convex.339

It is also straightforward to check, by expanding u in the basis given by eigen-340

vectors of A(n), that J
(n)
p is coercive. This is proved by establishing that J

(α,τ)
n is341

coercive on the orthogonal complement of the constant function. The coercivity in342
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Fig. 1. The function Ψ(⋅; 1), defined by (8), and its logarithm, which appears in the probit
objective function.

the remaining direction is provided by Φ
(n)
p (u;γ) using the fact that Ω+ and Ω− are343

nonempty. Consequently J
(n)
p has a unique minimizer; Lemma 9 has the proof of the344

continuum analog of this; the proof on a graph is easily reconstructed from this.345

The probabilistic analogue of the optimization problem for J
(n)
p is as follows. We346

let ν
(n)
0 (du; r) denote the centred Gaussian with covariance C = rn(A(n))−1 (with347

respect to the inner product ⟨⋅, ⋅⟩µn). We assume that the latent variable u is a priori348

distributed according to measure ν
(n)
0 (du; rn). If we then define the likelihood y∣u349

through the generative model350

(11) yj = S(uj + ηj)

with ηj
iid∼ N(0, γ2) then the posterior probability on u∣y is given by351

(12) ν(n)p (du) = 1

Z
(n)
p

e−Φ(n)p (u;y)ν
(n)
0 (du; rn)

with Z
(n)
p the normalization to a probability measure. The measure ν

(n)
p has Lebesgue352

density proportional to e−r
−1
n J(n)p (u).353

3.2. Bayesian Level Set. We now define354

(13) Φ
(n)
ls (u;γ) = 1

2γ2 ∑
j∈Z′

∣yj − S(uj)∣
2
.

The relevant objective function is355

J
(n)
ls (u) = J(α,τ)n (u) + rnΦ

(n)
ls (u;γ).

where again rn = 1
n

in Labeling Model 1 and rn = 1 in Labeling Model 2. We356

have the following:357

Proposition 7. The infimum of of J
(n)
ls is not attained.358

This follows using the argument introduced in a related context in [28]: assuming359

that a non-zero minimizer does exist leads to a contradiction upon multiplication of360

that minimizer by any number less than one; and zero does not achieve the infimum.361

We modify the generative model (11) slightly to read362

yj = S(uj) + ηj ,

where now ηj
iid∼ N(0, r−1

n γ
2). In this case, because the noise is additive, multiplying363

the objective function by rn simply results in a rescaling of the observational noise;364
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multiplication by rn does not have such a simple interpretation in the case of pro-365

bit. As a consequence the resulting Bayesian posterior distribution has significant366

differences with the probit case: the latent variable u is now assumed a priori to be367

distributed according to measure ν
(n)
0 (du; 1) Then368

(14) ν
(n)
ls (du) = 1

Z
(n)
ls

e−rnΦ
(n)
ls
(u;γ)ν

(n)
0 (du; 1)

where ν
(n)
0 is the same centred Gaussian as in the probit case. Note that ν

(n)
ls is also369

the measure with Lebesgue density proportional to e−J
(n)
ls
(u).370

3.3. Small Noise Limit. When the size of the noise on the labels is small,371

the probit and Bayesian level set approaches behave similarly. More precisely, the372

measures ν
(n)
p and ν

(n)
ls share a common weak limit as γ → 0. The following result373

is given without proof – this is because its proof is almost identical to that arising374

in the continuum limit setting of Theorem 14(ii) given in the appendix; indeed it is375

technicaly easier due to the fully discrete setting. Here ⇒ denotes weak convergence376

of probability measures.377

Theorem 8. Let ν
(n)
0 (du) denote a Gaussian measure of the form ν

(n)
0 (du; r)

for any r, possibly depending on n. Define the set

Bn = {u ∈ Rn ∣ yjuj > 0 for each j ∈ Z ′}

and the probability measure

ν(n)(du) = Z−11Bn(u)ν
(n)
0 (du)

where Z = ν(n)0 (Bn). Consider the posterior measures ν
(n)
p defined in (12) and ν

(n)
ls378

defined in (14). Then ν
(n)
p ⇒ν(n) and ν

(n)
ls ⇒ν(n) as γ → 0.379

3.4. Kriging. Instead of classification, where the sign of the latent variable u is380

made to agree with the labels, one can alternatively consider regression where u itself381

is made to agree with the labels [53, 54]. We consider this situation numerically in382

section 5. Here the objective is to383

minimize J
(n)
k (u) ∶= J(α,τ)n (u) subject to u(xj) = yj for all j ∈ Z ′.

In the continuum setting this minimization is referred to as kriging, and we extend384

the terminology to our graph based setting. Kriging may also be defined in the case385

where the constraint is enforced as a soft least squares penalty; however we do not386

discuss this here.387

The probabilistic analogue of this problem can be linked with the original work388

of Zhu et al [53, 54] which based classification on a centred Gaussian measure with389

inverse covariance given by the graph Laplacian, conditioned to take the value exactly390

1 on labelled nodes where yj = 1, and to take the value exactly −1 on labelled nodes391

where yj = −1.392

4. Function Space Limits of Graph Based Formulations. In this section393

we state Γ−limit theorems for the objective functions appearing in the probit algo-394

rithm. The proofs are given in the appendix. They rely on arguments which use395

the fact that we study perturbations of the Γ−limit theorem for the quadratic forms396
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stated in section 2. We also write down formal infinite dimensional formulations of397

the probit and Bayesian level set posterior distributions, although we do not prove398

that these limits are attained. We do, however, show that the probit and level set399

posteriors have a common limit as γ → 0, as they do on a finite graph.400

4.1. Probit. Under Labelling Model 1, the natural continuum limit of the401

probit objective functional is402

(15) Jp(v) = J(α,τ)∞ (v) +Φp,1(v;γ)

where403

(16) Φp,1(v;γ) = −∫
Ω′

log(Ψ(y(x)v(x);γ))dµ(x)

for a given measurable function y ∶ Ω′ → {±1}. For any v ∈ L2
µ, log(Ψ(y(x)v(x);γ))404

is integrable by Corollary 26. The proof of the following theorem is given in the405

appendix, in section 7.5.406

Lemma 9. Let Assumptions 1–3 hold. For α ≥ 1, consider the functional Jp with407

Labelling Model 1 defined by (15). Then, the functional Jp has a unique minimizer408

in Hα(Ω).409

Proof. Convexity of Jp follows from the proof of Proposition 1 in [6]. Let v̄+ and410

v̄− be the averages of v on Ω+ and Ω− respectively. Namely let v̄± = 1
∣Ω±∣ ∫Ω±

v(x)dx.411

Note that412

Jp(v) ≥ J(α,τ)∞ (v) ≥ λα−1
2 J(1,0)∞ (v) = −1

2
λα−1

2 ∫
Ω
v∇ ⋅ (ρ2∇v)dx ≥ (ρ−)2λα−1

2

2
∥∇v∥2

L2(Ω).

Using the form of Poincaré inequality given in Theorem 13.27 of [29] implies that413

(17) Jp(v) ≳ ∥∇v∥2
L2(Ω) ≳ ∫

Ω
∣v − v̄+∣2 + ∣v − v̄−∣2 dx.

The convexity of Φp,1(v;γ) implies that414

Φp,1(v;γ) ≥ − log(Ψ(v̄+);γ)µ(Ω+) − log(Ψ(−v̄−);γ)µ(Ω−)

Using that lims→−∞ − log(Ψ(s;γ)) =∞ we see that a bound on Φp,1(v;γ) provides a415

lower bound on v̄+ and an upper bound on v̄−. To see this let Θ be the inverse of416

s↦ − log(Ψ(s;γ)). The preceding shows that417

v̄+ ≥ Θ(Φp,1(v;γ)
µ(Ω+)

) ≥ Θ( Jp(v)
µ(Ω+)

) and v̄− ≤ −Θ(Φp,1(v;γ)
µ(Ω−)

) ≤ −Θ( Jp(v)
µ(Ω−)

) .

Let c = max{−Θ ( Jp(v)
µ(Ω+)) ,−Θ ( Jp(v)

µ(Ω−)) ,0}. Then v̄+ ≥ −c and v̄− ≤ c. Using that, for

any a ∈ R, v2 ≤ 2∣v − a∣2 + 2a2, we obtain

∫
Ω
v2(x)dx ≤ ∫{v(x)≤−c} v

2(x)dx + ∫{v(x)≥c} v
2(x)dx + c2∣Ω∣

≤ 2∫{v(x)≤−c} ∣v + c∣
2 + c2 dx + 2∫{v(x)≥c} ∣v − c∣

2 + c2 dx + c2∣Ω∣

≤ 5c2∣Ω∣ + 2∫{v(x)≤−c} ∣v − v̄+∣
2 dx + 2∫{v(x)≥c} ∣v − v̄−∣

2 dx

≲ c2∣Ω∣ + Jp(v).
12



Then ∥v∥L2 is bounded by a function of Jp(v) and Ω.418

Combining with (17) implies that a function of Jp(v) bounds ∥v∥2
Hα(Ω) which419

establishes the coercivity of Jp. The functional Jp is weakly lower-somicontinuous in420

Hα, due to convexity of both J
(α,τ)
∞ and Φp,1. Thus the direct method of the calculus421

of variations proves that Jp has a unique minimizer in Hα(Ω).422

The following theorem is proved in section 7.5.423

Theorem 10. Let the assumptions of Labelling Model 1 and Theorem 1 hold.424

Then, with probability one, any sequence of minimizers vn of J
(n)
p converge in TL2 to425

v∞, the unique minimizer of Jp in L2
µ, and furthermore limn→∞ J

(n)
p (vn) = Jp(v∞) =426

minv∈L2
µ
Jp(v).427

The analogous result under Labelling Model 2, i.e. convergence of minimizers,428

is an open question. In this case the natural continuum limit of the probit objective429

functional is430

(18) Jp(v) = J(α,τ)∞ (v) +Φp,2(v;γ)

where431

(19) Φp,2(v;γ) = − ∑
j∈Z′

log(Ψ(y(xj)u(xj);γ)

for a given measurable function y ∶ Ω′ → {±1}. When α ≤ d
2

this limiting model432

is not well-posed. In particular the regularity of the functional is not sufficient to433

impose pointwise data. More precisely, when α ≤ d
2

then there exists a sequence of434

smooth functions vk ∈ C∞(Ω) such that limk→∞ Jp(vk) = 0. In particular when α < d
2
,435

consider a smooth, compactly supported, mollifier ξ, with ξ(0) > 0 and define vk(x) =436

ck∑Ni=1 y(xi)ξ1/k(x − xi) where ck → ∞ sufficiently slowly. Then Φp,2(vk;γ) → 0 as437

k → ∞ and, by a simple scaling argument (for appropriate ck), J
(α,τ)
∞ (vk) → 0 as438

k →∞. Another way to see that the problem is not well defined is that the functions439

in Hα(Ω) (which is the natural space to consider Jp on) are not continuous in general440

and evaluating Φp,2(v;γ) is not well defined.441

When α > d
2

the existence of minimizers of (18) in Hα(Ω) is established by the442

direct method of the calculus of variations using the convexity of Jp and the fact that,443

by Lemma 3, Hα continuously embeds into a set of Hölder continuous functions.444

For α > d
2

we believe that the minimizers of Jnp of Labelling Model 2 converge445

to minimizers of (18) in an appropriate regime, but the situation is more complicated446

than for Labelling Model 1: under Labelling Model 2 (5) is no longer a sufficient447

condition on the scaling of ε with n for the convergence to hold. Thus if ε → 0 too448

slowly the problem degenerates. In particular in the following theorem we identify449

the asymptotic behavior of minimizers of Jp both when α < d
2
, and if α > d

2
but ε→ 0450

too slowly.451

The proof of the following may be found in section 7.6. The theorem is similar452

in spirit to Proposition 2.2(ii) in [38] where a similar phenomenon was discussed453

for the p-Laplacian regularized semi-supervised learning. We also mention that the454

PDE approach to a closely related p-Laplacian problem was recently introduced by455

Calder [12].456

Theorem 11. Let the assumptions of Labelling Model 2, and Theorem 1 hold.457

If α > d
2

, τ > 0, and458

(20) εnn
1
2α →∞ as n→∞
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or if α < d
2

then, with probability one, the sequence of minimizers vn of J
(n)
p converge459

to 0 in TL2 as n →∞. That is, the minimizers of J
(n)
p converge to the minimizer of460

J
(α,τ)
∞ with the information about the labels being lost in the limit.461

Remark 12. We believe, but do not have a proof, that for α > d
2

and τ > 0, if462

εnn
1
2α → 0 as n→∞

then, with probability one, any sequence of minimizers vn of J
(n)
p is sequentially463

compact in TL2 with limn→∞ J
(n)
p (vn) = minv∈L2

µ
Jp(v) given by (18), (19). If this464

holds then, under Labelling Model 2, J
(n)
p (u) converges in an appropriate sense to465

a limiting objective function Jp(u). Our numerical results support this conjecture.466

It is also of interest to consider the limiting probability distributions which arise467

under the two labelling models. Under Labelling Model 2 this density has, in physi-468

cist’s notation, “Lebesgue density” exp(−Jp(u)). Under Labelling Model 1, how-469

ever, we have shown that J
(n)
p (u) converges in an appropriate sense to a limiting objec-470

tive function Jp(u) implying that (again in physicist’s notation) exp(−r−1
n J

(n)
p (u)) ≈471

exp(−nJp(u)). Thus under Labelling Model 1 the posterior probability concen-472

trates on a Dirac measure at the minimizer of Jp(u).473

Based on this remark, the natural continuum probability limit concerns La-474

belling Model 2. The posterior probability is then given by475

(21) νp,2(du) =
1

Zp,2
e−Φp,2(u;γ)ν0(du)

where ν0 is the centred Gaussian with covariance C given in Theorem 4 and Φp,2 is476

given by (19). Since we require pointwise evaluation to make sense of Φp,2(u;γ) we,477

in general, require α > d; however Proposition 5 gives conditions under which α > d
2

478

will suffice. We will also consider the probability measure νp,1 defined by479

(22) νp,1(du) =
1

Zp,1
e−Φp,1(u;γ)ν0(du)

where Φp,1 is given by (16). The function Φp,1(u;γ) is defined in an L2
µ sense and480

thus we require only α > d
2

– see Theorem 4. Note, however, that this is not the481

limiting probability distribution that we expect for Labelling Model 1 with the482

parameter choices leading to Theorem 10 since the argument above suggests that this483

will concentrate on a Dirac. However we include the measure νp,1 in our discussions484

because, as we will show, it coincides with the analogous Bayesian level set measure485

νls,1 (defined below) in the small observational noise limit. Since νls,1 can be obtained486

by a natural scaling of the graph algorithm, which does not concentrate on Dirac,487

the relationship between νp,1 and νls,1 is of interest as they are both, for small noise,488

relaxations of the same limiting object.489

4.2. Bayesian Level Set. We now study probabilistic analogues of the Bayesian
level set method, again using the measure ν0 which is the centred Gaussian with
covariance C given in Theorem 4 for some α > d

2
. Note that, from equation (13), for
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Labelling Model 1,

rnΦ
(n)
ls (u;γ) = 1

2γ2

1

n
∑
j∈Z′

∣y(xj) − S(u(xj))∣
2

≈ ∫
Ω′

1

2γ2
∣y(x) − S(u(x))∣2 dµ(x)

∶= Φls,1(u;γ)

by a law of large numbers type argument of the type underlying the proof of Theorem490

10.491

Recall that, from the discussion following Proposition 7, this scaling corresponds492

to employing the finite dimensional Baysian level set model with observational vari-493

ance γ2n so that the variance per observation is constant. Then the natural limiting494

probability measure is, in physicists notation, exp(−Jls(u)) where495

Jls(u) = J(α,τ)∞ (u) +Φls,1(u;γ).

Expressed in terms of densities with respect to the Gaussian prior this gives496

(23) νls,1(du) =
1

Zls,1
e−Φls,1(u;γ)ν0(du).

Since Φls,1(u;γ) makes sense in L2
µ we equire only α > d

2
. The measure νls,1 is the497

natural analogue of the finite dimensional measure ν
(n)
ls under this label model. Under498

Labelling Model 2 we take rn = 1. We obtain a measure νls,2 in the form (23) found499

by replacing νls,1 by νls,2 and Φls,1 by500

(24) Φls,2(u;γ) ∶= ∑
j∈Z′

1

2γ2
∣y(xj) − S(u(xj))∣

2
.

In this case the observational variance is not-rescaled by n since the total number of501

labels is fixed. Since we require pointwise evaluation to make sense of Φls,2(u;γ) we,502

in general, require α > d; however Proposition 5 gives conditions under which α > d
2

503

will suffice.504

Remark 13. Note that J
(n)
ls and Jls cannot be connected via Γ-convergence. In-505

deed, if Jls = Γ- limn→∞ J
(n)
ls then Jls would be lower semi-continuous [10]. When506

τ > 0 compactness of minimizers follows directly from the compactness property of507

the quadratic forms J
(α,τ)
n , see Theorem 1. Now since compactness of minimizers plus508

lower semi-continuity implies existence of minimizers then the above reasoning implies509

there exists minimizers of Jls. But as in the discrete case, Proposition 7, multiplying510

any u by a constant less than one leads to a smaller value of Jls. Hence the infimum511

cannot be achieved. It follows that Jls ≠ Γ- limn→∞ J
(n)
ls .512

4.3. Small Noise Limit. As for the finite graph problems, the labeled data can
be viewed as arising from different generative models. In the probit formulation, the
generative models for the labels are given by

y(x) = S(u(x) + η(x)), η ∼ N(0, γ2I),

y(xj) = S(u(xj) + ηj), ηj
iid∼ N(0, γ2).
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for Labelling Model 1, Labelling Model 2 respectively; S is the sign function.
The functionals Φp,1, Φp,2 then arise as the negative log-likelihoods from these models.
Similarly, in the Bayesian level set formulation the generative models are given by

y(x) = S(u(x)) + η(x), η ∼ N(0, γ2I),

y(xj) = S(u(xj)) + ηj , ηj
iid∼ N(0, γ2).

leading to the functionals Φls,1, Φls,2.513

We show that in the zero noise limit the Bayesian level set and probit posterior514

distributions coincide. However for γ > 0 they differ: note, for example, that the515

probit model enforces binary data, whereas the Bayesian level set model does not.516

It has been observed that the Bayesian level set posterior can be used to produce517

similar quality classification to the Ginzburg-Landau posterior, at significantly lower518

computational cost [18]. The small noise limit is important for two reasons: firstly519

in many applications labelling is very accurate and considering the zero noise limit is520

therefore instructive; secondly recent work [5] shows that the zero noise limit provides521

useful information about the efficiency of algorithms applied to sample the posterior522

distribution and, in particular, constants derived from the zero noise limit appear523

in lower bounds on average acceptance probability and mean square jump in such524

algorithms.525

Proof of the following is given in section 7.7.526

Theorem 14.527

(i) Let Assumptions 2–3 hold, and assume that α > d. Let the assumptions of528

Labelling Model 1 hold. Define the set529

B∞,1 = {u ∈ C(Ω;R) ∣ y(x)u(x) > 0 for a.e. x ∈ Ω′}

and the probability measure

ν1(du) = Z−11B∞,1(u)ν0(du)

where Z = ν0(B∞,1). Consider the posterior measures νp,1 defined in (22) and530

νls,1 defined in (23). Then νp,1⇒ν1 and νls,1⇒ν1 as γ → 0.531

(ii) Let Assumptions 2–3 hold, and assume that α > d. Let the assumptions of532

Labelling Model 2 hold. Define the set533

B∞,2 = {u ∈ C(Ω;R) ∣ y(xj)u(xj) > 0 for each j ∈ Z ′}

and the probability measure

ν2(du) = Z−11B∞,2(u)ν0(du)

where Z = ν0(B∞,2). Then νp,2⇒ν2 and νls,2⇒ν2 as γ → 0.534

Remark 15. The assumption that α > d in both parts of the above theorem can535

be relaxed to α > d/2 if the conclusions of Proposition 5 are satisfied.536

4.4. Kriging. One can define kriging in the continuum setting [47] analogously537

to the discrete setting; we consider this numerically in section 5. In the case of538

Labelling Model 2, the limiting problem is to539

minimize Jk(u) ∶= J(α,τ)∞ (u) subject to u(xj) = yj for all j ∈ Z ′.

Kriging may also be defined for Labelling Model 1 and without the hard constraint540

in the continuum setting, but we do not discuss either of these scenarios here.541
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Fig. 2. The cross sections of the data densities ρh we consider in subsection 5.1.

5. Numerical Illustrations. In this section we describe the results of numerical542

experiments which illustrate or extend the developments in the preceding sections.543

In section 5.1 we study the effect of the geometry of the data on the classification544

problem, by studying an illustrative example in dimension d = 2. Section 5.2 studies545

how the relationship between the length-scale ε and the graph size n affects limiting546

behavviour. In section 5.3 we study graph based kriging. Finally, in section 5.4, we547

study continuum problems from the Bayesian perspective, studying the quantification548

of uncertainty in the resulting classification.549

5.1. Effect of Data Geometry on Classification. We study how the ge-550

ometry of the data affects the classification under Labelling Model 1, using the551

continuum probit model. Let Ω = (0,1)2. We first consider a uniform distribution ρ552

on the domain, and choose Ω+,Ω− to be balls of radius 0.05 centred at (0.25,0.25),553

(0.75,0.75) respectively. The decision boundary is then naturally the perpendicular554

bisector of the line segment joining the centers of these balls. We then modify ρ by555

introducing a channel of increasing depth in ρ dividing the domain in two vertically,556

and look at how this affects the decision boundary. Specifically, given h ∈ [0,1] we557

define ρh to be constant in the y-direction, and assume the cross-sections in the x-558

direction are as shown in Figure 2, so that the channel has depth 1 − h. In order to559

numerically estimate the continuum probit minimizers, we construct a finite-difference560

approximation to each L on a uniform grid of 65536 points, which then provides an561

approximation to A. The objective function J
(∞)
p is then minimized numerically using562

the linearly-implicit gradient flow method described in [6], Algorithm 4.563

We consider both the effect of the channel depth parameter h and the parameter564

α on the classification; we fix τ = 10 and γ = 0.01. In Figure 3 we show the minimizers565

arising from 5 different choices of h and α = 1,2,3. As the depth of the channel is in-566

creased, the minimizers begin to develop a jump along the channel. As α is increased,567

the minimizers become less localized around the labelled regions, and the jump along568

the channel becomes sharper as a result. Note that the scale of the minimizers de-569

creases as α increases. This could formally be understood from a probabilistic point570

of view: under the prior we have E∥u∥2
L2 = Tr(A−1) ≍ τ−2α, and so a similar scaling571

may be expected to hold for the MAP estimators. In Figure 4 we show the sign of572

each minimizer in Figure 3 to illustrate the resulting classifications. As the depth of573

the channel is increased, the decision boundary moves continuously from the diagonal574

to the vertical bisector of the domain, with the transitional boundaries appearing al-575

most as a piecewise linear combination of both boundaries. We also see that, despite576

the minimizers themselves differing significantly for different α, the classifications are577

almost invariant with respect to α.578
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Fig. 3. The minimizers of the functional J
(∞)
p for different values of h and α, as described in

subsection 5.1.

5.2. Localization Bounds for Kriging and Probit. We study how the rate579

at which the localization parameter ε decreases when the number of data points n580

is increased affects convergence to the continuum limits. We consider Labelling581

model 2 using both the kriging and probit models; this serves to illustrate the result582

of Theorem 11, motivate Remark 12, and provide a relation to the results of [38].583

We work on the domain Ω = (0,1)2 and take a uniform data distribution ρ. In584

all cases we fix two datapoints which we label with opposite signs, and sample the585

remaining n − 2 datapoints. For kriging we consider the situation where the data586

is viewed as noise-free so that the label values are interpolated. We calculate the587

minimizer un of J
(n)
k numerically via the closed form solution588

un = A(n),−1R∗(RA(n),−1R∗)−1y,

where R ∈ R2×n is the mapping taking vectors to their values at the labelled points.589

In order to numerically estimate the continuum minimizer u of J
(∞)
k , we construct590

a finite-difference approximation to L on a uniform grid of 65536 points. This leads591

to an approximation Â to A, from which we again use the closed form solution to592

compute û ≈ u:593

û = Â−1R̂∗(R̂Â−1R̂∗)−1y,

where R̂ ∈ R2×65556 takes discrete functions to their values at the labelled points.594

In Figure 5 (left) we show how the L2
µn error between un and û varies with respect595

to ε for increasing values of n. All errors are averaged over 200 realizations of the596
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Fig. 4. The sign of minimizers from Figure 3, showing the resulting classification.

unlabelled datapoints, and we consider 100 uniformly spaced values of ε between 0.005597

and 0.5. We see that ε must belong to a ‘sweet-spot’ in order to make the error small598

– if ε is too small or too large convergence doesn’t occur. The right hand side of the599

figure shows how these lower and upper bounds vary with n; the bounds are defined600

numerically as the points where the second derivative of the error curve changes sign.601

The rates are in agreement with the results and conjectures up to logarithmic terms,602

although the sharp bounds are not obtained – we see that the lower bounds are larger603

than O(n− 1
2 ), and the upper bounds are smaller than O(n− 1

2α ). It is possible that604

the sharp bounds may be approached in a more asymptotic (and computationally605

infeasible) regime.606

Similarly, we note that the minimum error for α = 2 in Figure 5 decreases very607

slowly in the range of n we considered. This again indicates that we are not yet in the608

asymptotic regime at n = 1600. Further experiments (not included) for larger values609

of n show that the minimum error does converge as n→∞ as expected.610

For the probit model we take γ = 0.01 and use the same gradient flow algorithm611

as in subsection 5.1 for both the continuum and discrete minimizers. Figure 6 shows612

the errors, analogously to Figure 5. Note that the errors are plotted on logarithmic613

axes here, as unlike the kriging minimizers, there is no restriction for the minimizers614

to be on the same scale as the labels. We see that the same trend is observed in terms615

of requiring upper and lower bounds on ε, and a shift of the error curves towards the616

left as n is increased.617
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Fig. 5. (Left) The L2
µn error between discrete minimizers and continuum minimizers of the

kriging model versus localization parameter ε, for different values of n. (Right) The upper and lower
bounds for ε(n) to provide convergence. The slopes of the lines of best fit provide estimates of the
rates.

5.3. Extrapolation on Graphs. We consider the problem of smoothly extend-618

ing a sparsely defined function on a graph to the entire graph. Such extrapolation was619

studied in [37], and was achieved via the use of a weighted nonlocal Laplacian. We620

use the kriging model with Labelling Model 2, labelling two points with opposite621

signs, and setting γ = 0. We fix a set of datapoints {xj}nj=1, n = 1600, drawn from622

the uniform density on the domain Ω = (0,1)2. We fix τ = 1 and look at how the623

smoothness of minimizers of the kriging functional J
(n)
k varies with α. The minimiz-624

ers are computed directly from the closed form solution, as in subsection 5.2. When625

α > d/2 we choose ε to approximately minimize the L2
µn errors between the discrete626
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Fig. 6. (Left) The L2
µn error between discrete minimizers and continuum minimizers of the

probit model versus localization parameter ε, for different values of n. (Right) The upper and lower
bounds for ε(n) to provide convergence. The slopes of the lines of best fit provide estimates of the
rates.

and continuum solutions (since the continuum solution is non-trivial). When α ≤ d/2627

a representative ε is chosen which is approximately twice the connectivity radius. The628

minimizers are shown in Figure 7 for α = 0.5,1.0,1.5,2.0. Spikes are clearly visible for629

α ≤ d/2 = 1: the requirement for α > d/2 to avoid spikes appears to be essential.630

5.4. Bayesian Level Set for Sampling. We now turn to the problem of sam-631

pling the conditioned continuum measures introduced in subsections 4.1 and 4.2,632

specifically their common γ → 0 limit. From this sampling we can, for example,633

calculate the mean of the classification, which may be used to define a measure of634

uncertainty of the classification at each point. This is because, for binary random635
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Fig. 7. The extrapolation of a sparsely defined function on a graph using the kriging model, for
various choices of parameter α.

variables, the mean determines the variance. Knowing the uncertainty in classifica-636

tion has great potential utility, for example in active learning in guiding where to637

place resources in labelling in order to reduce uncertainty.638

We fix Ω = (0,1)2. The data distribution ρ is shown in Figure 8; it is constructed639

as a continuum analogue of the two moons distribution [49], with the majority of640

its mass concentrated on two curves. The contrast ratio in the sampling density641

ρ is approximately 100:1 between the values on and off of the curves. The resulting642

operator L contains significant clustering information: in Figure 8 we show the second643

eigenfunction of L, termed the Fiedler vector in analogy with second eigenvector of the644

graph Laplacian. The sign of this function provides a good estimate for the decision645

boundary in an unsupervised context. We use Labelling Model 2, labelling a single646

point on each curve with opposing signs as indicated by ● and ○ in Figure 8.647

Sampling is performed using the preconditioned Crank-Nicolson MCMC algo-648

rithm [14], which has favourable dimension-independent statistical properties, as649
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Fig. 8. (Left) The data distribution ρ used in the MCMC experiments, and the locations of the
two labelled datapoints. (Right) The second eigenfunction of the operator L corresponding to ρ.

demonstrated in [19] in the graph-based setting of relevance here. We consider three650

choices of α > d/2, and two choices of inverse length-scale parameter τ . In general we651

require α > d for the measure ν2 in Theorem 14 to be well-defined. However numerical652

evidence suggests that the conclusions of Proposition 5 are satisfied with this choice653

of ρ, implying that we may make use of Remark 15 and that α > d
2

suffices. The654

operator L is discretized using a finite difference method on a square grid of 40000655

points, and sampling is performed on the span of its first 500 eigenfunctions.656

In Figure 9 we show the mean of the sign of samples on the left hand side, for each657

choice of α, after fixing τ = 1. Note that uncertainty is greater the further the values of658

the mean are from ±1: specifically we have that Var(S(u(x)) = 1−[E(S(u(x)))]2
. We659

see that the classification on the curves where the data concentrates is fairly certain,660

whereas classification away from the curves is uncertain; furthermore the certainty661

increases away from the curves slightly as α is increased. Samples S(u) are also662

shown in the same figure; the uncertainty away from the curves is illustrated also by663

these samples.664

In Figure 10 we show the same results, but with the choice τ = 0.2 so that samples665

possess a longer length scale. The classification certainty now propagates away from666

the curves more easily. The effect of the asymmetry of the labelling is also visible in667

the mean for the case α = 4: uncertainty is higher in the bottom-left corner than the668

top-left corner.669

Since the prior on the latent random field u may be difficult to ascertain in670

applications, the sensitivity of the classification on the choice of the parameters α,671

τ indicates that it could be wise to employ hierarchical Bayesian methods to learn672

appropriate values for them along with the latent field u. Dimension robust MCMC673

methods are available to sample such hierarchical distributions [13], and application674

to classification problems are shown in that paper.675

6. Conclusions. In this paper we have studied large graph limits of semi-676

supervised learning problems in which smoothness is imposed via a shifted graph677

Laplacian, raised to a power. Both optimization and Bayesian approaches have been678

considered. To keep the exposition manageable in length we have confined our atten-679

tion to the unnormalized graph Laplacian. However, one may instead choose to work680

with the normalized graph Laplacian L = I −D− 1
2WD− 1

2 , in place of L = D −W . In681
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Fig. 9. (Left) The mean E(S(u)) of the classification arising from the conditioned measure ν2.
(Right) Examples of samples S(u) where u ∼ ν2. Here we choose τ = 1.

the normalized case the continuum PDE operator is given by682

Lu = − 1

ρ3/2∇ ⋅ (ρ2∇( u

ρ1/2 ))

with no flux boundary conditions: ∇( u
ρ1/2

) ⋅ ν = 0 on ∂Ω, where ν is the outside unit683

normal vector to ∂Ω. Theorems 1, 10 and 14 generalize in a straightforward way to684

such a change in the graph Laplacian.685

Future directions stemming from the work in this paper include: (i) providing a686

limit theorem for probit MAP estimators under Labelling Model 2; (ii) providing687

limit theorems for the Bayesian probability distributions considered, using the ma-688

chinery introduced in [19, 20]; (iii) using the limiting problems in order to analyze689

and quantify efficiency of algorithms on large graphs; (iv) invoking specific sources of690

data and studying the effectiveness of PDE limits in comparison to non-local limits.691
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7. Appendix.816

7.1. Function Spaces. Here we establish the equivalence between the spectrally817

defined Sobolev spaces, Hs(Ω) and the standard Sobolev spaces.818

We denote by819

H2
N(Ω) = {u ∈H2(Ω) ∶ ∂u

∂n
= 0 on ∂Ω}

the domain of L. Analogously we denote by H2m
N (Ω) the domain of Lm, that is820

H2m
N (Ω) = {u ∈H2m(Ω) ∶ ∂L

ru

∂n
= 0 for all 0 ≤ r ≤m − 1 on ∂Ω}

Finally we let H2m+1
N (Ω) =H2m+1(Ω) ∩H2m

N (Ω).821

For m ≥ 0 and u, v ∈ H2m+1
N (Ω) let ⟨u, v⟩2m+1,µ = ∫Ω∇Lmu ⋅ ∇Lmvρ2dx and for822

u, v ∈H2m
N (Ω) let ⟨u, v⟩2m,µ = ∫Ω(Lmu)(Lmv)ρdx. We note that on the L2

µ orthogonal823

complement of the constant function 1, ⟨ ⋅ , ⋅ ⟩2m+1,µ defines an inner product, which824

due to Poincaré inequality is equivalent to the standard inner product on H2m+1(Ω).825

We also note that ⟨ϕk, ϕk⟩2m+1,µ = λ2m+1
k , where we recall that ϕk is unit eigenvector826

of L corresponding to λk.827

Lemma 16. Under Assumptions 2 - 3, for any integer s ≥ 0828

Hs
N(Ω) =Hs(Ω)
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and the associated inner products ⟨ ⋅ , ⋅ ⟩s,µ and ⟪ ⋅ , ⋅⟫s,µ are equivalent on the L2
µ829

orthogonal complement of the constant function.830

Proof. For s = 0, H0
N = L2 by definition and H0 = L2 by the fact that {ϕk ∶ k =831

1, . . .} is an orthonormal basis.832

To show the claim for s = 1, we recall that ∫ ∇ϕk ⋅ ∇ϕjρ2dx = ∫ ϕkLϕjρdx =833

λkδ
j
k. Therefore { ϕk√

λk
∶ k ≥ 1} is an orthonormal basis of the orthogonal complement834

of the constant function, 1⊥, in H1
N with respect to inner product (u, v) = ∫ ∇u ⋅835

∇vρ2dx which is equivalent to the standard inner product of H1
N on 1⊥. Since an836

expansion in the basis {ϕk}k is unique, this implies that for any u ∈ H1
N = H1 the837

series ∑k akϕk converges in H1 to u. Consequently if u ∈H1
N then ∞ > ∫ ∣∇u∣2ρ2dx =838

∫ ∣∑k ak∇ϕk ∣2ρ2dx = ∑k a2
kλk which implies that u ∈H1. So H1

N ⊆H1.839

On the other hand, if u ∈ H1 then u = ∑k akϕk with ∑k λka2
k < ∞. Therefore840

u = ū +∑∞k=2 ak
√
λk

ϕk√
λk

, where ū is the average of u. Since ϕk√
λk

are orthonormal in841

scaler product with topology equivalent to H1, the series converges in H1. Therefore842

u ∈H1 =H1
N .843

Assume now that the claim holds for all integers less than s. We split the proof844

of the induction step into two cases:845

Case 1○ Consider s even; that is s = 2m for some integer m > 0.846

Assume u ∈ H2m
N . Then ∇Lru ⋅ n⃗ = 0 on ∂Ω for all r < m. By the induction847

hypothesis ∑k λ2m−1
k a2

k < ∞. Since L is a continuous operator from H2 to L2 one848

obtains by induction that Lm−1u = ∑k akLm−1ϕk = ∑akλm−1
k ϕk. Let v = Lm−1u. By849

assumption v ∈H2
N . By above v = ∑k akλm−1

k ϕk.850

Since ϕk is solution of Lϕk = λkϕk851

⟨Lϕk, v⟩µ = ⟨λkϕk, v⟩µ.

Using that v ∈H2, ∇v ⋅ n⃗ = 0 on ∂Ω and integration by parts we obtain852

⟨ϕk,Lv⟩µ = ⟨λkϕk,∑
j

ajλ
m−1
j ϕj⟩µ = λmk ak.

Given that Lv is an L2
µ function, we conclude that Lv = ∑k λmk akϕk. Therefore853

∑k λ2m
k a2

k <∞ and hence u ∈H2m.854

To show the opposite inclusion, consider u ∈ H2m. Then u = ∑k akϕk and

∑k λ2m
k a2

k <∞. By induction step we know that u ∈ H2m−2
N and thus v = Lm−1u ∈ L2.

We conclude as before that v = ∑k λm−1
k akϕk. Let bk = λm−1

k ak. Assumptions on u
imply ∑k λ2

kb
2
k < ∞. Arguing as above in the case s = 1 we conclude that the se-

ries converges in H1 and that ∇v = ∑k bk∇ϕk. Combining this with the fact that
Lϕk = λkϕk in Ω for all k implies that v is a weak solution of

Lv =∑
k

λkbkϕk in Ω,

∂v

∂n
= 0 on ∂Ω.

Since RHS of the equation is in L2 and ∂Ω is C1,1, by elliptic regularity [26], v ∈H2 and855

∥v∥2
H2 ≤ C(Ω, ρ)∑k b2kλ2

k. Furthermore v satisfies the Neumann boundary condition856

and thus v ∈H2
N .857

Case 2○ Consider s odd; that is s = 2m + 1 for some integer m > 0. Assume858

u ∈ H2m+1
N . Let v = Lmu. Then v ∈ H1. The result now follows analogously to the859
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case s = 1. If u ∈ H2m+1 then, u = ∑k akϕk with ∑k λ2m+1
k a2

k < ∞. By induction860

hypothesis, v = Lm−1u ∈ H1
N and v = ∑k bkϕk where bk = λm−1ak. Thus ∑k λkb2k <∞861

and the argument proceeds as in the case s = 1.862

Proving the equivalence of inner products is straightforward.863

We now present the proof of Lemma 3.864

Proof of Lemma 3. If s is integer the claim follows form Lemma 16 and Sobolev865

embedding theorem. Assume s = m + θ for some θ ∈ (0,1). Since Ω is Lipschitz,866

by extension theorem of Stein (Leoni [29] 2nd edition, Theorem 13.17) there is a867

bounded linear extension mapping Em ∶ Hm(Ω) → Hm(Rd) such that Em(f)∣Ω = f .868

From the construction (see remark 13.9 in [29]) it follows that Em and Em+1 agree869

on smooth functions and thus Em+1 = Em∣Hm(Ω). Therefore, by Theorem 16.12 in870

Leoni’s book (or Lemma 3.7 of Abels [1]) Em provides a bounded mapping from the871

interpolation space [Hm(Ω),Hm+1(Ω)]θ,2 → [Hm(Rd),Hm+1(Rd)]θ,2. As discussed872

above the statement of Lemma 3 Hm+θ(Ω) = [Hm(Ω),Hm+1(Ω)]θ,2. By Lemma873

16, [Hm(Ω),Hm+1(Ω)]θ,2 embeds into [Hm(Ω),Hm+1(Ω)]θ,2. Furthermore, we use874

that, see Abels [1] Corollary 4.15, [Hm(Rd),Hm+1(Rd)]θ,2 = Hm+θ(Rd). Combining875

these facts yields the existence of an bounded, linear, extension mapping Hm+θ(Ω)→876

Hm+θ(Rd). The results (i) and (ii) follows by the Sobolev embedding theorem.877

7.2. Passage from Discrete to Continuum. There are two key tools we878

use to pass from the discrete to continuum limit. The first is Γ-convergence. Γ-879

convergence was introduced in the 1970’s by De Giorgi as a tool for studying sequences880

of variational problems. More recently this methodology has been applied to study881

the large data limits of variational problems that arise from statistical inference,882

e.g. [21, 23, 41, 42, 43]. Accessible introductions to Γ-convergence can be found883

in [10, 16]884

The Γ-convergence methodology provides a notion of convergence of functionals885

that captures the behaviour of minimizers. In particular the minimizers converge886

along a subsequence to a minimizer of the limiting functional. In our setting, the887

objects of interest are functions on discrete domains and hence it is not immediate888

how one should define convergence. This brings us to our second key tool. Recently889

a suitable topology has been identified to characterize the convergence of discrete to890

continuum using an optimal transport framework [23]. The main idea is, given a891

discrete function un ∶ Ωn → R and a continuum function u ∶ Ω → R, to include the892

measures with respect to which they are defined in the comparison. Namely, one can893

think of the function un as belonging to the Lp space over the empirical measure894

µn = 1
n ∑

n
i=1 δxi and u belonging to the Lp space over the measure µ. One defines895

a continuum function ũn ∶ Ω → R by ũn = un ○ Tn where Tn ∶ Ωn → Ω is a measure896

preserving map between µ and µn. One then compares un and ũn in the Lp distance,897

and simultaneously compares Tn and identity. In other words one considers both the898

difference in values and the how far the matched points are. We give a brief overview899

of Γ-convergence and the TLp space.900

7.2.1. A Brief Introduction to Γ-Convergence. We present the definition901

of Γ-convergence in terms of an abstract topology. In the next section we will discuss902

what topology we will use in our results. For now, we simply point out that the space903

X needs to be general enough to include functions defined with respect to different904

measures.905
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Definition 17. Given a topological space X , we say that a sequence of func-906

tions Fn ∶ X → R ∪ {+∞} Γ-converges to F∞ ∶ X → R ∪ {+∞}, and we write907

F∞ = Γ- limn→∞ Fn, if the following two conditions hold:908

● (the liminf inequality) for any convergent sequence un → u in X909

lim inf
n→∞

Fn(un) ≥ F∞(u);

● (the limsup inequality) for every u ∈ X there exists a sequence un in X with910

un → u and911

lim sup
n→∞

Fn(un) ≤ F∞(u).

In the above definition we also call any sequence {un}n=1,... that satisfies the lim-912

sup inequality a recovery sequence. The justification of Γ-convergence as the natural913

setting to study sequences of variational problems is given by the next proposition.914

The proof can be found in, for example, [10].915

Proposition 18. Let Fn, F∞ ∶ X → R∪ {+∞}. Assume that F∞ is the Γ-limit of916

Fn and the sequence of minimizers {un}n=1,... of Fn is precompact. Then917

lim
n→∞

min
X

Fn = lim
n→∞

Fn(un) = min
X

F∞

and furthermore, any cluster point u of {un}n=1,... is a minimizer of F∞.918

Note that Γ- limn→∞ Fn = F∞ and Γ- limn→∞Gn = G∞ does not imply Fn +Gn Γ-919

converges to G∞+F∞. Hence, in order to build optimization problems by considering920

individual terms it is not enough, in general, to know that each term Γ-converges. In921

particular, we consider using the quadratic form J
(α,τ)
n as a prior and adding fidelity922

terms, e.g.923

J(n)(u) = J(α,τ)n (u) +Φ(n)(u).

We show that, with probability one, Γ- limn→∞ J
(α,τ)
n = J

(α,τ)
∞ . In order to show924

that J(n) Γ-converges it suffices to show that Φ(n) converges along any sequence925

(µn, un) along which J
(α,τ)
n (un) is finite. This is similar to the notion of continuous926

convergence, which is typically used [16, Proposition 6.20]. However we note that927

Φ(n) does not converge continuously since as a functional on TLp(Ω) it takes the928

value infinity whenever the measure considered is not µn.929

7.2.2. The TLp Space. In this section we give an overview of the topology that930

was introduced in [23] to compare sequences of functions on graphs. We motivate the931

topology in the setting considered in this paper. Recall that µ ∈ P(Ω) has density ρ932

and that µn is the empirical measure. Given un ∶ Ωn → R and u ∶ Ω→ R the idea is to933

consider pairs (µ,u) and (µn, un) and compare them as such. We define the metric934

as follows.935

Definition 19. Given a bounded open set Ω, the space TLp(Ω) is the space of936

pairs (µ, f) such that µ is a probability measure supported on Ω and f ∈ Lp(µ). The937

metric on TLp is defined by938

dTLp((f, µ), (g, ν)) = inf
π∈Π(µ,ν)

(∫
Ω×Ω

∣x − y∣p + ∣f(x) − g(y)∣p dπ(x, y))
1
p

.

Above Π(µ, ν) is the set of transportation plans (i.e. couplings) between µ and ν;939

that is the set of probability measures on Ω ×Ω whose first marginal is µ and second940

marginal in ν.941
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For a proof that dTLp is a metric on TLp see [23, Remark 3.4].942

To connect the TLp metric defined above with the ideas discussed previously we943

make several observations. The first is that when µ has a continuous density then one944

can consider transport maps T ∶ Ω → Ωn that satisfy T#µ = µn instead of transport945

plans π ∈ Π(µ, ν). Hence, one can show that946

dTLp((f, µ), (g, ν)) = inf
T ∶T#µ=ν

(∥Id − T ∥p
Lp(µ) + ∥f − g ○ T ∥p

Lp(µ))
1
p
.

In the setting when we compare (µ,u) and (µn, un) the second term is nothing947

but ∥u − ũn∥pLp(µ), where ũn = un ○ Tn and Tn ∶ Ω→ Ωn is a transport map.948

We note that for a sequence (µn, un) to TLp converge to (µ,u) it is necessary949

that ∥Id−T ∥Lp(µ) converges to zero, in other words it is necessary that the measures950

µn converge to µ in p-optimal transportation distance. We recall that since Ω is951

bounded this is equivalent to weak convergence of µn to µ. Assuming this to be the952

case, we call any sequence of transportation maps Tn satisfying (Tn)#µ = µn and953

∥Id − Tn∥Lp(µ) → 0 a stagnating sequence. One can then show (see [23, Proposition954

3.12]) that convergence in TLp is equivalent to weak* convergence of measures µn955

to µ and convergence ∥u − un ○ Tn∥Lp(µ) → 0 for arbitrary sequence of stagnating956

transportation maps. Furthermore if convergence ∥u − un ○ Tn∥Lp(µ) → 0 holds for a957

sequence of stagnating transportation maps it holds for every sequence of stagnating958

transportation maps.959

The intrinsic scaling of the graph Laplacian, i.e. the parameter εn, depends on960

how far one needs to move “mass” to couple µ and µn, that is on upper bounds on961

transportation distance between µ and µn. The following result can be found in [22],962

the lower bound in the scaling of ε = εn is so that there exists a stagnating sequence963

of transport maps with ∥Tn−Id∥L∞
εn

→ 0.964

Proposition 20. Let Ω ⊂ Rd with d ≥ 2 be open, connected and bounded with965

Lipschitz boundary. Let µ ∈ P(Ω) with density ρ which is bounded above and below by966

strictly positive constants. Let Ωn = {xi}ni=1 where xi
iid∼ µ and let µn = 1

n ∑
n
i=1 δxi be967

the associated empirical measure. Then, there exists C > 0 such that, with probability968

one, there exists a sequence of transportation maps Tn ∶ Ω → Ωn that pushes µ onto969

µn and such that970

lim sup
n→∞

∥Tn − Id∥L∞(Ω)
δn

≤ C

where971

δn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(logn)
3
4√

n
if d = 2

( logn
n

)
1
d if d ≥ 3.

7.3. Estimates on Eigenvalues of the Graph Laplacian. The following972

lemma is nonasymptotic and holds for all n. However we will use it in the asymptotic973

regime and note that our assumptions on ε, (5), and results of Proposition 20 ensure974

that the assumptions of the lemma are satisfied.975

Lemma 21. Consider the operator A(n) defined in (1) for α = 1. Assume that976

dOT∞(µn, µ) < ε. Then the spectral radius λmax of A(n) is bounded by C 1
ε2
+ τ2 where977

C > 0 is independent of n and ε.978

Let R > 0 be such that η(3R) > 0. Assume that dOT∞(µn, µ) < Rε. Then there979

exists c > 0, independent of n and ε, such that λmax > c 1
ε2
+ τ2.980

31



Proof. Let η(x) = η((∣x∣ − 1)+). Note that η ≥ η and that since η is decreasing981

and integrable ∫Rd η(x)dx <∞.982

Let T be the dOT∞ transport map from µ to µn. By assumption ∥Tn(x) − x∥ ≤ ε983

a.e. By definition of A(n)984

λmax = sup
∥u∥L2

µn
=1

⟨u,A(n)u⟩µn = τ2 + sup
∥u∥L2

µn
=1

⟨u, snLu⟩µn

We estimate

sup
∥u∥L2

µn
=1

⟨u, snLu⟩µn ≤ sup
1
n ∑ni=1 u2

i=1

4

ση
∑
i,j

1

n2εd+2
η ( ∣xi − xj ∣

ε
)(u2

i + u2
j)

≲ sup
1
n ∑ni=1 u2

i=1

n

∑
i=1

n

∑
j=1

1

n2εd+2
η ( ∣xi − xj ∣

ε
)u2

i

= sup
1
n ∑ni=1 u2

i=1

1

nεd+2

n

∑
i=1

u2
i ∫

Ω
η ( ∣xi − T (x)∣

ε
)dµ(x)

≤ sup
1
n ∑ni=1 u2

i=1

1

nεd+2

n

∑
i=1

u2
i ∫

Ω
η (xi − x

ε
)dµ(x)

≲ 1

ε2 ∫Rd η(z)dz ≲
1

ε2
.

Above ≲ means ≤ up to a factor independent of ε and n.985

To prove the second claim of the lemma consider v = √
nδxi , a singleton concen-

trated at an arbitrary xi, that is vi =
√
n and vj = 0 for all j ≠ i. Then ∥v∥L2

µn
= 1.

Using that for a.e. x ∈ B(xi,2εR), ∣xi − T (x)∣ ≤ 3εR we estimate:

sup
∥u∥L2

µn
=1

⟨u, snLu⟩µn ≥ ⟨v, snLv⟩µn

≳∑
j≠i

n

n2εd+2
η ( ∣xi − xj ∣

ε
)

= 1

εd+2 ∫Ω∖T−1(xi)
η ( ∣xi − T (x)∣

ε
)dµ(x)

≥ 1

εd+2 ∫B(xi,2εR)∖B(xi,εR)
η(3R)dµ(x) ≳ 1

ε2
(25)

which implies the claim.986

An immediate corollary of the claim is the characterization of the energy of a987

singleton. For any α ≥ 1 and τ ≥ 0.988

(26) J(α,τ)n (δxi) ∼
1

n
( 1

ε2
n

+ τ2)
α

∼ 1

nε2α
n

.

The upper bound is immediate from the first part of the lemma, while the lower bound989

follows from the second part of the lemma via Jensen’s inequality. Namely, (λ(n)k , q
(n)
k )990

be eigenpairs of L and let us expand δxi in the terms of q
(n)
k : i.e. δxi = ∑nk=1 akq

(n)
k991

where ∑k a2
k = ∥δxi∥2

L2
µn

= 1
n

. We know that ∑k λ
(n)
k a2

k ≳ 1
nε2nsn

∼ 1, from (25) (using992
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the expansion (27) and noting that v = √
nδxi in (25)). Hence993

J(α,τ)n (δxi) =
1

2n

n

∑
k=1

(snλ(n)k + τ2)
α
na2

k ≥
1

2n
(nsn

n

∑
k=1

λ
(n)
k a2

k + τ2)
α

≥ 1

2n
( 1

ε2
n

+ τ2)
α

.

994

7.4. The Limiting Quadratic Form. Here we prove Theorem 1. The key tool995

is to use spectral decomposition of the relevant quadratic forms, and to rely on the996

limiting properties of the eigenvalues and eigenvectors of L established in [21].997

Let (q(n)k , λ
(n)
k ) be eigenpairs of L with eigenvalues λk ordered so that998

0 = λ(n)1 ≤ λ(n)2 ≤ λ(n)3 ≤ . . . λ(n)n

where λ
(n)
1 < λ(n)2 provided that the graph G is connected. We extend F ∶ R ↦ R to999

a matrix-valued function F via F (L) = Q(n)(Λ(n)F )(Q(n))∗ where Q(n) is the matrix1000

with columns {q(n)k }nk=1 and Λ
(n)
F is the diagonal matrix with entries {F (λ(n)i )}ni=1.1001

For constants α ≥ 1, τ ≥ 0 and a scaling factor sn, given by (6), we recall the definition1002

of the precision matrix A(n) is A(n) = (snL+ τ2I)α and the fractional Sobolev energy1003

J
(α,τ)
n is1004

J(α,τ)n ∶ L2
µn ↦ [0,+∞), J(α,τ)n (u) = 1

2
⟨u,A(n)u⟩µn .

Note that1005

(27) J(α,τ)n (u) = 1

2

n

∑
k=1

(snλ(n)k + τ2)α⟨u, q(n)k ⟩2µn .

When showing Γ-convergence, all functionals are considered as functionals on the TLp1006

space. When evaluating J
(α,τ)
n at (ν, u) we consider it infinite for any measure ν other1007

than µn, and having the value J
(α,τ)
n (u) defined above if ν = µn.1008

We let (qk, λk) for k = 1,2, . . . be eigenpairs of L ordered so that1009

0 = λ1 ≤ λ2 ≤ λ3 ≤ . . . .

We extend F ∶ R ↦ R to an operator valued function via the identity F (L) =1010

∑∞k=1 F (λk)⟨u, qk⟩µqk. For constants α ≥ 1 and τ ≥ 0 we recall the definition of1011

the precision operator A as A = (L + τI)α and the continuum Sobolev energy J
(α,τ)
∞1012

as1013

J(α,τ)∞ ∶ L2
µ ↦ R ∪ {+∞}, J(α,τ)∞ (u) = 1

2
⟨u,Au⟩µ.

Note that the Sobolev energy can be written1014

J(α,τ)∞ (u) = 1

2

∞
∑
k=1

(λk + τ2)α⟨u, qk⟩2µ.

Proof of Theorem 1. We prove the theorem in three parts. In the first part we1015

prove the liminf inequality and in the second part the limsup inequality. The third1016

part is devoted to the proof of the two compactness results.1017
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The Liminf Inequality. Let un → u in TLp, we wish to show that1018

lim inf
n→∞

J(α,τ)n (un) ≥ J(α,τ)∞ (u).

By [21, Theorem 1.2], if all eigenvalues of L are simple, we have with probability one1019

(where the set of probability one can be chosen independently of the sequence un1020

and u) that snλ
(n)
k → λk and q

(n)
k converge in TL2 to qk. If there are eigenspaces of1021

L of dimension higher than one then q
(n)
k converge along a subsequence in TL2 to1022

eifenfunctions q̃k corresponding to the same eigenvalue as qk. In this case we replace qk1023

by q̃k, which does not change any of the functionals considered. We note that while1024

eigenvectors in the general case only converge along subsequences, the projections1025

to the relevant spaces of eigenvectors converge along the whole sequence, see [21,1026

statement 3. Theorem 1.2]. To prove the convergence of the functional one would1027

need to use these projections, which makes the proof cumbersome. For that reason in1028

the remainder of the proof we assume that all eigenvalues of L are simple, in which1029

case we can express the projections using the inner product with eigenfunctions.1030

Since q
(n)
k → qk and un → u in TL2 as n→∞, ⟨q(n)k , un⟩µn → ⟨q, u⟩µ as n→∞.1031

First we assume that J
(α,τ)
∞ (u) <∞. Let δ > 0 and choose K such that1032

1

2

K

∑
k=1

(λk + τ2)α⟨u, qk⟩2µ ≥ J(α,τ)∞ (u) − δ.

Now,

lim inf
n→∞

J(α,τ)n (un) ≥ lim inf
n→∞

1

2

K

∑
k=1

(snλ(n)k + τ2)α⟨un, q(n)k ⟩2µn

= 1

2

K

∑
k=1

(λk + τ2)α⟨un, qk⟩2µ

≥ Jα∞(u) − δ.

Let δ → 0 to complete the liminf inequality for when J
(α,τ)
∞ (u) <∞. If J

(α,τ)
∞ (u) = +∞1033

then choose any M > 0 and find K such that 1
2 ∑

K
k=1(λk+τ2)α⟨un, qk⟩2µ ≥M , the same1034

argument as above implies that1035

lim inf
n→∞

J(α,τ)n (un) ≥M

and therefore lim infn→∞ J
(α,τ)
n (un) = +∞.1036

The Limsup Inequality. As above, we assume for simplicity, that all eigenvalues1037

of L are simple. We remark that there are no essential difficulties to carry out the1038

proof in the general case.1039

Let u ∈ L2
µ with J

(α,τ)
∞ (u) <∞ (the proof is trivial if J

(α,τ)
∞ =∞). Define un ∈ L2

µn1040

by un = ∑Knk=1 ψkq
(n)
k where ψk = ⟨u, qk⟩µ. Let Tn be the transport maps from µ to µn1041

as in Proposition 20. Let ank = ψkq
(n)
k ○ Tn and ak = ψkqk. By Lemma 24, there exists1042

a sequence Kn →∞ such that un converges to u in TL2 metric.1043

We recall from the proof of the liminf inequality that ⟨q(n)k , un⟩µn → ⟨qk, u⟩µ as1044

n→∞. Combining with the convergence of eigenvalues, [21, Theorem 1.2], implies1045

(snλ(n)k + τ2)α⟨un, q(n)k ⟩2µn → (λk + τ2)α⟨u, qk⟩2µ
34



as n → ∞. Taking ank = (snλ(n)k + τ2)α⟨un, q(n)k ⟩2µn and ak = (λk + τ2)α⟨u, qk⟩2µ and1046

using Lemma 24 implies that there exists K̃n ≤ Kn converging to infinity such that1047

∑K̃nk=1 a
n
k → ∑

∞
k=1 ak as n → ∞. Let ũn = ∑K̃nk=1 ψkq

(n)
k . Then ũn → u in TL2. Further-1048

more J
(α,τ)
n (ũn) = ∑K̃nk=1 a

n
k and J

(α,τ)
∞ (u) = ∑∞k=1 ak which implies that J

(α,τ)
n (ũn) →1049

J
(α,τ)
∞ (u) as n→∞.1050

Compactness. If τ > 0 and supn∈N J
(α,τ)
n (un) ≤ C then1051

τ2α∥un∥2
L2
µn

= τ2α
n

∑
k=1

⟨un, q(n)k ⟩2µn ≤
n

∑
k=1

(snλ(n)k + τ2)α⟨un, q(n)k ⟩2µn ≤ C.

Therefore ∥un∥L2
µn

is bounded. Hence in statements 2 and 3 of the theorem we have1052

that ∥un∥L2
µn

and J
(α,τ)
n (un) are bounded. That is there exists C > 0 such that1053

(28) ∥u∥2
L2
µn

=
n

∑
k=1

⟨un, q(n)k ⟩µn ≤ C and sαn

n

∑
k=1

(λ(n)k )α⟨un, q(n)k ⟩2µn ≤ C.

We will show there exists u ∈ L2
µ and a subsequence nm such that unm converges to u1054

in TL2.1055

Let ψnk = ⟨un, q(n)k ⟩µn for all k ≤ n. Due to (28) ∣ψnk ∣ are uniformly bounded.1056

Therefore, by a diagonal procedure, there exists a increasing sequence nm →∞ as m→1057

∞ such that for every k, ψnmk converges as m→∞. Let ψk = limm→∞ ψnmk . By Fatou’s1058

lemma, ∑∞k=1 ∣ψk ∣2 ≤ lim infm→∞∑nmk=1 ∣ψnmk ∣2 ≤ C. Therefore u ∶= ∑∞k=1 ψkqk ∈ L2
µ.1059

Using Lemma 24 and arguing as in the proof of the limsup inequality we obtain that1060

there exists a sequence Km increasing to infinity such that ∑Kmk=1 ψ
nm
k q

(nm)
k converges1061

to u in TL2 metric as m→∞. To show that unm converges to u in TL2, we now only1062

need to show that ∥unm −∑Kmk=1 ψ
nm
k q

(nm)
k ∥L2

µnm
converges to zero. This follows from1063

the fact that1064

nm

∑
k=Km+1

∣ψnmk ∣2 ≤ 1

(λ(nm)Km
)
α

nm

∑
k=Km+1

(λ(nm)k )α∣ψnmk ∣2 ≤ C

(snmλ
(nm)
Km

)
α

using that the sequence of eigenvalues is nondecreasing. Now since snmλ
(nm)
Km

≥1065

snmλ
(nm)
K → λK for all Km ≥K, and limK→∞ λK = +∞ we have that snmλ

(nm)
Km

→ +∞1066

as m→∞, hence unm converges to u in TL2.1067

Remark 22. Note that when α ≥ 1 the compactness property holds trivially from1068

the compactness property for α = 1, see [21, Theorem 1.4], as J
(α,τ)
n (un) ≥ J(1,0)n (un).1069

7.5. Variational Convergence of Probit in Labelling Model 1. To prove1070

minimizers of the Probit model in Labelling Model 1 converge we apply Proposi-1071

tion 18. This requires us to show that J
(n)
p Γ-converges to J

(∞)
p and the compactness1072

of sequences of minimizers. Recall that J
(n)
p = J(α,τ)n + 1

n
Φ
(n)
p (⋅;γ). Hence Theorem 11073

establishes the Γ-convergence of the first term. We now show that 1
n

Φ
(n)
p (un; yn;γ)→1074

Φp,1(u; y;γ) whenever (µn, un) → (µ,u) in the TL2 sense, which is enough to es-1075

tablish Γ-convergence. Namely since, by definition, J
(α,τ)
n applied to an element1076

(ν, v) ∈ TLp(Ω) is ∞ if ν ≠ µn it suffices to consider sequences of the form (µn, un)1077

to show the liminf inequality. The limsup inequality is also straightforward since the1078

the recovery sequence for J
(α,τ)
∞ is also of the form (µn, un).1079
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Lemma 23. Consider domain Ω and measure µ satisfying Assumptions 2–3. Let1080

xi
iid∼ µ for i = 1, . . . , n, Ωn = {x1, . . . , xn} and µn be the empirical measure of the1081

sample. Let Ω′ be an open subset of Ω, µ′n = µn⌊Ω′ and µ′ = µ⌊Ω. Let yn ∈ L∞(µ′n) and1082

y ∈ L∞(µ′) and let ŷn ∈ L∞(µn) and ŷ ∈ L∞(µ) be their extensions by zero. Assume1083

(µn, ŷn)→ (µ, ŷ) in TL∞ as n→∞.

Let Φ
(n)
p and Φp,1 be defined by (9) and (16) respectively, where Z ′ = {j ∶ xj ∈ Ω′}1084

and γ > 0 (and where we explicitly include the dependence of yn and y in Φ
(n)
p and1085

Φp,1).1086

Then, with probability one, if (µn, un)→ (µ,u) in TLp then1087

1

n
Φ(n)p (un; yn;γ)→ Φp,1(u; y;γ) as n→∞.

Proof. Let (µn, un)→ (µ,u) in TLp. We first note that since Ψ(uy;γ) = Ψ (uy
γ

; 1)
and since multiplying all functions by a constant does not affect the TLp convergence,
it suffices to consider γ = 1. For brevity, we omit γ in the functionals that follow. We
have that ŷn ○ Tn → ŷ and un ○ Tn → u. Recall that

1

n
Φ(n)p (un; yn) = ∫

T−1n (Ω′

n)
log Ψ(yn(Tn(x))un(Tn(x)))dµ(x)

Φp,1(u; y) = ∫
Ω′

log Ψ(y(x)u(x))dµ(x),

where Ω′
n = {xi ∶ xi ∈ Ω′, for i = 1, . . . , n}. Recall also that symmetric difference of

sets is denoted by A△B = (A ∖B) ∪ (B ∖A). It follows that

∣ 1
n

Φ(n)p (un; yn) −Φp,1(u; y)∣ ≤ ∣∫
Ω′△T−1n (Ω′

n)
log Ψ(ŷ(x)u(x))dµ(x)∣

+ ∣∫
T−1n (Ω′

n)
log (Ψ(yn(Tn(x))un(Tn(x));γ) − log (ŷ(x)u(x)) dµ(x)∣ .

(29)

Define1088

∂εnΩ′ = {x ∶ dist(x, ∂Ω′) ≤ εn} .
Then Ω′ △ T −1

n (Ω′
n) ⊆ ∂εnΩ′. Since ŷ ∈ L∞ and u ∈ L2

µ then ŷu ∈ L2
µ and so by1089

Corollary 26 log Ψ(ŷu) ∈ L1. Hence, by the dominated convergence theorem1090

∣∫
Ω′△T−1n (Ω′

n)
log Ψ(ŷ(x)u(x))dµ(x)∣ ≤ ∫

∂εnΩ′

∣log Ψ(ŷ(x)u(x))∣ dµ(x)→ 0.

We are left to show that the second term on the right hand side of (29) converges
to 0. Let F (w, v) = ∣ log Ψ(w) − log Ψ(v)∣. Let M ≥ 1 and define the following sets

An,M = {x ∈ T −1
n (Ω′

n) ∶ min{ŷ(x)u(x), yn(Tn(x))un(Tn(x))} ≥ −M}
Bn,M = {x ∈ T −1

n (Ω′
n) ∶ ŷ(x)u(x) ≥ yn(Tn(x))un(Tn(x)) ≤ −M}

Cn,M = {x ∈ T −1
n (Ω′

n) ∶ yn(Tn(x))un(Tn(x)) ≥ ŷ(x)u(x) ≤ −M} .
The quantity we want to estimate satisfies

∣∫
T−1n (Ω′

n)
log (Ψ(yn(Tn(x))un(Tn(x))) − log Ψ (ŷ(x)u(x)) dµ(x)∣

≤ ∫
T−1n (Ω′

n)
F (yn(Tn(x))un(Tn(x)), ŷ(x)u(x))dµ(x).
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Since T −1
n (Ω′

n) = An,M ∪Bn,M ∪Cn,M we proceed by estimating the integral over each1091

of the sets, utilizing the bounds in Lemma 25.1092

∫An,M
F (yn(Tn(x))un(Tn(x)), ŷ(x)u(x))dµ(x)

≤ 1

∫
−M
−∞ e−

t2

2 dt
∫An,M

∣yn(Tn(x))un(Tn(x)) − ŷ(x)u(x)∣ dµ(x)

≤ 1

∫
−M
−∞ e−

t2

2 dt
(∥yn∥L2

µn
∥un ○ Tn − u∥L2

µ
+ ∥u∥L2

µ
∥ŷn ○ Tn − ŷ∥L2

µ
) .

∫Bn,M
F (yn(Tn(x))un(Tn(x)), ŷ(x)u(x))dµ(x)

≤ ∫Bn,M
2∣yn(Tn(x))∣2∣un(Tn(x))∣2 dµ(x) + 1

M2

≤ 2∥ŷn∥2
L∞µn ∫Bn,M

∣un(Tn(x))∣2 dµ(x) + 1

M2

≤ 4∥ŷn∥2
L∞µn

(∥un ○ Tn − u∥2
L2
µ
+ ∫

Ω
∣u(x)∣2I∣yn(Tn(x))un(Tn(x))∣≥M dµ(x)) + 1

M2
.

∫Cn,M
F (yn(Tn(x))un(Tn(x)), ŷ(x)u(x))dµ(x)

≤ ∫Cn,M
2∣ŷ(x)∣2∣u(x)∣2 dµ(x) + 1

M2

≤ 2∥ŷ∥2
L∞µ ∫Ω

∣u(x)∣2I∣y(x)u(x)∣≥M dµ(x) + 1

M2
.

For every subsequence there exists a further subsequence such that (yn ○Tn)(un ○1093

Tn)→ yu pointwise a.e., hence by the dominated convergence theorem1094

∫
Ω
∣u(x)∣2I∣yn(Tn(x))un(Tn(x))∣≥M dµ(x)→ ∫

Ω
∣u(x)∣2I∣y(x)u(x)∣≥M dµ(x) as n→∞.

Hence, for M ≥ 1 fixed we have

lim sup
n→∞

∣∫
T−1n (Ω′

n)
log (Ψ(yn(Tn(x))un(Tn(x));γ) − log (ŷ(x)u(x);γ) dµ(x)∣

≤ 2

M2
+ 6∥ŷ∥L∞µ ∫

Ω
∣u(x)∣2I∣ŷ(x)u(x)∣≥M dµ(x).

Taking M →∞ completes the proof.1095

The proof of Theorem 10 is now just a special case of the above lemma and an1096

easy compactness result that follows from Theorem 1.1097

Proof of Theorem 10. The following statements all hold with probability one. Let1098

y(x) = { 1 if x ∈ Ω+

−1 if x ∈ Ω−.
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Since dist(Ω+,Ω−) > 0 there exists a minimal Lipschitz extension ŷ ∈ L∞ of y to Ω.
Let yn = y⌊Ωn and ŷn = ŷ⌊Ωn . Since

∥ŷn ○ Tn − ŷ∥L∞(µ) = µ-ess sup
x∈Ω

∣ŷn(Tn(x)) − ŷ(x)∣

= µ-ess sup
x∈Ω

∣ŷ(Tn(x)) − ŷ(x)∣

≤ Lip(ŷ)∥Tn − Id∥L∞

we conclude that (µn, ŷn) → (µ, ŷ) in TL∞. Hence, by Lemma 23, 1
n

Φ
(n)
p (un;γ) →1099

Φp,1(u;γ) whenever (µn, un) → (µ,u) in TLp. Combining with Theorem 1 implies1100

that J
(n)
p Γ-converges to J

(∞)
p via a straightforward argument.1101

If τ > 0 then the compactness of minimizers follows from Theorem 1 using that1102

supn∈N minvn∈L2
µn

J
(n)
p (vn) ≤ supn∈N J

(n)
p (0) = 1

2
.1103

When τ = 0 we consider the sequence wn = vn− v̄n where vn is a minimizer of J
(n)
p1104

and v̄n = ⟨vn, q1⟩µn = ∫Ω vn(x)dµn(x). Then, J
(α,0)
n (wn) = J(α,0)n (vn) and1105

∥wn∥2
L2
µn

= ∥vn − v̄n∥2
L2
µn

=
n

∑
k=2

⟨vn, qk⟩2µn ≤
1

(snλ(n)2 )α
J(α,0)n (vn).

As in the case τ > 0 the quadratic form is bounded, i.e. supn∈N J
(n)
p (vn) ≤ 1

2
. Hence1106

J
(α,τ)
n (wn) ≤ 1

2
and ∥wn∥2

L2
µn

≤ 1
λα2

for n large enough. By Theorem 1 wn is precompact1107

in TL2. Therefore supn∈N ∥vn∥L2
µn

≤ M + supn∈N ∣v̄n∣ for some M > 0. Since J
(α,τ)
n is1108

insensitive to the addition of a constant, and −1 ≤ y ≤ 1, then for any minimiser vn1109

one must have v̄n ∈ [−1,1]. Hence supn∈N ∥vn∥L2
µn

≤ M + 1 so by Theorem 1 {vn} is1110

precompact in TL2.1111

Since the minimizers of J
(∞)
p are unique (due to convexity, see Lemma 9), by1112

Proposition 18 we have that the sequence of minimizers vn of J
(n)
p converges to the1113

minimizer of J
(∞)
p .1114

7.6. Variational Convergence of Probit in Labelling Model 2.1115

Proof of Theorem 11. It suffices to show that J
(n)
p Γ-converges in TL2 to J

(α,τ)
∞1116

and that the sequence of minimizers vn of J
(n)
p is precompact in TL2. We note that1117

the liminf statement of the Γ-convergence follows immediately from statement 1. of1118

Theorem 1.1119

To complete the proof of Γ-convergence it suffices to construct a recovery sequence.1120

The strategy is analogous to the one of the proof on Theorem 4.9 of [38]. Let v ∈1121

Hα(Ω). Since J
(α,τ)
n Γ-converges to J

(α,τ)
∞ by Theorem 1 there exists Let v(n) ∈ L2

µn1122

such that J
(α,τ)
n (v(n))→ J

(α,τ)
∞ (v) as n→∞. Consider the functions1123

ṽ(n)(xi) =
⎧⎪⎪⎨⎪⎪⎩

cny(xi) if i = 1, . . . ,N.

v(n)(xi) if i = N + 1, . . . , n

where cn →∞ and cn
ε2αn n

→ 0 as n→∞.1124

Note that condition (5) implies that when α < d
2

then (20) still holds. There-1125

fore (26) implies that J
(α,τ)
n (cnδxi) → 0 as n → ∞. Also note that since cn → ∞,1126

Φ
(n)
p (ṽ(n);γ)→ 0 as n→∞. It is now straightforward to show, using the form of the1127
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functional, the estimate on the energy of a singleton and the fact that εnn
1
2α →∞ as1128

n→∞, that J
(n)
p (ṽ(n))→ J

(α,τ)
∞ (v) as desired.1129

The precompactness of {vn}n∈N follows from Theorem 1. Since 0 is the unique1130

minimizer of J
(α,τ)
∞ , due to τ > 0, the above results imply that v(n) converge to 0.1131

7.7. Small Noise Limits.1132

Proof of Theorem 14. First observe that since Assumptions 2–3 hold and α > d/2,1133

the measure ν0, and hence the measures νp,1, νp,2, ν1, are all well-defined measures on1134

L2(Ω) by Theorem 4.1135

(i) For any continuous bounded function g ∶ C(Ω;R)→ R we have

Eνp,1g(u) = Eν0e−Φp,1(u;γ)g(u)
Eν0e−Φp,1(u;γ) , Eν1g(u) =

Eν01B∞,1(u)g(u)
Eν01B∞,1(u)

.

For the first convergence it thus suffices to prove that, as γ → 0,

Eν0e−Φp,1(u;γ)g(u)→ Eν01B∞,1(u)g(u)

for all continuous functions g ∶ C(Ω;R)→ [−1,1].1136

We first define the standard normal cumulative distribution function ϕ(z) =1137

Ψ(z,1), and note that we may write1138

Φp,1(u;γ) = −∫
x∈Ω′

log(ϕ(y(x)u(x)/γ))dx ≥ 0.

In what follows it will be helpful to recall the following standard Mills ratio
bound: for all t > 0,

ϕ(t) ≥ 1 − e
−t2/2

t
√

2π
.(30)

Suppose first that u ∈ B∞,1, then y(x)u(x)/γ > 0 for a.e. x ∈ Ω′. The1139

assumption that Ω+ ∩ Ω− = ∅ ensures that y is continuous on Ω′ = Ω+ ∪ Ω−.1140

As u is also continuous on Ω′, given any ε > 0, we may find Ω′
ε ⊆ Ω′ such that1141

y(x)u(x)/γ > ε/γ for all x ∈ Ω′
ε. Moreover, these sets may be chosen such1142

that leb(Ω′ ∖Ω′
ε)→ 0 as ε→ 0. Applying the bound (30), we see that for any1143

x ∈ Ω′
ε,1144

ϕ(y(x)u(x)/γ) ≥ 1 − γ e
−u(x)2y(x)2/2γ2

u(x)y(x)
√

2π
≥ 1 − γ e

−ε2/2γ2

ε
√

2π
.

Additionally, for any x ∈ Ω′ ∖ Ω′
ε, we have ϕ(y(x)u(x)/γ) ≥ ϕ(0) = 1/2. We

deduce that

Φp,1(u;γ) = −∫
Ω′

ε

log(ϕ(y(x)u(x)/γ)dµ(x) − ∫
Ω′∖Ω′

ε

log(ϕ(y(x)u(x)/γ)dµ(x)

≤ − log
⎛
⎝

1 − γ e
−ε2/2γ2

ε
√

2π

⎞
⎠
⋅ ρ+ ⋅ leb(Ω′

ε) + log(2) ⋅ ρ+ ⋅ leb(Ω′ ∖Ω′
ε).

The right-hand term may be made arbitrarily small by choosing ε small1145

enough. For any given ε > 0, the left-hand term tends to zero as γ → 0,1146

and so we deduce that Φp,1(u;γ)→ 0 and hence1147

e−Φp,1(u;γ)g(u)→ g(u) = 1B∞,1(u)g(u).
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Now suppose that u ∉ B∞,1, and assume first that there is a subset E ⊆ Ω′

with leb(E) > 0 and y(x)u(x) < 0 for all x ∈ E. Then similarly to above,
there exists ε > 0 and Eε ⊆ E with leb(Eε) > 0 such that y(x)u(x)/γ < −ε/γ
for all x ∈ Eε. Observing that ϕ(t) = 1−ϕ(−t), we may apply the bound (30)
to deduce that, for any x ∈ Eε,

ϕ(y(x)u(x)/γ) ≤ −γ e
−u(x)2y(x)2/2γ2

u(x)y(x)
√

2π
≤ γ

ε
√

2π
.

We therefore deduce that

Φp,1(u;γ) ≥ ∫
Eε
− log(ϕ(y(x)u(x)/γ)dµ(x)

≥ − log( γ

ε
√

2π
) ⋅ ρ− ⋅ leb(Eε)→∞

from which we see that1148

e−Φp,1(u;γ)g(u)→ 0 = 1B∞,1(u)g(u).

Assume now that y(x)u(x) ≥ 0 for a.e. x ∈ Ω′. Since u ∉ B∞,1 there is a subset
Ω′′ ⊆ Ω′ such that y(x)u(x) = 0 for all x ∈ Ω′′, y(x)u(x) > 0 a.e. x ∈ Ω′ ∖Ω′′,
and leb(Ω′′) > 0. We then have

Φp,1(u;γ) = −∫
Ω′′

log(ϕ(0))dµ(x) − ∫
Ω′∖Ω′′

log(ϕ(y(x)u(x)/γ)dµ(x)

= log(2)µ(Ω′′) − ∫
Ω′∖Ω′′

log(ϕ(y(x)u(x)/γ)dµ(x)

→ log(2)µ(Ω′′).

We hence have e−Φp(u;y,γ)g(u) /→ 0 = 1B∞,1(u)g(u). However, the event

D ∶= {u ∈ C(Ω;R) ∣There exists Ω′′ ⊆ Ω′ with leb(Ω′′) > 0 and u∣Ω′′ = 0}
⊆ {u ∈ C(Ω;R) ∣ leb(u−1{0}) > 0} =D′

has probability zero under ν0. This can be deduced from Proposition 7.2 in1149

[28]: since Assumptions 2–3 hold and α > d, Theorem 4 tells us that draws1150

from ν0 are almost-surely continuous, which is sufficient in order to deduce1151

the conclusions of the proposition, and so ν0(D) ≤ ν0(D′) = 0. We thus have1152

pointwise convergence of the integrand on Dc, and so using the boundedness1153

of the integrand by 1 and the dominated convergence theorem,1154

Eν0e−Φp,1(u;γ)g(u) = Eν0e−Φp,1(u;γ)g(u)1Dc(u)→ Eν01B∞,1(u)g(u)

which proves that νp,1⇒ν1.1155

For the convergence νls,1⇒ν1 it similarly suffices to prove that, as γ → 0,

Eν0e−Φls,1(u;γ)g(u)→ Eν01B∞,1(u)g(u)

for all continuous functions g ∶ C(Ω;R)→ [−1,1]. For fixed u ∈ B∞,1 we have1156

e−Φls,1(u;γ) = 1B∞,1(u) = 1 and hence e−Φls,1(u;γ)g(u) = 1B∞,1(u)g(u) for all1157

γ > 0. For fixed u ∉ B∞,1 there is a set E ⊆ Ω′ with positive Lebesgue measure1158

on which y(x)u(x) ≤ 0. As a consequence Φls,1(u;γ) ≥ 1
2γ2 leb(E)ρ− and so1159

e−Φls,1(u;γ)g(u) → 0 = 1B∞,1(u)g(u) as γ → 0. Pointwise convergence of the1160

integrand, combined with boundedness by 1 of the integrand, gives the result.1161
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(ii) The structure of the proof is similar to part (i). To prove νp,2⇒ν2, it suffices
to show that, as γ → 0,

Eν0e−Φp,2(u;γ)g(u)→ Eν01B∞,2(u)g(u)

for all continuous functions g ∶ C(Ω;R)↦ [−1,1]. We write1162

Φ(n)p (u;γ) = − 1

n
∑
j∈Z′

log(ϕ(y(xj)u(xj)/γ)) ≥ 0.

Note that Φ
(n)
p (u;γ) is well-defined almost-surely on samples from ν0 since1163

ν0 is supported on continuous functions (Theorem 4). Suppose first that1164

u ∈ B∞,2, then y(xj)u(xj)/γ > 0 for all j ∈ Z ′ and γ > 0. It follows that for1165

each j ∈ Z ′, y(xj)y(xj)/γ →∞ as γ → 0 and so ϕ(y(xj)u(xj)/γ) → 1. Thus,1166

Φp,2(u;γ)→ 0 and so1167

e−Φp,2(u;γ)g(u)→ g(u) = 1B∞,2(u)g(u).

Now suppose that u ∉ B∞,2. Assume first that there is a j ∈ Z ′ such that1168

y(xj)u(xj) < 0, so that y(xj)u(xj)/γ → −∞ and hence ϕ(y(xj)u(xj)/γ)→ 0.1169

Then we may bound1170

Φp,2(u;γ) ≥ − log(ϕ(y(xj)u(xj)/γ)→∞

from which we see that1171

e−Φp,2(u;γ)g(u)→ 0 = 1B∞,2(u)g(u).

Assume now that y(xj)u(xj) ≥ 0 for all j ∈ Z ′, then since u ∉ B∞,2 there is a
subcollection Z ′′ ⊆ Z ′ such that y(xj)u(xj) = 0 for all j ∈ Z ′′ and y(xj)u(xj) >
0 for all j ∈ Z ′ ∖Z ′′. We then have

Φp,2(u;γ) = − 1

n
∑
j∈Z′′

log(ϕ(0)) − 1

n
∑

j∈Z′∖Z′′

log(ϕ(y(xj)u(xj)/γ))

= ∣Z ′′∣
n

log(2) − 1

n
∑

j∈Z′∖Z′′

log(ϕ(y(xj)u(xj)/γ))

→ ∣Z ′′∣
n

log(2).

Thus, in this case e−Φp,2(u;γ)g(u) /→ 0 = 1B∞,2(u)g(u). However, the event1172

D = {u ∈ C(Ω;R) ∣u(xj) = 0 for some j ∈ Z ′}

has probability zero under ν0. To see this, observe that ν0 is a non-degenerate1173

Gaussian measure on C(Ω;R) as a consequence of Theorem 4. Thus u ∼ ν01174

implies that the vector (u(x1), . . . , u(xn++n−)) is a non-degenerate Gaussian1175

random variable on Rn
++n− . Its law is hence equivalent to the Lebesgue1176

measure, and so the probability that it takes value in any given hyperplane is1177

zero. We therefore have pointwise convergence of the integrand on Dc. Since1178

the integrand is bounded by 1, we deduce from the dominated convergence1179

theorem that1180

Eν0e−Φp,2(u;γ)g(u) = Eν0e−Φp,2(u;γ)g(u)1Dc(u)→ Eν01B∞,2(u)g(u)
41



which proves that νp,2⇒ν2.1181

To prove νls,2⇒ν2 we show that, as γ → 0,

Eν0e−Φls,2(u;γ)g(u)→ Eν01B∞,2(u)g(u)

for all continuous functions g ∶ C(Ω;R)↦ [−1,1]. For fixed u ∈ B∞,2 we have1182

e−Φls,2(u;γ) = 1B∞,2(u) = 1 and hence e−Φls,2(u;γ)g(u) = 1B∞,2(u)g(u) for all1183

γ > 0. For fixed u ∉ B∞,2 there is at least one j ∈ Z ′ such that y(xj)u(xj) ≤1184

0. As a consequence Φls,2(u;γ) ≥ 1
2γ2

1
n
ρ− and so e−Φls,2(u;γ)g(u) → 0 =1185

1B∞,2(u)g(u) as γ → 0. Pointwise convergence of the integrand, combined1186

with boundedness by 1 of the integrand, gives the desired result.1187

7.8. Technical lemmas. We include technical lemmas which are used in the1188

main Γ-convergence result (Theorem 1) and in the proof of convergence for the probit1189

model.1190

Lemma 24. Let X be a normed space and a
(n)
k ∈X for all n ∈ N and k = 1, . . . , n.1191

Assume ak ∈X be such that ∑∞k=1 ∥ak∥ <∞ and that for all k1192

a
(n)
k → ak as n→∞.

Then there exists a sequence {Kn}n=1,... converging to infinity as n→∞ such that1193

Kn

∑
k=1

a
(n)
k →

∞
∑
k=1

ak as n→∞.

Note that if the conclusion holds for one sequence Kn it also holds for any other1194

sequence converging to infinity and majorized by Kn.1195

Proof. Note that by our assumption for any fixed s, ∑sk=1 a
n
k → ∑

s
k=1 ak as n→∞.1196

Let Kn be the largest number such that for all m ≥ n, ∥∑Knk=1 a
(m)
k −∑Knk=1 ak∥ < 1

n
. Due1197

to observation above, Kn →∞ as n→∞. Furthermore1198

∥
Kn

∑
k=1

ank −
∞
∑
k=1

ak∥ ≤ ∥
Kn

∑
k=1

ank −
Kn

∑
k=1

ak∥ +
XXXXXXXXXXX

∞
∑

k=Kn+1

ak

XXXXXXXXXXX
which converges to zero an n→∞.1199

The second result is an estimate on the behavior of the function Ψ defined in (8)1200

Lemma 25. Let F (w, v) = log Ψ(w; 1)− log Ψ(v; 1) where Ψ is defined by (8) with1201

γ = 1. For all w > v and M ≥ 1,1202

F (w, v) ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2v2 + 1
M2 if v ≤ −M

∣w−v∣

∫ −M−∞ e−
t2
2 dt

if v ≥ −M.

Proof. We consider the two cases: v ≤ −M and v ≥ −M separately. From inequal-1203

ity 7.1.13 in [2] directly follows that1204

∀u ≤ 0,

√
2

π

1

−u +
√
u2 + 4

e−
u2

2 ≤ Ψ(u)
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When v ≤ −M , by taking the logarithm we obtain

F (w, v) ≤ − log Ψ(v;γ) ≤ − log
⎛
⎝

√
2

π

1

−v +
√
v2 + 4

e−
v2

2
⎞
⎠
≤
√
π

2
(
√
v2 + 4 − v) + v

2

2

≤
√
π

2
∣v∣

⎛
⎝

√
1 + 4

M2
− 1

⎞
⎠
+ v

2

2
≤

√
2π∣v∣
M

+ v
2

2
≤ 2v2 + 1

M2

using the elementary bound ∣
√

1 + x2 − 1∣ ≤ ∣x∣ for all x ≥ 0. When v ≥ −M ,1205

F (w, v) = log
Ψ(w)
Ψ(v) = log

⎛
⎜
⎝

1 + ∫
w
v e−

t2

2 dt

∫
v
−∞ e−

t2

2 dt

⎞
⎟
⎠
≤ ∫

w
v e−

t2

2 dt

∫
v
−∞ e−

t2

2 dt
≤ w − v

∫
−M
−∞ e−

t2

2 dt

This completes the proof.1206

Corollary 26. Let Ω′ ⊂ Rd be open and bounded. Let µ′ be a bounded, non-1207

negative measure on Ω′ and γ > 0. Define Ψ(⋅;γ) as in (8). If v ∈ L2
µ′ then1208

log Ψ(v;γ) ∈ L1(µ′).1209

Proof. Lemma 25, and using that Ψ(v;γ) = Ψ(v/γ; 1), shows that − log Ψ(v, γ)1210

grows quadratically as v → −∞. Note that − log Ψ(v, γ) asymptotes to zero as v →∞.1211

Therefore ∣ log Ψ(v, γ)∣ ≤ C(∣v∣2 + 1) for some C > 0, which implies the claim.1212

7.9. Weyl’s Law.1213

Lemma 27. Let Ω and ρ satisfy Assumtptions 2–3 and let λk be the eigenvalues1214

of L defined by (4). Then, there exist positive constants c and C such that for all k1215

large enough1216

ck
2
d ≤ λk ≤ Ck

2
d .

Proof. Let B be a ball compactly contained in Ω and U a ball which compactly1217

contains Ω. By assumptions on ρ for all u ∈H1
0(B)/{0}1218

∫B ∣∇u∣2dx
∫B u2dx

≥ c2 ∫Ω
∣∇u∣2ρ2dx

∫Ω u2ρdx

where on RHS we consider the extension by zero of u to Ω. Therefore for any k-1219

dimensional subspace Vk of H1
0(B)1220

max
u∈Vk/{0}

∫B ∣∇u∣2dx
∫B u2dx

≥ c2 max
u∈Vk/{0}

∫Ω ∣∇u∣2ρ2dx

∫Ω u2ρdx
.

Consequently, using the Courant–Fisher characterization of eigenvalues,1221

αk = inf
Vk⊂H1

0 (B),
dim Vk=k

max
u∈Vk/{0}

∫B ∣∇u∣2dx
∫B u2dx

≥ c2 inf
Vk⊂H1(Ω),
dim Vk=k

max
u∈Vk/{0}

∫Ω ∣∇u∣2ρ2dx

∫Ω u2ρdx
= c2λk

Since Ω is an extension domain (as it has a Lipschitz boundary), there exists1222

an bounded extension operator E ∶ H1(Ω) → H1
0(U). Therefore for some constant1223

C2 and all u ∈ H1(Ω), C2 ∫Ω ∣∇u∣2ρ2 + u2ρdx ≥ ∫U ∣∇Eu∣2dx. Arguing as above gives1224

C2(λk + 1) ≥ βk.1225

These inequalities imply the claim of the lemma, since the Dirichlet eigenvalues of1226

the Laplacian on B, αk satisfy αk ≤ C1k
2
d for some C1 and that Dirichlet eigenvalues1227

of the Laplacian on U , βk satisfy βk ≥ c1k
2
d for some c1 > 0.1228
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