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Abstract

In this paper we devote our attention to a class of weighted ultrafast diffusion equations
arising from the problem of quantisation for probability measures. These equations have a
natural gradient flow structure in the space of probability measures endowed with the quadratic
Wasserstein distance. Exploiting this structure, in particular through the so-called JKO scheme,
we introduce a notion of weak solutions, prove existence, uniqueness, BV and H1 estimates, L1

weighted contractivity, Harnack inequalities, and exponential convergence to a steady state.

Introduction

In this work we investigate the well-posedness and the long-time behaviour of solutions u = u(t, x)

of the nonlinear diffusion equation

∂tu = div(uα−1∇u) = ∆(uα/α) on [0,∞)× Ω, (0.1)

where α ∈ R and Ω is a d-dimensional domain; we give specific hypotheses on Ω later. This class of
equations may exhibit a whole spectrum of different behaviours as α varies. We are interested in the
case α < 0, i.e., when (0.1) takes the name of ultrafast diffusion equation. This class of equations
have completely different properties from those found in the case α ≥ 1, which corresponds to the
porous medium and heat framework. Porous medium equations model slow diffusion phenomena
and have been extensively studied in the last years; we refer the reader to the monographs by J. L.
Vázquez for a comprehensive theory [52, 53]. The case 0 ≤ α < 1 is commonly referred to as fast
diffusion equation; in particular, α = 0 gives the logarithmic diffusion equation [22].

When α < 1, existence and uniqueness of weak solutions of the Cauchy problem, as well as the
asymptotic behaviour and the main qualitative properties, are well understood when α lies in the
so-called good parameter range max {0, αc} < α < 1, where αc := (d − 2)/d is a critical exponent;
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see for instance [34]. The theory on diffusion equations is less developed in the subcritical range
α < αc, even under the condition α > 0, since the classical questions about existence, uniqueness and
regularity become more challenging. A typical difficulty emerging in the subcritical case concerns
the possible lack of positivity due to extinction in finite time: while in the good parameter range
α > αc the mass is conserved, if we consider the case of the Cauchy problem in the whole space
Rd with d ≥ 3 and 0 < α < αc, P. Bénilan and M. G. Crandall [3] proved the extinction in finite
time of solutions of the fast diffusion equation (0.1) when the initial datum is in some suitable Lp

space. In fact, solutions become identically zero in finite time for all 0 < α < 1 if considering the
Cauchy problem in a bounded domain with Dirichlet boundary data; see [6, 7] for more detail. Still
in Rd, the critical case α = αc is as well very challenging since it turns out that, for d ≥ 3, solutions
exhibit two space regions in which they have different long-time behaviours; see [32]. When Ω is a
bounded domain, the situation is even more involved and we refer to the monograph [52].

Most of the literature does not treat the very singular range α < 0, since the diffusivity uα−1

becomes extremely singular at u = 0. In particular, in [50] Vázquez showed that if one considers
the Cauchy problem in the whole space or in a bounded domain with zero Dirichlet boundary
conditions, then solutions starting from L1 initial data become instantaneously identically zero,
namely u(t) ≡ 0 for all t > 0. To circumvent this phenomenon, some authors have considered
initial data that are not integrable and “not too small” at infinity; see [29, 50] among the older
references, then [8, 21, 51], and the books [22, 52] for a more exhaustive discussion on the problem.
It is interesting to notice that (0.1) with α < 0 arises naturally in certain physical applications. For
example, superdiffusivities of this type have been proposed in [23] as a model for long-range Van
der Waals interactions in thin films spreading on solid surfaces. This equation also appears in the
study of cellular automata and interacting particle systems with self-organised criticality; see [18]
for example. Other physical applications are mentioned in [4].

Besides the motivations above, our interest in ultrafast diffusion equations stems from the prob-
lem of quantisation for probability measures. This problem can be stated as follows: given an integer
N , find an atomic measure with N atoms that best approximates a given probability density ρ on
Ω ⊂ Rd in the sense of Wasserstein distances of any order p ≥ 1. As explained in [33], this is in fact
equivalent to the following minimisation problem:

min
ΣN

{∫
Ω
d(x,ΣN )pρ(x) dx s.t. #ΣN = N

}
, (0.2)

where d(x,ΣN ) stands for the distance between the point x ∈ Ω and the set ΣN , which is the support
of the optimal measure. Note that, in this new formulation, the only unknowns are the locations
of the points of the support ΣN . A classical and important question concerns the asymptotics of a
minimiser ΣN when the cardinality N goes to infinity. In order to take such a limit, one defines the
probability measure µN := 1

N

∑
x∈ΣN δx. Then, it is known (see [30, 33, 44]) that as N → ∞ the

measures µN weakly-* converge to a minimiser of the energy functional

Fρ[f ] :=

∫
Ω

ρ(x)

f(x)p/d
dx,

defined for densities f on Ω. This convergence has also been investigated and justified from a Γ-
convergence viewpoint in [11] (a more general proof having been established in a similar case in [45];
see also [35] and [38] on how geometry can affect the optimal location problem).
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In [16], the authors introduced a new approach to the quantisation problem based on gradient
flows: their idea was to study the evolution of the points of ΣN when they follow the steepest descent
curves of the functional (0.2) (which is nothing but a continuous-time version of the well-known
Lloyd’s algorithm for the optimal quantisation; see [40], or [12, 42] for more recent accounts and
related topics), and to compare it to the gradient flow of a continuous functional. This analysis
was performed in detail in the one-dimensional case in [16], and in the two-dimensional case in [17]
when ρ ≡ 1. There, the authors study the Lagrangian evolution of the particles in the support of
ΣN under the gradient flow of (0.2) and prove quantitative convergence estimates to a continuous
gradient flow. As observed in [36], at least when d = 1, this continuous Lagrangian evolution of
particles corresponds, in Eulerian variables, to the gradient flow of Fρ in the 2-Wasserstein sense.

Because of this, understanding the 2-Wasserstein gradient flow of Fρ is a natural problem.
Before computing the equation associated to this gradient flow, we first make a short comment
about the boundary conditions: as explained in [16], because of the preservation of the mass in the
quantisation problem, a very natural boundary condition is the no-flux (that is, Neumann) one; of
course, the easiest case is actually just to suppose that the domain is a torus, which is the same
as supposing that f is periodic. In the sequel we shall focus on these two boundary conditions:
periodic, and no-flux on bounded domains.

To compute the 2-Wasserstein gradient flow of Fρ we note that, setting r := p/d, the first
variation density of Fρ at a density f is given by

δFρ[f ]

δf
= − rρ

f r+1
.

Hence, by Otto’s calculus (see for instance [36, 47]) and by the theory of gradient flows in Wasserstein
space (see [1, 49]), the gradient flow of the functional Fρ in the 2-Wasserstein metric is given by

∂tf(t, x) = divx

(
f(t, x)∇x

(
δFρ[f(t)]

δf
(x)

))
= −r divx

(
f(t, x)∇x

(
ρ(x)

f(t, x)r+1

))
.

This is an ultrafast diffusion equation weighted by the density ρ. Indeed when ρ ≡ 1 it corresponds
(after a change of variable and up to a multiplicative constant; see (1.3)) to (0.1) with exponent
α = −r < 0; this is the so-called ultrafast diffusion regime for which, as already explained, so-
lutions starting from L1 initial data vanish instantaneously when set on the whole space or with
zero Dirichlet boundary conditions. However, the natural framework where we study this equation
includes mass preservation, and thus, as mentioned above, we shall consider only periodic or Neu-
mann boundary conditions on a bounded domain (assumed to be convex for technical reasons; see
later).

As the reader will notice going on with the paper, we perform an essentially complete analysis
of this weighted ultrafast diffusion equation by combining two approaches: on the one hand, we
exploit as much as we can the time-discretisation given by the so-called Jordan–Kinderlehrer–Otto
scheme (see [37]) and obtain many estimates using recent tools in optimal transportation; on the
other hand, we obtain further results at the level of the continuous-time PDE. Each time we choose
which approach to favour depending on the easiest one to adopt.
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1 Main results and plan of the paper

In this section we introduce the notation and assumptions, we state our main results, and we give
an overview of the paper.

Let r be a positive real number. Let Ω ⊂ Rd be a d-dimensional domain: either the d-dimensional
torus Td, or a bounded convex domain. Let ρ be a Borel probability density on Ω, which we write
either ρ ∈ P(Ω) with ρ� dx or, abusively, ρ ∈ P(Ω) ∩ L1(Ω).

We writeM(Ω) the set of finite nonnegative Borel measures on Ω, so that P(Ω) = {ρ ∈M(Ω) :

ρ(Ω) = 1}. Let us give the definition of the 2-Wasserstein distance. For any two µ, ν ∈M(Ω) with
same total mass, we define the 2-Wasserstein distance W2(µ, ν) between µ and ν by

W2(µ, ν) = inf
π∈Π(µ,ν)

(∫
Ω×Ω
|x− y|2 dπ(x, y)

)1/2

,

where Π(µ, ν) is the set of all transport plans between µ and ν, that is, the subset ofM(Ω)×M(Ω)

consisting of measures with µ as first marginal and ν as second marginal; see [48, 54] for an exhaustive
account on Wasserstein metrics.

We want to investigate the properties of the following weighted ultrafast diffusion equation
discussed in the introduction:

∂tf(t, x) = −r divx

(
f(t, x)∇x

(
ρ(x)

f(t, x)r+1

))
on [0,∞)× Ω, (1.1)

where the unknown is f : [0,∞)→ L1(Ω), with boundary conditions

∂f(t, x)

∂n(x)
= 0 on [0,∞)× ∂Ω if Ω is a bounded convex domain in Rd,

for all t ∈ [0,∞), where n(x) is the outward unit normal vector to ∂Ω at x. Notice that when Ω is
the torus, there is no boundary condition and we can consider f to be a periodic function. When
Ω is a bounded convex domain, the boundary condition above should be intended in a weak sense,
which means (see Definition 1.1 below) that test functions will not be compactly supported in space.

This equation (including the boundary conditions) can be seen as the gradient flow in W2 of the
functional

Fρ[f ] =

∫
Ω

ρ(x)

f(t, x)r
dx, f ∈ L1(Ω);

see later for a precise definition of this functional on arbitrary measures.
Let us consider a change of variable that was first introduced in [16], and that will be very useful

to prove several of our estimates: for all (t, x) ∈ [0,∞)× Ω,

u(t, x) :=
f(t, x)

m(x)
, m(x) := ρ(x)

1
r+1 . (1.2)

With this change of variable, equation (1.1) becomes

∂tu(t, x) = −r + 1

m(x)
divx

(
m(x)∇x(u(t, x)−r)

)
, (t, x) ∈ [0,∞)× Ω. (1.3)

In order to state our results, we need first to introduce the class of solutions on which we can
prove existence and uniqueness. Note in particular that the assumption in Definition 1.1 that initial
data belong to Lr+3(Ω) will be used to show that weak solutions exist; see the proof of Lemma 3.4.
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Definition 1.1 (Weak solutions of (1.1) and (1.3)). Given f0 ∈ Lr+3(Ω) with Fρ[f0] <∞, we say
that f is a weak solution of (1.1) starting from f0 if t 7→ f(t) is a weakly-* continuous curve valued
intoM(Ω), f(0) = f0, f solves (1.1) in the sense of distributions, i.e., for all ψ ∈ C∞c ((0,∞)×Ω)1

we have ∫ ∞
0

∫
Ω

(
∂tψ(t, x)− r∇x

(
ρ(x)

f(t, x)r+1

)
· ∇xψ(t, x)

)
f(t, x) dx dt = 0,

and the following bounds hold:

f

m
∈ L2

loc([0,∞), H1(Ω)),
( f
m

)−r
∈ L2

loc([0,∞), H1(Ω)).

In this case we say that u := f/m is a weak solution of (1.3).

The Sobolev regularity conditions in the definition are crucial. First, it is important to observe
that the equation has no distributional meaning if one does not assume any Sobolev regularity on
the solution. Indeed, by looking at (1.3), one sees that the existence of weak derivatives for u−r

is needed to define the divergence of m∇(u−r). Then, the reader will see that these precise H1

assumptions play a crucial role both in the proof of uniqueness in Theorem 1.2 (to make sure that
we can justify the computations) and in the proof of instantaneous regularisation (or boundedness)
of solutions in Theorem 1.3 (to be able to use the Moser iteration inspired by [46]; see also [8, 22]).
Before stating our main results, let us give a standing assumption on the weight m which will always
hold in the paper:

Assumption (Sobolev assumption on m). The weight m is such that logm ∈ W 1,p(Ω) for an
exponent p > d. In this way logm is continuous and bounded, which means that m is continuous
and bounded from above and below by positive constants. When needed, we will call λ a positive
constant such that λ < m < λ−1.

Although this assumption always implicitly holds, we will recall it in some results to emphasise
its importance. Note that, because of this hypothesis on m (and thus on ρ), the domain of the
functional Fρ is exactly the subset of densities f such that 1/f ∈ Lr(Ω). Throughout the paper,
it will be sometimes necessary to assume extra properties on logm (in particular, semiconcavity),
and to assume bounds on f0. Since these properties and bounds are not always the same in every
result we state later, we prefer not to detail them here but rather provide them whenever we need.

Theorem 1.2 (Existence and uniqueness). Suppose that f0 ∈ Lr+3(Ω) with Fρ[f0] < ∞. Then
there exists a unique weak solution of (1.1) starting from f0.

With this theorem in hand, we can address the regularity properties of solutions and their long-
time behaviour. In [36] the author showed that when ρ is a positive smooth function and one
considers smooth solutions of (1.1) starting from initial data bounded away from zero and infinity,
then as time goes to infinity the solution converges exponentially fast to the stationary state

x 7→Mγm(x), M :=

∫
Ω
f0, γ :=

(∫
Ω
m

)−1

,

1Note that the closure Ω is compact, thus we are not imposing boundary conditions on the test functions; this is
used to impose no-flux boundary conditions on the solution.
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so that f converges to a stationary state with the same mass2 as f0. We recover in this paper the
same convergence as in [36] without the initial boundedness condition, since we prove instantaneous
upper and lower bounds (usually called Harnack inequalities) beforehand. Although upper bounds
are rather classical in these settings, lower bounds are nonstandard and actually false in many
situations [50]. In our case it is crucial that we work with periodic or no-flux boundary conditions.

As we shall see, this result is crucial for the long time behaviour because, once the solution
is bounded and bounded away from zero, the singular/degenerate character of the equation is not
predominant and the solutions behave like standard parabolic equations.

Theorem 1.3 (Harnack inequalities). Suppose that f is a weak solution of (1.1) starting from some
density f0. Assume the following integrability properties on f0: we have

∫
Ω(f

p+

0 +f
−p−
0 ) <∞, where

p+ ≥ r+ 3, p+ > (r+ 1)d/2, p− > (r+ 1) max (1, d/2). Then, for any t > 0 there exists a constant
Ct > 0 (nonincreasing in t) such that

1

Ct
≤ f(s) ≤ Ct for all s ≥ t.

We can then apply the above theorem, together with H1 and BV estimates that will be proven
later, in order to obtain the following:

Theorem 1.4 (Long-time behaviour). Let f be a weak solution of (1.1) starting from some f0

satisfying the same assumptions as in Theorem 1.3. Then, there exist constants C, c > 0 such that,
for all t ≥ 0, one has

‖f(t)−Mγm‖L2(Ω) ≤ Ce
−ct.

Moreover, if one adds the assumption that there exists Λ ∈ R such that D2(logm) ≤ Λ Id, then there
exists another constant C > 0 so that one also has

‖f(t)−Mγm‖BV (Ω) ≤ Ce
−ct for t large enough.

We now briefly explain the ideas behind the proofs of the above results. To prove existence of
weak solutions we use the so-called Jordan–Kinderlehrer–Otto (JKO) scheme. This method, first
introduced in [37] and further developed in several other papers (see for instance [26] for a related
setting), provides a very natural way to discretise Wasserstein gradient flows in time. More precisely,
given a time step τ > 0, one fixes f (τ)

0 := f0, and, for each k ∈ N, one defines f (τ)
k+1 as the minimiser

of the functional

f 7→ Fρ[f ] +
W 2

2 (f, f
(τ)
k )

2τ
.

In this way one constructs a discrete gradient flow defined at all times t = kτ with k ≥ 0, and
to obtain a solution to (1.1) one needs to find a limit as τ → 0. In our case we face at least two
main challenges: first, the JKO scheme is naturally set in the class of measures, and we would
need to prove that minimisers of the above functional exist in the space of functions, or densities
(a priori, the minimiser may have a singular part); second, we need to prove enough estimates on

2In the literature related to the quantisation problem, f0 is a probability measure [16, 36]; on the other hand, in
the literature about fast-diffusion equations the mass is arbitrary, and often nonpreserved. For the sake of generality
we admit here arbitrary masses and arbitrary initial data in L1(Ω).
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the discrete solutions to ensure that, in the limit, we obtain a weak solution according to Definition
1.1. To circumvent these difficulties, we first prove that if the initial datum f0 is bounded between
two multiples of m, then the same bound is true for f (τ)

k for all k ∈ N. In this way we guarantee
that f (τ)

k is a function (and not only a measure). Also, still assuming that f0 is bounded between
two multiples of m, we exploit the so-called “flow-interchange technique” (see [41]) and the so-called
“five-gradients inequality” (see [24]) to find H1 and BV a priori estimates on our discrete solutions.
In this way we can prove the existence of a weak solution of (1.1) whenever 0 < c0m ≤ f0 ≤ C0m

for some c0, C0 > 0. Finally, the general existence theorem follows by approximation.
To prove uniqueness the idea is to consider two weak solutions f and g, and show that

t 7→
∫

Ω
(f(t)− g(t))+

is descreasing in time. To achieve this we use the equation satisfied by u := f/m and v := g/m;
see (1.3) and we prove a weighted L1 contraction on u and v. Note that we are actually unable to
prove directly this property for all solutions: we can prove it only when one of the two solutions is
uniformly bounded away from zero; see Proposition 3.6. Then, by an approximation argument, we
are able to conclude the desired uniqueness; see Theorem 3.7. Finally, we prove the instantaneous
positivity and boundedness from above (i.e., instantaneous regularisation) of weak solutions using
a Moser iteration, and then we conclude the L2 exponential convergence relying on the argument
in [36]. We are also able to provide BV exponential convergence to the steady state, using the
arguments deriving from the discrete BV estimate.

In Section 2 we discretise the problem in time and show existence of minimisers for the JKO
scheme, together with a discrete maximum principle; we also give BV and H1 estimates for the
minimisers. In Section 3 we prove Theorem 1.2; as a corollary, we also get a continuous maximum
principle. Then, in Section 4 we show Theorem 1.3 and in Section 5 we use our tools to prove
exponential convergence, that is, Theorem 1.4. Note that, whenever relevant, we rewrite our results
in remarks for the nonweighted case ρ ≡ 1, which is the prototype equation and helps understand
the essential aspects of both the problem and the results.

2 Time discretisation of the problem

Let us fix in this section the time step τ > 0.
In order to study the JKO scheme, we first define our functional Fρ on the space of measures.

To this aim, for all µ ∈M(Ω) that we can decompose as µ = f dx+ µs, µs ⊥ dx, we define

Fρ[µ] =

∫
Ω

ρ

f r
dx.

Note that, if we set U(s) = s−r for all s ∈ (0,∞) we can also define the functional

G[µ] =

∫
Ω
U

(
f

m

)
m dx,

where m is as in (1.2). Of course, we have Fρ[µ] = G[µ]. More generally, and for future use, for a
given exponent q < 0, and still using the decomposition µ = f dx+ µs, µs ⊥ dx, we define

G(q)[µ] =

∫
Ω

(
f

m

)q
mdx,
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and we also give a similar, but different definition, for q > 1:

G(q)[µ] =


∫

Ω

(
f
m

)q
mdx, if µs = 0,

+∞ if not.

Also note that, when the reference weight m is not fixed (for instance, we will once use a sequence
of weights mn), then we can also write G(q;m) instead of G(q) to stress the dependence on the weight.

The functional G previously defined is just an example of functional G(q), for q = −r. We observe
that all functionals G(q) are lower semicontinuous for the weak-* convergence of nonnegative mea-
sures because they have the form µ 7→

∫
Ω U(dµ/dx) dx+ U ′∞

∫
Ω µ

s, where U ′∞ := lims→+∞ U(s)/s

(and here we have U ′∞ ∈ {0,+∞}); see for instance [48, Proposition 7.7]. (Note that if U ′∞ = +∞
and

∫
Ω µ

s = 0, then we conventionally set U ′∞
∫

Ω µ
s = 0.)

As explained in the introduction, one can construct a discrete gradient flow as an iterative
sequence of minimisation problems of the form

µkτ minimises µ 7→ G[µ] +
W 2

2 (µ, µ
(τ)
k−1)

2τ
,

for every k ∈ N. This means that, for a given ν ∈M(Ω) with mass M , we want to solve

min

{
G[µ] +

W 2
2 (µ, ν)

2τ
: µ ∈MM (Ω)

}
, (2.1)

whereMM (Ω) := {µ ∈M(Ω) s.t.
∫

Ω dµ = M}.
Note that, as a consequence of the definition of the scheme, the massM of our discrete solutions

(and therefore also of their continuous limits) is preserved.

2.1 Well-posedness of the discrete scheme

Theorem 2.1. If ν ∈M(Ω) with ν � dx, then there exists a unique minimiser for Problem (2.1)

Proof. The functional G is lower semicontinuous for the weak-* convergence of measures, and so is
µ 7→ W 2

2 (µ, ν), since W2 exactly metrises (on compact sets) this convergence. Moreover, the set
M(Ω) is compact for this convergence, which proves the existence of a minimiser. Uniqueness comes
from the strict convexity of the problem. Indeed, G is a convex functional and so is µ 7→W 2

2 (µ, ν).
In addition, the latter is also strictly convex if ν � dx; see [48, Proposition 7.19].

Theorem 2.1 does not exclude the possibility of a minimiser, say µ∗, which is not absolutely
continuous: its singular part µs

∗ does not enter into play in the computation of G[µ∗] but is not
forbidden as soon as the absolutely continuous part of µ∗ is positive almost everywhere. In order to
study the minimisers for Problem (2.1) we approximate U with a superlinear cost function to ease
the computations. Define, for all ε > 0,

Uε(s) := s−r + ε
s2

2
for all s ∈ (0,∞),
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and, for all µ ∈M(Ω),

Gε[µ] =


∫

Ω Uε

(
f
m

)
m if µ = f dx with f ∈ L1(Ω),

+∞ if not.

We use the following result, which is essentially a statement on Γ-convergence; see for instance [20]:

Lemma 2.2. Suppose ν ∈M(Ω) with ν � dx and
∫

Ω dν = M . Given (νε)ε weakly-* converging to
ν, set Mε :=

∫
Ω dνε (in particular, we have Mε →M as ε→ 0); then, the problem

min

{
Gε[µ] +

W 2
2 (µ, νε)

2τ
: µ ∈MMε(Ω)

}
(2.2)

admits a unique solution µε for every ε > 0. This solution is absolutely continuous for every ε > 0,
and weakly-* converges to the unique solution µ∗ of (2.1) as ε→ 0.

Proof. Given ε > 0, the existence and uniqueness of µε can be done as in the proof of Theorem
2.1. (Uniqueness is actually easier since the functional Gε is strictly convex, so that we do not need
the strict convexity of the Wasserstein part and we do not need νε � dx.) The fact that µε is
absolutely continuous is straightforward, since otherwise Gε[µε] = +∞. Up to subsequences, we can
always suppose µε

∗
⇀ µ∗ as ε → 0 for some µ∗ ∈ MM (Ω); indeed, µ∗(Ω) = ν(Ω) since the weak-*

convergence preserves in this case the total mass [5]. We now just need to prove that µ∗ solves (2.1).
Given an arbitrary measure µ̃ with an L2 density, we can write

G[µε] +
W 2

2 (µε, νε)

2τ
≤ Gε[µε] +

W 2
2 (µε, νε)

2τ
≤ Gε[µ̃] +

W 2
2 (µ̃, νε)

2τ
.

Passing to the liminf as ε → 0, using the semicontinuity of G, the continuity of W2 with respect
to the weak-* convergence and the fact that we have Gε[µ̃] → G[µ̃], which is true for every µ̃ ∈ L2

(since the extra term in the definition of Gε is a finite term multiplied by ε), we get

G[µ∗] +
W 2

2 (µ, ν)

2τ
≤ G[µ̃] +

W 2
2 (µ̃, ν)

2τ
.

This shows that µ∗ is a minimiser in (2.1) if we restrict to L2 competitors.
To complete the proof, it is enough to prove that the infimum in (2.1) does not change if we

restrict it to L2, or, in fact, even to bounded, densities. To do so, take an arbitrary µ = f dx+ µs

and define, for all p > 0, µp := (cp + (f ∧ p) + fp) dx, where f ∧ p stands for the minimum between
f and p, fp

∗
⇀ µs as p→∞ is an arbitrary L∞ approximation of µs, and cp = |Ω|−1

∫
Ω(f −f ∧p) dx

is a constant density with the same mass as the difference between f and its truncation f ∧ p. We
can see that, as p → ∞, we have µp

∗
⇀ µ; hence limp→∞W

2
2 (µp, ν) = W 2

2 (µ, ν), and we also have
lim supp→∞ G[µp] ≤ G[µ].

As sometimes done already, in the sequel we will often identify absolutely continuous measures
with their densities.
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2.2 Discrete maximum principle

Lemma 2.3. Given g ∈ M(Ω) ∩ L1(Ω) and a convex lower semicontinuous function V : [0,∞) →
R ∪ {+∞} so that V (0) = +∞, lims→+∞ V (s) = +∞ and V is of class C1 on (0,∞), let f∗
minimise the functional

f 7→
∫

Ω
V

(
f

m

)
m+

W 2
2 (f, g)

2τ

on L1(Ω). Then, there exists a constant C > 0 such that

V ′
(
f∗
m

)
+
ϕ

τ
= C almost everywhere on Ω,

where ϕ is the unique (up to additive constants) Kantorovich potential from f∗ to g.

For the readers’ convenience, we recall that the definition and role of Kantorovich potentials.
First, we recall the duality result introduced by Kantorovich, which reads, in the case of the quadratic
cost c(x, y) = |x− y|2/2

inf
π∈Π(µ,ν)

∫
Ω×Ω

1

2
|x− y|2 dπ(x, y) = sup

ϕ,ψ :ϕ(x)+ψ(y)≤ 1
2
|x−y|2

∫
ϕdµ+

∫
ψ dν.

When (ϕ,ψ) is an optimal pair in the above supremum, then we say that ϕ is a Kantorovich potential
from µ to ν. The Kantorovich potential is always a Lipschitz (when Ω is compact) and semiconcave
function, and is unique up to additive constants as soon as µ has strictly positive density almost
everywhere. Moreover, it is connected to the optimal transport map T via T (x) = x −∇ϕ(x), for
almost every x ∈ Ω, and it also plays the role of first variation of the functional µ 7→ 1

2W
2
2 (µ, ν).

By inverting the roles of the two measures and using the uniqueness of the optimal map, it is easy
to obtain ∇ψ = −∇ϕ◦T . We refer the reader to [48, Sections 1.2, 1.3 and 7.2.2] for these facts and
more details.

Proof. From V (0) = +∞ and from the finiteness of
∫

Ω V (f∗/m)m we deduce that f > 0 almost
everywhere. Hence, we can use [48, Proposition 7.20] to deduce that V ′ (f∗/m) + ϕ/τ is equal to a
constant almost everywhere on the support of f , i.e., the domain Ω.

Lemma 2.4 (Discrete maximum principle). Given ν ∈ M(Ω) with ν � dx, let µ∗ be the unique
minimiser for (2.1). Then, for any c0, C0 > 0,

• if ν ≤ C0m, then µ∗ is absolutely continuous with density f∗ ≤ C0m;

• if ν ≥ c0m, then µ∗ ≥ c0m.

Proof. We prove the same estimates for the minimisation problem (2.2), where (νε)ε is a smooth
and strictly positive approximation of ν also satisfying the bound νε ≤ C0m or the bound νε ≥ c0m

for all ε > 0. Then, by Lemma 2.2, as the constants c0 and C0 do not depend on ε, the same
estimates hold true for the minimiser of (2.1). Also, we prove the result under the assumption that
m be Lipschitz continuous; then, a simple approximation argument gives the result for any m.
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Let ε > 0 and let µε be the unique minimiser of Problem (2.2). Let ϕ be the Kantorovich
potential from µε to νε. By Lemma 2.2, µε is absolutely continuous (µε = fε dx), and, by Lemma
2.3 applied with V = Uε, we obtain that

U ′ε

(
fε
m

)
+
ϕ

τ
= C almost everywhere on Ω.

Since ϕ is at least Lipschitz continuous (see for instance [48]), this implies that U ′ε (fε/m) is as
well Lipschitz continuous. Using the explicit expression for Uε and U ′′ε ≥ ε > 0, we get that
fε/m is Lipschitz continuous, and so the same is true of fε (by the assumption that m is Lipschitz
continuous). Moreover, fε is bounded from below by a positive constant since U ′ε (fε/m) is bounded
and U ′(0) = U ′ε(0) = −∞. Since the target measure νε is supposed to be smooth and strictly
positive, we face an optimal transport problem between two Lipschitz densities which are bounded
below and either periodic (if Ω = Td) or supported on a convex domain. In the former case we
can apply the regularity result in [19] and in the latter case we can apply Caffarelli’s regularity
theory (see [13, 14, 15], [25, Theorem 3.3] and [31, Theorem 4.23 and Remark 4.25]) to get that
ϕ ∈ C2,β(Ω) for some β < 1, under the extra assumption that Ω be uniformly convex and smooth,
so that we have regularity of T up to the boundary. Note that we get rid of the extra assumption
on Ω at the end of the proof. Moreover, the optimal map T = id − ∇ϕ is a diffeomorphism and
sends ∂Ω into ∂Ω, which is only pertinent in the case where Ω is a convex bounded domain.

- The case where Ω is the torus. Let x̄ be a point of maximum for fε/m. Since U ′ε is monotonically
increasing, then x̄ is also a point of maximum for U ′ε (fε/m). This implies that x̄ is a point of
minimum for ϕ/τ . Therefore, because Ω = Td,

∇ϕ(x̄) = 0, D2ϕ(x̄) ≥ 0.

Let us recall that the optimal transport map T : Ω→ Ω from fε to νε is given by

T (x) = x−∇ϕ(x) for all x ∈ Ω.

From ∇ϕ(x̄) = 0 we obtain T (x̄) = x̄. Also, by the Monge–Ampère equation,

fε
m

(x̄) =
νε(T (x̄))

m(x̄)
det(∇T (x̄)) =

νε
m

(T (x̄)) det(Id−D2ϕ(x̄)).

Since by assumption νε ≤ C0m and we know D2ϕ(x̄) ≥ 0, we get

fε
m

(x̄) ≤ C0 det(Id−D2ϕ(x̄)) ≤ C0.

This proves the first part of the statement (i.e., the absolute continuity and the upper bound) for
the case of the torus, and the second part (i.e., the lower bound) is analogous (choosing a minimum
point for fε/m instead of a maximum point).

- The case where Ω is a uniformly convex, smooth and bounded domain. The difficulties arise
when x̄ ∈ ∂Ω. To perform the same analysis as above we need either to exclude this case or to
guarantee that anyway ∇ϕ(x̄) = 0.
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Step 1: upper bound. If x̄ is a minimum point for ϕ and x̄ ∈ ∂Ω, then ∇ϕ(x̄) is orthogonal to
the boundary, and ∇ϕ(x̄) · n(x̄) ≤ 0, where we recall that n(x̄) denotes the outward unit normal
vector to ∂Ω at x̄. Yet, the strict convexity of Ω and the condition T (x̄) = x̄−∇ϕ(x̄) ∈ Ω̄ impose
∇ϕ(x̄) · n(x̄) > 0, which is a contradiction. The upper bound is thus easily handled.

Step 2: lower bound. For the lower bound the situation is trickier, as the above contradiction
does not work. Yet, we can use the fact that T is a homeomorphism and that, for x̄ ∈ ∂Ω a
maximum point for ϕ, T (x̄) must be a point of ∂Ω which, by monotonicity of T , must satisfy
n(T (x̄)) ·n(x̄) ≥ 0. Indeed, setting v = n(T (x̄)), in case n(x̄) · v < 0, then we can find points x′ ∈ Ω

of the form x′ = x̄+ tv for t > 0; from T (x′) ∈ Ω \ {T (x̄)} we deduce (T (x′)− T (x̄)) · v < 0, which
contradicts the condition (T (x′)− T (x̄)) · (x′ − x̄) ≥ 0 given by the monotonicity of T .

Coming back to the point y = T (x̄), we can say that y ∈ ∂Ω, n(y) · n(x̄) ≥ 0, but also
y = x̄ − ∇ϕ(x̄). Moreover, since x̄ is a maximum point for ϕ, we have ∇ϕ(x̄) = tn(x̄) for t ≥ 0.
Using x̄ ∈ Ω we have (x̄−y)·n(y) ≤ 0, hence n(y)·∇ϕ(x̄) ≤ 0, which is a contradiction if ∇ϕ(x̄) 6= 0.
Hence in this case we cannot exclude x̄ ∈ ∂Ω, but we can guarantee that ∇ϕ(x̄) = 0. This, together
with the regularity of ϕ, allows to apply the second-order condition on ϕ as in the torus case and
conclude fε ≥ c0m.

- The case where Ω is a convex bounded domain. We now get rid of the extra assumption on Ω.
In this case the regularity theory of Caffarelli does not extend to the boundary, but the estimates can
just be obtained by approximation, replacing Ω with a sequence of domains satisfying Caffarelli’s
assumptions, and then passing to the limit. The bounds being independent on the smoothness of
the boundary and of its uniform convexity, the result stays true in general.

2.3 A priori BV estimate

We give here an a priori BV estimate which we obtain also using the discrete maximum principle
given in Lemma 2.4. For convenience, we define a BV norm weighted by m: if u ∈ BV (Ω), we set

‖u‖BV (Ω;m) :=

∫
Ω
md|∇u|,

where the right-hand side stands for the integral of the continuous function m with respect to the
scalar measure |∇u|, which is the total variation of the vector measure ∇u. Since we are always
supposing that m is bounded from above and below, this norm is bounded from above and below
by constant multiples of the standard BV norm.

Lemma 2.5. Given ν ∈M(Ω) with ν = g dx for some g ∈ L1(Ω), let µ∗ be the unique minimiser of
(2.1). Assume that c0m ≤ ν ≤ C0m for some C0, c0 > 0, so that by Lemma 2.4 we have µ∗ = f∗ dx

with c0m ≤ f∗ ≤ C0m, and that g/m ∈ BV (Ω) and D2(logm) ≤ Λ Id for some Λ ∈ R. Then there
exists a constant C1 > 0, depending on c0, C0 and on the sign of Λ, such that, if C1Λτ < 1, we have∥∥∥f∗

m

∥∥∥
BV (Ω;m)

≤ 1

1− C1Λτ

∥∥∥ g
m

∥∥∥
BV (Ω;m)

.

Proof. Again, let us assume that m is Lipschitz continuous; then a simple approximation argument
gives the result for any m. We start, as usual, by writing the optimality conditions of (2.1):

0 = ∇
(
U ′
(
f∗
m

)
+
ϕ

τ

)
= U ′′

(
f∗
m

)
∇
(
f∗
m

)
+
∇ϕ
τ

almost everywhere on Ω,
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where ϕ is the Kantorovich potential from f∗ to g. Note that the optimality conditions themselves
imply that f∗ is a Lipschitz function, which allows us to differentiate it almost everywhere. We now
write, for any vector v ∈ Rd \ {0}, v̂ := v/|v|, and set, by convention, 0̂ = 0. Since

U ′′
(
f∗
m

)
∇
(
f∗
m

)
= −∇ϕ

τ

it follows, since U is convex, and hence U ′′ ≥ 0, that we have∣∣∣∣∇(f∗m
) ∣∣∣∣ = ∇

(
f∗
m

)
·
(
−∇̂ϕ

)
.

Hence,∫
Ω
m

∣∣∣∣∇(f∗m
) ∣∣∣∣ =

∫
Ω
m∇

(
f∗
m

)
·
(
−∇̂ϕ

)
=

∫
Ω
∇f∗ ·

(
−∇̂ϕ

)
+

∫
Ω
f∗
∇m
m
· ∇̂ϕ =: I1 + I2.

By [24, Lemma 3.1] applied with H = |·| (note that one should first write the inequality below for
Hε =

√
ε2 + | · |2, ε > 0, instead of H and then pass to the limit ε → 0, which explains the choice

of the convention for 0̂; also, one should first approximate g in W 1,1(Ω) and then pass to the limit
at the very end of the proof, since otherwise the integral here below is not well-defined), we get

I1 ≤
∫

Ω
∇g · ∇̂ψ,

where ψ is the Kantorovich potential from g to f , and ∇̂ψ := ∇ψ/|∇ψ|. Also, since the optimal
map from g to f is S = id−∇ψ,

I2 =

∫
Ω

(S#g)
∇m
m
· ∇̂ϕ =

∫
Ω

(
∇m
m
◦ S
)
·
(
∇̂ϕ ◦ S

)
g.

Since ∇̂ϕ ◦ S = −∇̂ψ, this gives

I2 = −
∫

Ω

(
∇m
m
◦ S
)
· ∇̂ψ g.

Hence, ∫
Ω
m

∣∣∣∣∇(f∗m
) ∣∣∣∣ ≤ ∫

Ω

(
∇g − g∇m

m
◦ S
)
· ∇̂ψ

=

∫
Ω

(
∇g − g∇m

m

)
· ∇̂ψ +

∫
Ω
g

(
∇m
m
− ∇m

m
◦ S
)
· ∇̂ψ

≤
∫

Ω

∣∣∣∣∇g − g∇mm
∣∣∣∣+

∫
Ω
g

(
∇m
m
− ∇m

m
◦ S
)
· ∇̂ψ

=

∫
Ω
m

∣∣∣∣∇( gm)
∣∣∣∣+

∫
Ω
g

(
∇m
m
− ∇m

m
◦ S
)
· ∇̂ψ.

(2.3)

Since ∇mm = ∇ logm and D2(logm) ≤ Λ Id, then, noting that we have

y − S(y) = ∇ψ(y) = ∇̂ψ|∇ψ(y)| = ∇̂ψ|y − S(y)|,
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we also get (
∇m
m

(y)− ∇m
m
◦ S(y)

)
· ∇̂ψ ≤ Λ|y − S(y)| = Λ|∇ψ(y)|.

Thus, ∫
Ω
g

(
∇m
m
− ∇m

m
◦ S
)
· ∇̂ψ ≤ Λ

∫
Ω
|∇ψ|g.

Note that, since ∇ψ ◦ T = −∇ϕ (T being the optimal map from f∗ to g),∫
Ω
|∇ψ|g =

∫
Ω
|∇ψ|(T#f∗) =

∫
Ω

(|∇ψ| ◦ T )f∗ =

∫
Ω
|∇ϕ|f∗ = τ

∫
Ω
m
f∗
m

∣∣∣∣∇U ′(f∗m
) ∣∣∣∣.

The last term can be rewritten using

f∗
m

∣∣∣∣∇U ′(f∗m
) ∣∣∣∣ =

f∗
m
U ′′
(
f∗
m

) ∣∣∣∣∇(f∗m
) ∣∣∣∣.

Also using the fact that the function s 7→ sU ′′(s) is nonincreasing, we can go on with the estimates:
if Λ > 0, then we have∫

Ω
g

(
∇m
m
− ∇m

m
◦ S
)
· ∇̂ψ ≤ Λ

∫
Ω
|∇ψ|g ≤ Λc0U

′′(c0)τ

∫
Ω
m

∣∣∣∣∇(f∗m
) ∣∣∣∣;

if Λ < 0, then we obtain∫
Ω
g

(
∇m
m
− ∇m

m
◦ S
)
· ∇̂ψ ≤ Λ

∫
Ω
|∇ψ|g ≤ ΛC0U

′′(C0)τ

∫
Ω
m

∣∣∣∣∇(f∗m
) ∣∣∣∣.

In all cases, (2.3) yields∫
Ω
m

∣∣∣∣∇(f∗m
) ∣∣∣∣ ≤ ∫

Ω
m

∣∣∣∣∇( gm)
∣∣∣∣+ C1Λτ

∫
Ω
m

∣∣∣∣∇(f∗m
) ∣∣∣∣,

where C1 > 0 depends on c0, C0 and on the sign of Λ. This means, provided C1Λτ < 1,∫
Ω
m

∣∣∣∣∇(f∗m
) ∣∣∣∣ ≤ 1

1− C1Λτ

∫
Ω
m

∣∣∣∣∇( gm)
∣∣∣∣,

which is the desired result.

Remark 2.6. If ρ ≡ 1, then the previous result holds with Λ = 0, i.e.,∥∥∥∥(f∗m
)∥∥∥∥

BV (Ω;m)

≤
∥∥∥( g
m

)∥∥∥
BV (Ω;m)

.
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2.4 A priori H1 estimates

These estimates will be needed to prove later that the solution of the JKO gives a weak solution.
They are obtained by the flow-interchange technique [41] after proving the following result:

Lemma 2.7. Let q > 1. If D2(logm) ≤ Λ Id for some Λ > 0 and C > 0, then the functional

f 7→ G(q)[f ] :=

∫
Ω

(
f

m

)q
m

is Λ̃-geodesically convex for Λ̃ = −Λ(q − 1)
(

C
inf m

)q−1 on the set of densities f with ‖f‖L∞ ≤ C.
If D2(logm) ≤ 0 (i.e., Λ = 0), then this same functional is geodesically convex without any L∞

restriction.

Proof. First, we note that the set of densities satisfying a given L∞ upper bound is geodesically
convex in the Wassterstein space. The proof follows the same scheme as the usual one when no
spatial inhomogeneity m is present; see [43] and, for instance, [48, Chapter 7].

Given two densities f0 and f1, we know that the density fα of the Wasserstein geodesic connecting
f0 and f1 is given, for all α ∈ [0, 1] and x ∈ Ω, by

fα(x) =
f0

det(DTα)
((Tα)−1(x)), where Tα = (1− α)id + αT,

and T is the optimal transport map from f0 to f1. With the change of variable x = Tα(y) we get∫
Ω

(
fα
m

)q
m =

∫
Ω
f0(y)q exp ((1− q)(a(t, y) + b(t, y))) dy,

where, for all (α, x) ∈ [0, 1]× Ω,

a(α, y) = log(det(DTα(y))), b(α, y) = log(m(Tα(y))).

We now differentiate twice in α, and use that (exp(h(α)))′′ = exp(h(α))[(h′(α))2 + h′′(α)] ≥
exp(h(α))h′′(α) for any twice differentiable function h : [0, 1] → R. Moreover, standard results
on the concavity properties of the determinant of positive-definite matrices imply a′′ ≤ 0, and our
assumption on m implies b′′(α, y) ≤ Λ|y − T (y)|2 for all α ∈ [0, 1]. We then get

(G(q)[fα])′′ ≥ −(q − 1)Λ

∫
Ω
f0(y)q exp ((1− q)(a(α, y) + b(α, y))) |y − T (y)|2 dy.

In the case Λ = 0 we stop here and we obtain geodesic convexity of G(q). Otherwise, we go on by
rewriting the exponential and we have

(G(q)[fα])′′ ≥ −(q − 1)Λ

∫
Ω
f0(y)|y − T (y)|2

(
f0(y)

det(DTα(y))m(Tα(y))

)q−1

dy.

Assuming f0, f1 ≤ C implies fα ≤ C for all α ∈ [0, 1]. Using that f0/det(DTα) = fα ◦ Tα and
m ◦ Tα ≥ inf m we obtain

(G(q)[fα])′′ ≥ −(q − 1)Λ

(
C

inf m

)q−1 ∫
Ω
f0(y)|y − T (y)|2dy = −(q − 1)Λ

(
C

inf m

)q−1

W 2
2 (f0, f1),

which is exactly the claim.
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Lemma 2.8. Given ν ∈ M(Ω) with ν = g dx for some g ∈ L1(Ω), let µ∗ be the unique minimiser
of (2.1). Assume that ν ≤ C0m, so that by Lemma 2.4 we have µ∗ = f∗ dx with f∗ ≤ C0m. Then,
for all q > 1, we have

τc(r, q)

∫
Ω
m

∣∣∣∣∣∣∇
(
f∗
m

) q−(r+1)
2

∣∣∣∣∣∣
2

≤ G(q)[g]− G(q)[f∗] + (q − 1)Λ

(
C0 supm

inf m

)q−1

W 2
2 (f∗, g),

for a constant c(r, q) > 0.

Proof. The proof is based on the so-called flow-interchange procedure, first introduced in [41];
however, we will follow the technique described in [39]. First, we write the optimality conditions
for the minimisers of (2.1): we have, almost everywhere in Ω,

τ∇
(
U ′
(
f∗
m

))
= −∇ϕ.

We then multiply this equality by f∇(V ′(f∗/m)), for a convex function V , and integrate. This
provides

τ

∫
Ω
m
f∗
m
U ′′
(
f∗
m

)
V ′′
(
f∗
m

) ∣∣∣∣∇(f∗m
)∣∣∣∣2 = −

∫
Ω
f∗∇

(
V ′
(
f∗
m

))
· ∇ϕ.

Note that the right-hand side corresponds to the derivative, computed at time α = 0, of α 7→∫
ΩmV (fα/m), where fα is the Wasserstein geodesic from f0 = f∗ to f1 = g. Choosing V (s) = sq,
and using U(s) = s−r, this provides

τc(r, q)

∫
Ω
m

∣∣∣∣∣∇
(
f∗
m

) q−r−1
2

∣∣∣∣∣
2

=
d

ds
G(q)[fα]|α=0.

The claim is then proved by using Lemma 2.7: indeed, setting h(α) = G(q)[fα], we have h′′ ≥

−(q − 1)Λ
(
C0 supm

inf m

)q−1
and h(1) ≥ h(0) + h′(0) + 1

2 infα∈[0,1] h
′′(α), which yields the result.

Remark 2.9. If ρ ≡ 1, then we fall into the assumptions of Lemmas 2.7 and 2.8 with Λ = Λ̃ = 0.

The following lemma is a classical fact of the JKO scheme, and luckily does not use geodesic
convexity (indeed, negative power functionals are rarely geodesically convex). We state it for com-
pleteness, but the reader can see that it is possible to obtain the desired estimates of this paper
without using it.

Lemma 2.10. Given ν ∈M(Ω) with ν = g dx for some g ∈ L1(Ω), let µ∗ be the unique minimiser
of (2.1). Assume that ν ≤ C0m, so that by Lemma 2.4 we have µ∗ = f∗ dx with f∗ ≤ C0m. Then,
we have

τ
r2

(r + 1/2)2

∫
Ω
m

∣∣∣∣∣∇
(
f∗
m

)−r−1/2
∣∣∣∣∣
2

=
W 2

2 (f∗, g)

τ
≤ 2 (Fρ[g]−Fρ[f∗]) .
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Proof. The computations come again from the optimality conditions τ∇(U ′(f∗m )) = −∇ϕ. We
square and integrate with respect to f , thus obtaining

τ

∫
Ω
f

∣∣∣∣∇U ′(f∗m
)∣∣∣∣2 =

1

τ

∫
Ω
f |∇ϕ|2 =

W 2
2 (f∗, g)

τ
.

We then compute, almost everywhere in Ω,

f

∣∣∣∣∇U ′(f∗m
)∣∣∣∣2 = m

f∗
m

(r + 1)2

(
f∗
m

)−2(r+1) ∣∣∣∣∇(f∗m
)∣∣∣∣2 =

r2

(r + 1/2)2
m

∣∣∣∣∣∇
(
f∗
m

)−r−1/2
∣∣∣∣∣
2

,

and obtain the equality in the claim. In order to compare the Wasserstein distance to the functional
Fρ, it is enough to use the optimality of f∗, i.e.,

Fρ[f∗] +
W 2

2 (f, g)

2τ
≤ Fρ[g],

which gives the inequality in the claim.

3 Existence and uniqueness: proof of Theorem 1.2

3.1 Preliminary on the notion of weak solution

In order to clarify notation, let us

• define the homogeneous Sobolev space

Ḣ1(Ω) := {ϕ : Ω→ R s.t. ∇ϕ ∈ L2(Ω)}

endowed with the norm ‖∇ · ‖L2(Ω);

• write H−1 for the dual of H1 (and not of H1
0 ):

H−1(Ω) :=
(
H1(Ω)

)′
.

We want now to prove some preliminary lemmas that will be useful throughout. For the first
one, we recall our standing assumption on m as it really is crucial here.

Lemma 3.1. Assume that logm ∈W 1,p(Ω) for some p > d. If u is a weak solution of (1.3), then

∂tu ∈ L2
loc([0,∞), H−1(Ω))

and the norm of ∂tu in L2([0,∞), H−1(Ω)) only depends on the norm of logm in W 1,p(Ω) and on
the norm of u−r in L2([0,∞), Ḣ1(Ω)).

Proof. Recalling (1.3) we get:

∂tu ∈ L2
loc([0,∞), H−1(Ω)) ⇔ 1

m(x)
divx

(
m(x)∇x(u(t, x)−r)

)
∈ L2

loc([0,∞), H−1(Ω)).
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Let T > 0. By definition,∥∥∥∥ 1

m
divx

(
m∇x(u−r)

)∥∥∥∥
L2([0,T ],H−1(Ω))

= sup
ϕ∈L2([0,T ],H1(Ω))
‖ϕ‖L2([0,T ],H1(Ω))=1

∫ T

0

∫
Ω

ϕ

m
(t, x) divx

(
m(x)∇xu−r(t, x)

)
dx dt

= sup
ϕ∈L2([0,T ],H1(Ω))
‖ϕ‖L2([0,T ],H1(Ω))=1

(
−
∫ T

0

∫
Ω
∇xϕ(t, x) · ∇xu−r(t, x) dx dt

+

∫ T

0

∫
Ω
ϕ(t, x)∇x (logm(x)) · ∇x

(
u−r(t, x)

)
dx dt

)
.

For the first term, since by the definition of weak solution u−r ∈ L2([0, T ], H1(Ω)), by Hölder’s
inequality we get∣∣∣∣∫ T

0

∫
Ω
∇xϕ(t, x) · ∇xu−r(t, x)

∣∣∣∣dtdx ≤
∥∥∇xϕ∥∥L2([0,T ],L2(Ω))

∥∥∇x(u−r)
∥∥
L2([0,T ],L2(Ω))

.

Hence,

sup
ϕ∈L2([0,T ],H1(Ω))
‖ϕ‖L2([0,T ],H1(Ω))=1

∣∣∣∣∫ T

0

∫
Ω
∇xϕ(t, x) · ∇xu−r(t, x) dx dt

∣∣∣∣ <∞.
For the second term, note that, when d > 2, Sobolev’s inequality yields ϕ ∈ L2([0, T ], L2d/(d−2)(Ω))

and therefore, thanks to the assumption that logm ∈W 1,p(Ω) with p > d and to Hölder’s inequality,∣∣∣∣∫ T

0

∫
Ω
ϕ(t, x)∇(logm(x)) · ∇x(u−r(t, x)) dx dt

∣∣∣∣
≤
∥∥ϕ∇(logm)

∥∥
L2([0,T ],L2(Ω))

∥∥∇x(u−r)
∥∥
L2([0,T ],L2(Ω))

≤
∥∥∇(logm)

∥∥
Ld(Ω)

∥∥ϕ∥∥
L2([0,T ],L2d/(d−2)(Ω))

∥∥∇x(u−r)
∥∥
L2([0,T ],L2(Ω))

,

so that we conclude

sup
ϕ∈L2([0,T ],H1(Ω))
‖ϕ‖L2([0,T ],H1(Ω))=1

∣∣∣∣∫ T

0

∫
Ω
ϕ(t, x)∇(logm(x)) · ∇x

(
u−r(t, x)

)
dx dt

∣∣∣∣ <∞.
When d ≤ 2, instead of ϕ ∈ L2([0,T ],L2d/(d−2)(Ω)), Sobolev’s inequality provides ϕ ∈ L2([0,T ],Lq(Ω))

for every q <∞ and we can still conclude thanks to the assumption logm ∈W 1,p(Ω) with the strict
inequality p > d.

Lemma 3.2. Let α, β ∈ R be distinct. Assume that both uα and uβ belong to L2([0,∞), Ḣ1(Ω)).
Then uγ ∈ L2([0,∞), Ḣ1(Ω)) for all γ ∈ (α, β), and the norm of uγ can be estimated by those of uα

and uβ.
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Proof. Note that, for all η ∈ R:

uη ∈ L2([0,∞), Ḣ1(Ω)) ⇔
∫ ∞

0

∫
Ω
|∇xuη(t, x)|2 dx dt <∞

⇔
∫ ∞

0

∫
Ω
u2(η−1)(t, x)|∇xu|2 dx dt <∞.

Hence, by Hölder’s inequality, if γ ∈ (α, β) we have∫ ∞
0

∫
Ω
u2(γ−1)(t, x)|∇xu|2(t, x) dx dt

=

∫ ∞
0

∫
Ω
u

2(α−1) γ−β
α−β (t, x)|∇xu|

2(γ−β)
α−β (t, x)u

2(β−1)α−γ
α−β (t, x)|∇xu|

2(α−γ)
α−β (t, x) dx dt

≤
(∫ ∞

0

∫
Ω
u2(α−1)(t, x)|∇xu|2(t, x) dx dt

) γ−β
α−β
(∫ ∞

0

∫
Ω
u2(β−1)(t, x)|∇xu|2(t, x) dx dt

)α−γ
α−β

<∞,

which implies the result.

We will also need several times in the sequel the following stability result for weak solutions:

Lemma 3.3. Suppose that (fn)n is a sequence of solutions of (1.1) associated with a sequence of
weights (mn)n. Suppose that, for each n, fn is bounded both from above and below by positive con-
stants which are not necessarily uniform in n, and suppose that the masses Mn :=

∫
Ω fn (preserved

in time) tend to a value M > 0 as n→∞. Suppose that (logmn)n is bounded in W 1,p(Ω) (for some
p > d), that logmn → logm uniformly as n→∞ for some m with logm ∈ W 1,p(Ω), that (fn(0))n
is bounded in Lr+3(Ω), that (fn(0)−1)n is bounded in Lr(Ω), and that fn(0)

∗
⇀ f0 as n → ∞ for

some f0 ∈ Lr+3(Ω). Then the curves (t 7→ fn(t))n are equicontinuous as curves valued in W2(Ω)

and, up to a subsequence, fn(t)
∗
⇀ f(t) as n → ∞ for every t ≥ 0, where f is a weak solution of

(1.1) starting from f0 and associated with the weight m.

Proof. For each n, set un = fn/m; we can use the fact that uαn belongs to L2([0,∞), Ḣ1(Ω)) for
every α ∈ R (the definition of weak solution guaranteeing this fact for α = 1, and the upper and
lower bounds on un allowing us to use in fact any α ∈ R) together with ∂tun ∈ L2([0,∞), H−1(Ω))

(by the Sobolev behaviour of logmn; see Lemma 3.1) in order to compute, for q 6= r + 1,

d

dt
G(q;mn)[fn(t)] = −4q(q − 1)r(r + 1)

(q − r − 1)2

∫
Ω
mn|∇((un)(q−r−1)/2)|2. (3.1)

(Note that we detail a similar computation later in (4.3).)
Let us first obtain a uniform bound on the L2

loc([0,∞), H1(Ω)) norm of un and u−rn . Using
q = r + 3 in (3.1) one obtains the bound on the norm of un in L2([0,∞), Ḣ1(Ω)) in terms of
G(r+3;mn)[fn(0)], which is bounded by assumption. In order to transform this bound into a bound
in L2

loc([0,∞), H1(Ω)) we use the fact that the average of un is bounded since un > 0 and
∫

Ω unmn =∫
Ω fn = Mn. Using the Poincaré–Wirtinger inequality we also bound the L2 norm, and we get the
desired bound.
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Using q = −r in (3.1) one obtains the bound on the norm of u−(r+1/2)
n in L2([0,∞), Ḣ1(Ω)) in

terms of G(−r;mn)[fn(0)], which is also bounded. Notice that we also obtain boundedness of the Lr

norm of fn(t)−1. Then, by Lemma 3.2 we deduce that u−rn is bounded in L2([0,∞), Ḣ1(Ω)). The
bound on

∫
Ω fn(t)−r also provides a bound on the average of u−rn and, again, using the Poincaré–

Wirtinger inequality the bound becomes a bound in L2
loc([0,∞), H1(Ω)).

Each fn represents a continuous curve valued in the compact space W2(Ω). In order to prove
that these curves are equicontinous we recall the following fact from optimal transport theory (see
for instance [48, Chapter 5]): whenever a curve of positive measures (µ(t))t with fixed mass on Ω

satisfies ∂tµ+ divx(µv) = 0 (with no-flux boundary conditions), then we have∫ T

0
|µ′(t)|2 dt ≤

∫ T

0

∫
Ω
|v(t, x)|2 dµ(t) dt,

where |µ′(t)| is the metric derivative (see [1]) of µ. It is an important fact that bounds on the L2

norm of the metric derivative imply Hölder continuity, from standard Sobolev injections. In our
case, for µ = fn, using (1.1), the vector field v is given by ∇(u

−(r+1)
n ) and estimating its L2 norm

exactly amounts to the estimate of u−(r+1/2)
n in L2([0,∞), Ḣ1(Ω)).

We can therefore extract a uniformly converging subsequence (uniformly for the W2 metric).
In particular, up to a subsequence, we have a weak limit fn(t)

∗
⇀ f(t) for every t. Moreover,

the L2([0,∞), H1(Ω)) bound on un, together with the L2([0,∞), H−1(Ω)) bound on ∂tun (which
comes from Lemma 3.1 and the uniform Sobolev bound on logmn), allow us to apply the Aubin–
Lions lemma (see [2]) and obtain strong compactness on un. This means that we can assume
that we have strong and almost-everywhere convergence fn(t) → f(t) as well as un(t) → u(t) and
u−rn (t)→ u−r(t). Because of our bounds, we also have weak L2 convergence of ∇(u−rn ) to ∇(u−r).
Together with the strong L2 convergence mn → m, this allows the equation satisfied by fn to pass
to the limit, which gives the existence of a weak solution satisfying the desired bounds and with
initial datum f0 and weight m.

3.2 Existence

We first prove the existence part of the theorem. The key technical tool is the use of the JKO
scheme, as developed in Section 2: given f0 with

∫
Ω f0 = M and a time-step τ > 0, one can define

a recursive sequence via

µ
(τ)
k+1 = argmin

{
Fρ[µ] +

W 2
2 (µ, µ

(τ)
k )

2τ
, µ ∈MM (Ω)

}
, (3.2)

and we define f (τ)
k as the density of µ(τ)

k , for every k ∈ N. From the estimates in Section 2 (in
particular Lemmas 2.4, 2.5 and 2.8) we know the following facts:

• if for some k ∈ N we have c0m ≤ f (τ)
k ≤ C0m for some c0, C0, then the same inequality stays

true for f (τ)
k+1 (i.e. lower and upper bounds are preserved along the evolution);

• under the assumption that D2(logm) ≤ Λ Id for some Λ ∈ R, if for any k ∈ N we have
c0m ≤ f (τ)

k ≤ C0m and f (τ)
k /m ∈ BV (Ω), then also f (τ)

k+1/m ∈ BV (Ω) and we have

‖f (τ)
k+1/m‖BV (Ω;m) ≤

1

1− C1Λτ
‖f (τ)
k /m‖BV (Ω;m),
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for a positive constant C1 (depending on c0, C0 and on the sign of Λ); this means in particular
that BV norms do not grow “too” fast during the evolution, provided we assume L∞ bounds
on f and semiconcavity of logm;

• possibly assuming a priori L∞ bounds on f (τ)
k for every k and semiconcavity of logm, the H1

norm of quantities of the form
(
f

(τ)
k /m

)p
(for p = (q − r − 1)/2, q > 1, and p = −(r + 1/2))

can be estimated by terms which are the addends of a telescopic sum in k (allowing us to sum
them and obtain integral estimates in time).

We first prove a more restrictive existence result. Indeed, it assumes extra semiconcavity of
logm and boundedness and BV regularity of the initial datum.

Lemma 3.4. Assume D2(logm) ≤ Λ Id for some Λ ∈ R. Then, for any f0 ∈ Lr+3(Ω) with
Fρ[f0] <∞ and c0, C0 satisfying c0m ≤ f0 ≤ C0m and f0/m ∈ BV (Ω), there exists a distributional
solution of (1.1), starting from f0, obtained as the limit of the JKO scheme. Also, this solution
satisfies

f

m
∈ L2([0,∞), Ḣ1(Ω))∩L2

loc([0,∞), H1(Ω)),
( f
m

)−r
∈ L2([0,∞), Ḣ1(Ω))∩L2

loc([0,∞), H1(Ω)),

and is therefore a weak solution according to Definition 1.1.

Proof. The proof follows the scheme described in [48, Chapter 8] to prove the convergence of the JKO
iterations. Following such a scheme (see also [27], where this general procedure is presented), one
has a sequence (fk)k of densities obtained by iteratively solving the minimisation problem (3.2). For
simplicity of notation, we will often omit in this proof the dependence on τ of all our objects, until
we need to let τ → 0. For all k, one also defines a vector field vk, given by vk = (id−T )/τ = ∇ϕk/τ ,
where T is the optimal transport map from fk to fk−1 and ϕk is the corresponding Kantorovich
potential. As previously notes, the optimality conditions on fk allow us to check that we have
vk = −∇(U ′(fk/m)).

Defining Ek = fkvk, one has Ek = c(r)m∇(fk/m)−r for some c(r) > 0. With fk and Ek one
can define a piecewise constant interpolation (f (τ), E(τ)) (which of course depends on the value
of the parameter τ), satisfying E(τ) = −(r + 1)m∇(f (τ)/m)−r. It is also possible to define a
piecewise geodesic interpolation (f̂ (τ), Ê(τ)), where t 7→ f̂ (τ)(t) is continuous for the W2 distance,
f̂ (τ)(kτ) = f

(τ)
k , and f̂ (τ)(t) is given for all t ∈ [kτ, (k + 1)τ ] by a geodesic in the 2-Wasserstein

space, parameterised by constant speed, and Ê(τ) = f̂ (τ)v̂(τ), where v̂(τ) is the corresponding optimal
velocity field, so that we have ∂tf̂ (τ) + divx Ê

(τ) = 0.
It is standard from the theory of gradient flows in Wasserstein space (see [1, 49] and [48, Chapter

8]) to prove that f (τ), E(τ), f̂ (τ) and Ê(τ) admit weak limits, up to subsequences, when τ → 0, and
we call these limits f,E, f̂ and Ê, respectively. It is also standard that we have f = f̂ and E = Ê,
and ∂tf̂ + divx Ê = 0. One is only left with proving that we have E = −(r + 1)m∇(f/m)−r.

Since this is a nonlinear relation, it cannot be directly deduced by the weak convergence. How-
ever, we have f (τ)(t)

∗
⇀ f(t), hence f (τ)(t)/m

∗
⇀ f(t)/m for each t ≥ 0, and we have a uniform

BV bound provided by Lemma 2.5. This transforms the weak convergence into a strong one, and
we thus have almost-everywhere convergence. Together with the uniform bounds from above and
below (a consequence of Lemma 2.4), this provides the convergence of [f (τ)(t)/m]−r to [f(t)/m]−r
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as τ → 0 and takes care of the nonlinearity. Then we apply Lemma 2.8 to g = f
(τ)
k and f∗ = f

(τ)
k+1,

which provides, summing up over k for q > 1,

c(r, q)

∫ T

0

∫
Ω
m

∣∣∣∣∣∣∇
(
f (τ)

m

) q−(r+1)
2

∣∣∣∣∣∣
2

≤ G(q)[f0] + (q−1)Λ

(
C0 supm

inf m

)q−1∑
k

W 2
2 (f

(τ)
k , f

(τ)
k+1). (3.3)

Also, applying Lemma 2.10 to g = f
(τ)
k and f∗ = f

(τ)
k+1, and summing over k, we get∑

k

W 2
2 (f

(τ)
k , fk+1) ≤ 2τ

∑
k

(
Fρ(f (τ)

k )−Fρ(fk+1)
)
≤ 2τFρ[f0].

This yields uniform H1 bounds. In particular, we choose q = r+ 3 in (3.3) and we obtain a uniform
L2 bound, in time and space, on ∇(f (τ)/m). Using the lower and upper bounds on the ratio f (τ)/m

this also translates into a similar bound on [f (τ)(t)/m]−r and allows to pass to the limit.
Therefore, under the assumptions of this lemma, we have the existence of a weak solution with

intial datum f0. Moreover this solution satisfies

f

m
∈ L2([0,∞), Ḣ1(Ω)),

( f
m

)−r
∈ L2([0,∞), Ḣ1(Ω)),

where the first L2 norm is only bounded in terms of G(r+3)[f0] (the dependence on the constants
c0, C0 and Λ disappears in the limit τ → 0). On the other hand, the second bound depends on
c0 (since the Lipschitz constant of the function s 7→ s−r depends on the lower bounds; yet, it is
possible to obtain uniform bounds using Lemma 2.10).

We now relax the extra assumptions of Lemma 3.4 and get the existence part of Theorem 1.2.
In fact, let us restate it in a slightly more precise way:

Theorem 3.5 (Existence of weak solutions). Suppose that f0 ∈ Lr+3(Ω) with Fρ[f0] < ∞. Then
there exists a distributional solution of (1.1) starting from f0 which satisfies

f

m
∈ L2([0,∞), Ḣ1(Ω))∩L2

loc([0,∞), H1(Ω)),
( f
m

)−r
∈ L2([0,∞), Ḣ1(Ω))∩L2

loc([0,∞), H1(Ω)),

and is therefore a weak solution according to Definition 1.1. Morever, if f0 ≥ c0m for some c0 > 0,
then this solution also satisfies f(t) ≥ c0m for every t ≥ 0.

Proof. We proceed by approximation, considering a sequence of initial data (fn,0)n and a sequence
of weights (mn)n. If we suppose that the sequences (fn,0)n and (mn)n satisfy the assumptions of
Lemma 3.4, then we have a sequence of solutions (fn)n. The approximation is chosen so that for all
n the Sobolev norm and the upper and lower bounds of mn are preserved, as well as the bounds on
G(r+3)[fn,0] and Fρ[fn,0]. We then apply Lemma 3.3, since the functions fn satisfy all the required
assumptions.

The last part of the statement (i.e. preservation of the lower bounds of f/m) is a direct conse-
quence of the approximation, provided fn,0 is chosen so that fn,0 ≥ c0m for all n.
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3.3 Weighted L1 contractivity and uniqueness

We now prove the uniqueness part Theorem 1.2 by showing a contractivity result on weak solutions.
As the reader will see from the proof, this actually follows by a weighted contractivity result on the
equation satisfied by f/m. Although weighted contractivity estimates have already appeared in the
literature (see for instance [52, 9, 10]), these are completely new in the ultrafast regime setting, and
we expect both the result and the method of the proof to be useful in other circumstances.

Proposition 3.6 (L1 contractivity). Let f and g be two nonnegative weak solutions of (1.1), and
suppose that there exists a constant c0 > 0 such that g(t) ≥ c0m > 0 for all t ∈ [0,∞). Then,∫

Ω
(f(t, x)− g(t, x))+ dx ≤

∫
Ω

(f(0, x)− g(0, x))+ dx for all t ≥ 0,∫
Ω

(f(t, x)− g(t, x))− dx ≤
∫

Ω
(f(0, x)− g(0, x))− dx for all t ≥ 0,

which in particular implies L1 contractivity:∫
Ω
|f(t, x)− g(t, x)|dx ≤

∫
Ω
|f(0, x)− g(0, x)|dx for all t ≥ 0.

Proof. As often in this paper, it is convenient to use the notation u = f/m and v = g/m.
For every ε > 0, let us consider ψε : R → R to be a smooth approximation of the positive part

defined as follows: for all s ∈ R,

ψε(s) =


0 if s < −ε,

1
4ε(s+ ε)2 if − ε ≤ s ≤ ε,

s if s > ε.

We fix t ≥ 0. Using Lemma 3.1 we deduce that ∂t(u − v) ∈ L2
loc([0,∞), H−1(Ω)), which allows us

to justify the next computation:

d

dt

∫
Ω
m(x)ψε(u(t, x)− v(t, x)) dx =

∫
Ω
m(x)ψ′ε(u(t, x)− v(t, x))∂t(u− v)(t, x) dx

(1.3)
= −(r + 1)

∫
Ω

[
ψ′ε(u(t, x)− v(t, x))

]
×
[
divx(m(x)∇x(u(t, x))−r)− divx(m(x)∇x(v(t, x))−r)

]
dx.

(3.4)

Integrating by parts,

d

dt

∫
Ω
m(x)ψε(u(t, x)− v(t, x)) dx

= (r + 1)

∫
Ω
m(x)ψ′′ε (u(t, x)− v(t, x))∇x(u(t, x)− v(t, x)) ·

[
∇xu(t, x)−r −∇xv(t, x)−r

]
dx

= −r(r + 1)

∫
Ω

[
m(x)ψ′′ε (u(t, x)− v(t, x))∇x(u(t, x)− v(t, x))

]
·
[
u(t, x)−(r+1)∇xu(t, x)− v(t, x)−(r+1)∇xv(t, x)

]
dx.
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Adding and subtracting u(t, x)−(r+1)∇xv(t, x) in the square brackets above we get

d

dt

∫
Ω
m(x)ψε(u(t, x)− v(t, x)) dx

= −r(r + 1)

∫
Ω
m(x)ψ′′ε (u(t, x)− v(t, x))u(t, x)−(r+1) |∇x(u(t, x)− v(t, x))|2 dx

− r(r + 1)

∫
Ω

[
m(x)ψ′′ε (u(t, x)− v(t, x))

(
u(t, x)−(r+1) − v(t, x)−(r+1)

)]
× [∇x (u− v) (t, x) · ∇xv(t, x)] dx

=: I1 + I2.

The first term I1 is nonpositive because ψ′′ε ≥ 0. By definition of ψε we have

I2 = −r(r + 1)

∫
{|u(t,x)−v(t,x)|≤ε}

[
m(x)

2ε

(
u(t, x)−(r+1) − v(t, x)−(r+1)

)]
× [∇x (u− v) (t, x) · ∇xv(t, x)] dx.

Note that, for some Cr > 0,

|u−(r+1) − v−(r+1)| = |v
r+1 − ur+1|
ur+1vr+1

≤ Cr
|u− v|(ur + vr)

ur+1vr+1
.

Thus, for a constant C > 0 (which in the rest of the proof may change value across any line),

I2 ≤ C
∫
{|u(t,x)−v(t,x)|≤ε}

m(x)

ε

|u(t, x)− v(t, x)|(ur(t, x) + vr(t, x))

ur+1vr+1(t, x)

∣∣∇x (u− v) (t, x)
∣∣ · |∇xv(t, x)|dx

≤ C
∫
{|u(t,x)−v(t,x)|≤ε}

m(x)
ur(t, x) + vr(t, x)

ur+1vr+1(t, x)

∣∣∇x (u− v) (t, x)
∣∣ · |∇xv(t, x)| dx.

From (3.4) we therefore get

d

dt

∫
Ω
m(x)ψε(u(t, x)− v(t, x)) dx

≤ C
∫
{|u(t,x)−v(t,x)|≤ε}

m(x)
ur(t, x) + vr(t, x)

ur+1vr+1(t, x)

∣∣∇x (u− v) (t, x)
∣∣ · |∇xv(t, x)| dx.

(3.5)

We now claim that the integrand in the right-hand side above belongs to L1([0,∞)×Ω). To prove
this, recall that, by assumption, we have v ≥ c0. Since in the domain of integration in I2 we have
|u(t)−v(t)| ≤ ε, for ε small enough (for instance ε ≤ c0/4) we also have that u(t) ≥ c0/2. Therefore,
on the domain of integration in I2,

u(t)

2
≤ v(t) ≤ 2u(t). (3.6)
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Also note that, on the domain of integration (dropping the (t, x) dependences to simplify the
following computation),

m
(ur + vr)

ur+1vr+1

∣∣∇x (u− v)
∣∣ · |∇xv| ≤ m(ur + vr)

ur+1vr+1

(
|∇xu|+ |∇xv|

)
· |∇xv|

≤ 2m
(ur + vr)

ur+1vr+1

(
|∇xu|2 + |∇xv|2

)
≤ C

( ur

u2(r+1)
|∇xu|2 +

vr

v2(r+1)
|∇xv|2

)
m

= C
( 1

ur+2
|∇xu|2 +

1

vr+2
|∇xv|2

)
m

= C
(
|∇xu−r/2|2 + |∇xv−r/2|2

)
m,

where the last inequality follows from (3.6). By the definition of weak solutions, we have that
u, v, u−r, v−r ∈ L2([0,∞), Ḣ1(Ω)), so that u−r/2, v−r/2 ∈ L2([0,∞), Ḣ1(Ω)) by Lemma 3.2. This
proves that

m
(ur + vr)

ur+1vr+1

∣∣∇x (u− v)
∣∣ · |∇xv| ∈ L1([0,∞)× Ω). (3.7)

We now integrate in time the differential inequality (3.5): given T > 0, we have∫
Ω
m(x)ψε(u(T, x)− v(T, x)) dx ≤

∫
Ω
m(x)ψε(u(0, x)− v(0, x)) dx

+ C

∫ T

0

∫
{|u(t,x)−v(t,x)|≤ε}

m(x)
(ur(t, x) + vr(t, x))

ur+1vr+1(t, x)

∣∣∇x (u− v) (t, x)
∥∥∇xv(t, x)|dx dt,

and, by dominated convergence (thanks to (3.7)), in the limit ε→ 0 we obtain the following:∫
Ω
m(x)(u(T, x)− v(T, x))+ dx ≤

∫
Ω
m(x)(u(0, x)− v(0, x))+ dx

+ C

∫ T

0

∫
{u(t,x)=v(t,x)}

m(x)
(ur + vr)

ur+1vr+1

∣∣∇x (u− v) (t, x)
∣∣|∇xv(t, x)|dx dt.

Since on the region {u(t, x) = v(t, x)} we have that ∇xu(t, x) = ∇xv(t, x) for almost every x (see
for instance [28, Theorem 4, Chapter 4.2.2]), we get that∫

Ω
m(x)(u(t, x)− v(t, x))+ dx ≤

∫
Ω
m(x)(u(0, x)− v(0, x))+ dx for all t > 0.

Recalling that u = f/m and v = g/m, this proves the first part of the statement.
Repeating the proof, this time with ψε a smooth approximation of the negative part, we obtain∫

Ω
m(x)(u(t, x)− v(t, x))− dx ≤

∫
Ω
m(x)(u(0, x)− v(0, x))− dx for all t > 0,

concluding the proof.

Let us now restate the uniqueness part of Theorem 1.2 (which implicitly requires the usual
standing assumption on m):
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Theorem 3.7 (Uniqueness of weak solutions). Given f0 ∈ Lr+3(Ω) with Fρ[f0] < ∞, there exists
at most one weak solution of (1.1) starting from f0.

Proof. Suppose that f is a weak solution starting from f0, and write u = f/m. Set u0 = f0/m,
consider uε0 = max{u0, ε}, and let vε be the solution constructed in Theorem 3.5 starting from uε0
for all ε > 0. Note that we have vε ≥ ε > 0. By Proposition 3.6 we deduce that∫

Ω
|u(t, x)− vε(t, x)| dx ≤

∫
Ω
|u0(x)− vε(0, x)|dx =

∫
Ω
|u0(x)− uε0(x)|dx ≤ Cε for all t ≥ 0,

for some time-independent constant C > 0. Letting ε→ 0, we get∫
Ω
|u(t, x)− v(t, x)|dx ≤ 0 for all t ≥ 0,

where v is an arbitrary limit of (vε)ε. Hence u(t) must coincide with v(t) and therefore, since u
(resp. f) can be any weak solution starting from u0 (resp. f0), we obtain uniqueness.

We conclude this section by showing some easy and useful corollaries. First, we give a continuous
maximum principle which is a corollary of Proposition 3.6. Remark 3.9 below also shows that, in
fact, this continuous principle can be seen as a corollary of the discrete maximum principle (Lemma
2.4) and Theorem 3.7.

Corollary 3.8 (Continuous maximum principle). Let f be a weak solution of (1.1) starting from
some initial datum f0 such that f0 ≤ C0m (resp. f0 ≥ c0m). Then f(t) ≤ C0m (resp. f(t) ≥ c0m)
for all t ≥ 0.

Proof. Assume for instance that f0 ≤ C0m (the case f0 ≥ c0m being analogous). Then we apply
Proposition 3.6 to f(t) and g(t) = C0m to deduce that∫

Ω
(f(t, x)− C0m(x))+ dx ≤

∫
Ω

(f(0, x)− C0m(x))+ dx = 0 for all t ≥ 0.

Thus, for all t ≥ 0 we get f(t) ≤ C0m, as desired.

Remark 3.9. The above corollary can be also proved by noticing that, thanks to the discrete maxi-
mum principle, it holds for all solutions obtained as limit of the JKO scheme. Since by uniqueness
all solutions can be obtained in this way, the result follows.

Finally, we give a useful remark, which is now straightforward, about the continuous dependence
of the unique weak solution in terms of the initial data.

Corollary 3.10 (Stability with respect to the initial data). Suppose that (fn,0)n is a sequence of
initial data bounded in Lr+3(Ω) with Fρ[f0,n] < ∞ for all n, and such that the sequence (f−1

n,0)n is
bounded in Lr(Ω). Suppose that for each n the function fn,0 is bounded (not necessarily uniformly
in n) from above and from below by positive constants. Suppose fn,0

∗
⇀ f0 as n → ∞. Then, the

unique weak solution fn associated with the initial datum fn,0 converges (weakly for every time, and
weakly in L2([0, T ], H1(Ω)) for every T ) as n→∞ to the unique weak solution associated with the
initial datum f0.

Proof. This is a consequence of Lemma 3.3 and of the uniqueness result of Theorem 3.7. Note that
there is no need to extract a subsequence because of the uniqueness.
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4 Harnack inequalities: proof of Theorem 1.3

In [36] the author proves exponential convergence to equilibrium for initial data that are bounded
away from zero and infinity (although the result there is stated only for d = 1, the proof works
without modification in any dimension). Exponential convergence results will be the object of
Section 5 and will be based on the preliminary proof of the fact that, instantaneously, solutions
become bounded from above and below. The following proposition, along with the continuous
maximum principle stated in Corollary 3.8, gives the proof of Theorem 1.3. Note that the hypotheses
on f0 as stated in Theorem 1.3 are equivalent to those as stated in Proposition 4.1 below.

Proposition 4.1 (Instantaneous regularisation; Harnack inequalities). Let T ∈ (0, 1] and assume
logm ∈ W 1,p(Ω) for some p > d. Let f0 ∈ Lr+3(Ω) with Fρ[f0] < ∞, and let f be a weak solution
of (1.1) starting from f0. Let us write σ = r + 1. Assume that there exists q > σmax

(
1, d2
)
such

that f0, f
−1
0 ∈ Lq(Ω). Then there are constants C1, C−1 > 0, independent of T , such that

‖f(3T )‖L∞(Ω) ≤
C1

Tα
‖f0‖βLq(Ω), (4.1)

‖f(3T )−1‖L∞(Ω) ≤
C−1

Tα(1+2ασ)
‖f−1

0 ‖
β
Lq(Ω)‖f0‖2ασβLq(Ω), (4.2)

where α = A∞B∞ and β = B∞ are given by

A∞ :=
∞∑
i=1

1

q̄i
, B∞ :=

∞∏
i=0

qi
q̄i
.

Here, for all i ∈ N ∪ {0}, qi = θiq − θσ θi−1
θ−1 , θ = d

d−2 , and q̄i = qi − σ.

Proof. It is convenient to prove the regularisation result in terms of u := f/m and then, at the
end, rewrite the result in terms of f . We also write u0 := u(0) = f0/m. We proceed as follows: we
first obtain two inequalities, one for the gradient of u and the other for u (see (4.4) and (4.5)); we
then show the result (4.1) for f using a Moser iteration; we finally prove (4.2) for f−1 in a similar
way, using in fact the result for f . All our estimates have to be considered as a priori estimates:
in order to perform the computations, in particular the derivations of certain integrals in time, we
need Sobolev bounds on powers of u; therefore, we can start by supposing that our initial datum
is bounded from above and below, which implies, thanks to Corollary 3.8, that the same bounds
propagate to every time t and the regularity u ∈ L2

loc([0,∞), H1(Ω)) implies the same regularity for
all powers of u. Then, we note that the estimates we obtain do not depend on the bounds on the
initial datum, and we therefore use Corollary 3.10 to deduce by approximation the same estimates
for general initial data. We will not make this procedure explicit in this proof.

Step 1: inequalities for u and its gradient. Let ν ∈ {−1, 1}. We differentiate the weighted Lq

norm of uν (in a similar computation as that to obtain (3.1)), and then use the equation for u and
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an integration by parts to obtain, for all t ∈ [0, T ],

d

dt

∫
Ω
u(t, x)νqm(x) dx = νq

∫
Ω
u(t, x)νq−1∂tu(t, x)m(x) dx

= −νqσ
∫

Ω
u(t, x)νq−1 divx

(
m(x)∇x

(
u(t, x)−r

))
dx

= νqσ

∫
Ω
m(x)∇x

(
u(t, x)νq−1

)
· ∇x

(
u(t, x)−r

)
dx

= −νq (νq − 1) rσ

∫
Ω
m(x) |∇x (u(t, x)ν)|2 u(t, x)ν(q−2)−σ dx ≤ 0.

(4.3)

If we define Cν(q) > 0 such that

Cν(q)2 =
4 νq (νq − 1) r σ

(q − σ)2
,

and we notice that

|∇x (u(t, x)ν)|2 u(t, x)ν(q−2)−σ =
1

η2

∣∣∇x(u(t, x)νη
)∣∣2 u(t, x)(ν−1)σ, η :=

q − σ
2

,

where η > 0 thanks to the condition q > σ, we obtain

d

dt

∫
Ω
m(x)u(t, x)νq dx = −Cν(q)2

∫
Ω
m(x)

∣∣∇x(u(t, x)νη
)∣∣2 u(t, x)(ν−1)σ dx.

Set t0 := T . Integrating the previous expression between t0 and t0 + T and dividing by T we have

Cν(q)2

t0

∫ t0+T

t0

∫
Ω
m(x)

∣∣∇x(u(t, x)νη
)∣∣2 u(t, x)(ν−1)σ dx dt ≤ 1

T

∫
Ω
m(x)u(t0, x)νq dx.

Thus, there exists t̄ ∈ (t0, t0 + T ) such that∫
Ω

∣∣∇x(u(t̄, x)νη
)∣∣2 u(t̄, x)(ν−1)σ dx ≤ 1

λCν(q)2 T

∫
Ω
m(x)u(t0, x)νq dx

≤ 1

λ2Cν(q)2 T

∫
Ω
u(t0, x)νq dx,

(4.4)

using λ ≤ m ≤ 1/λ; see the Sobolev standing assumption on m. Note that since the weighted Lq

norm of uν is nonincreasing in time (see (4.3)), we know u(t0)ν ∈ Lq(Ω). Furthermore, following the
same computation as in (4.3) replacing q by 2η, the weighted L2η norm of uν is as well nonincreasing,
and therefore, because again λ ≤ m ≤ 1/λ,∫

Ω
u(t̄, x)2νη dx ≤ 1

λ

∫
Ω
u(t̄, x)2νηm(x) dx ≤ 1

λ

∫
Ω
u(t0, x)2νηm(x) dx ≤ 1

λ2

∫
Ω
u(t0, x)2νη dx.

Since 2η < q, by Hölder’s inequality we obtain∫
Ω
u(t0, x)2νη dx ≤ |Ω|1−

2η
q

(∫
Ω
u(t0, x)νq dx

)2η/q

,
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which finally gives ∫
Ω
u(t̄, x)2νη dx ≤ |Ω|

σ
q

λ2

(∫
Ω
u(t0, x)νq dx

)2η/q

. (4.5)

Step 2: proof of (4.1) (ν = 1). Since u(t0) ∈ Lq(Ω), (4.4) and (4.5) imply that u(t̄)η ∈ H1(Ω).
Thus, by Sobolev’s inequality, when d ≥ 3 we obtain(∫

Ω
u(t̄, x)2∗η dx

)1/2∗

≤ CS

((∫
Ω
u(t̄, x)2η dx

)1/2

+

(∫
Ω

∣∣∇x(u(t̄, x)η
)∣∣2 dx

)1/2
)
,

where CS > 0 is the Sobolev constant (depending on Ω) and 2∗ := 2d/(d − 2). When d ∈ {1, 2}
the same inequality holds by replacing 2∗ with any number larger than two3. Because this does not
change any argument given in the rest of the proof, for simplicity and without loss of generality we
assume d ≥ 3. Using (4.4) and (4.5) with ν = 1 and λ ≤ m ≤ 1/λ,(∫

Ω
u(t̄, x)2∗η dx

)1/2∗

≤ CS

λ

(
|Ω|

σ
2q

(∫
Ω
u(t0, x)q dx

)η/q
+

1

C1(q)
√
T

(∫
Ω
u(t0, x)q dx

)1/2
)
.

Recalling that m ≤ 1/λ, we get

‖u(t0)‖qLq(Ω) ≥ |Ω|
1−q‖u(t0)‖q

L1(Ω)
= |Ω|1−q

(∫
Ω

f(t0, x)

m(x)
dx

)q
≥ |Ω|1−q(λM)q, (4.6)

and so |Ω|
q−1

(λM)q

∫
Ω u(t0, x)q dx ≥ 1. Therefore, since η/q < 1/2,

(∫
Ω
u(t0, x)q dx

)η/q
= |Ω|

(1−q)η
q (λM)η

(
|Ω|q−1

(λM)q

∫
Ω
u(t0, x)q dx

)η/q
≤ |Ω|

(1−q)η
q (λM)η

(
|Ω|q−1

(λM)q

∫
Ω
u(t0, x)q dx

)1/2

= |Ω|(1−q)
(
η
q
− 1

2

)
(λM)η−

q
2

(∫
Ω
u(t0, x)q dx

)1/2

.

Hence, all in all,(∫
Ω
u(t̄, x)2∗η dx

)1/2∗

≤ CS

λ

(
|Ω|

σ
2

(λM)
σ
2

(∫
Ω
u(t0, x)q dx

)1/2

+
1

C1(q)
√
T

(∫
Ω
u(t0, x)q dx

)1/2
)
.

Using that T ≤ 1 then gives(∫
Ω
u(t̄, x)2∗η dx

)1/2∗

≤ C̃1(q)√
T

(∫
Ω
u(t0, x)q dx

)1/2

, (4.7)

3For the one-dimensional case it is actually even easier, since we can see that the H1 estimate obtained so far is
itself enough to provide L∞ bounds.
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where

C̃1(q) =
CS

λ

(
|Ω|

σ
2

(λM)
σ
2

+
1

C1(q)

)
> 0.

Note that C̃1(p)→ CS
λ

(
|Ω|

σ
2

(λM)
σ
2

+ 1
2
√
rσ

)
as p→∞.

We now want to initialise a Moser interative scheme. To this end, let us define η0 = η, q0 = q,
q1 = 2∗η0, and t1 = t̄. With this notation, (4.7) yields(∫

Ω
u(t1, x)q1 dx

)η0/q1

≤ C̃1(q0)√
T

(∫
Ω
u(t0, x)q0 dx

)1/2

,

or equivalently

‖u(t1)‖η0

Lq1 (Ω) ≤
C̃1(q0)√

T
‖u(t0)‖

q0
2

Lq0 (Ω).

Observe that q1 > q0 thanks to the assumption that q0 >
σd
2 . We can now repeat the argument

above starting from t1 in place of t0, q1 in place of q0, T/2 in place of T , and we find a time
t2 ∈ (t1, t1 + T/2) such that

‖u(t2)‖η1

Lq2 (Ω) ≤
21/2C̃1(q1)√

T
‖u(t1)‖

q1
2

Lq1 (Ω), η1 =
q1 − σ

2
, q2 = 2∗η1.

Iterating k ∈ N times, we find

tk ∈
(
tk−1, tk−1 +

T

2k−1

)
such that

‖u(tk)‖
ηk−1

Lqk (Ω) ≤
2(k−1)/2C̃1(qk−1)√

T
‖u(tk−1)‖

qk−1
2

Lqk−1 (Ω)
, ηk−1 =

qk−1 − σ
2

, (4.8)

where

qk = 2∗ηk−1 =
2d

d− 2

qk−1 − σ
2

= θkq0 − σ[θk + θk−1 + · · ·+ θ] = θkq0 − θσ
θk − 1

θ − 1
,

with θ := d
d−2 > 1. Note that, since q0 >

σ
θ−1 (because q0 >

σd
2 ), qk grows exponentially fast to

infinity as k →∞. By equation (4.8), for all k ∈ N we have that

‖u(tk)‖Lqk (Ω) ≤

(
2(k−1)/2C̃1(qk−1)√

T

) 2
q̄k−1

‖u(tk−1)‖
qk−1
q̄k−1

Lqk−1 (Ω)

≤
k−1∏
i=0

(
2i/2C̃1(qi)√

T

) 2
q̄i

∏k−1
j=i+1

qj
q̄j

‖u(t0)‖
∏k−1
i=0

qi
q̄i

Lq0 (Ω) ,
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where q̄k := qk − σ and where, by convention,
∏k−1
j=i+1

qj
q̄j

= 1 if k ≤ i + 1. Letting k → ∞, by the
exponential growth of (qk)k we find a time t∞ ∈ (t0, 2T ) such that

‖u(t∞)‖L∞(Ω) ≤ lim
k→∞

(k−1∏
i=0

(
2i/2C̃1(qi)√

T

) 2
q̄i

∏k−1
j=i+1

qj
q̄j
)
‖u(t0)‖

∏∞
i=0

qi
q̄i

Lq0 (Ω)

≤ lim
k→∞

k−1∏
i=0

(
2i/2C̃1(qi)√

T

) 2
q̄i

∏∞
j=0

qj
q̄j

‖u(t0)‖
∏∞
i=0

qi
q̄i

Lq0 (Ω)

=

(∏∞
i=0[2i/2C̃1(qi)]

2
q̄i∏∞

i=0 T
1/q̄i

)∏∞
j=0

qj
q̄j

‖u(t0)‖
∏∞
i=0

qi
q̄i

Lq0 (Ω)

=

(
C1,∞
TA∞

)B∞
‖u(t0)‖B∞Lq0 (Ω),

where

A∞ :=

∞∑
i=1

1

q̄i
, B∞ :=

∞∏
i=0

qi
q̄i
, C1,∞ :=

∞∏
i=0

(
2i/2C̃1(qi)

) 2
q̄i > 0,

are finite constants since there exist constants c, C > 0 such that, for all i ∈ N, q̄i ≥ c θi and
qi
q̄i
≤ 1 + Cθ−i. Recalling the computation in (4.3), we know that the Lq0 and L∞ norms of u are

nonincreasing in time, and we thus conclude that

‖u(3T )‖L∞(Ω) ≤ ‖u(t∞)‖L∞(Ω) ≤
CB∞1,∞
TA∞B∞

‖u(t0)‖B∞Lq0 (Ω) ≤
CB∞1,∞
TA∞B∞

‖u0‖B∞Lq0 (Ω),

that is, with the notation given in the statement of the theorem,

‖u(3T )‖L∞(Ω) ≤
Cβ1,∞
Tα
‖u0‖βLq(Ω), (4.9)

Since f(3T ) ≤ u(3T )/λ and u0 ≤ f0/λ, we recover (4.1) and C1 = Cβ1,∞/λ
1+β .

Step 3: proof of (4.2) (ν = −1). We proceed very similarly as in the case ν = 1 (Step 2),
although in fact we use the result for ν = 1 as follows. By (4.9) and the arbitrariness of T , we know
that for every t ∈ [t̄, 3T ],

u(t) ≤
Cβ1,∞
(t̄/3)α

‖u0‖βLq(Ω) ≤
Cβ1,∞

(T/3)α
‖u0‖βLq(Ω),

since t̄ ≥ T . Hence, with ν = −1,

u(t̄)(ν−1)σ = u(t̄)−2σ ≥

(
Cβ1,∞

(T/3)α
‖u0‖βLq(Ω)

)−2σ

:= Ĉ2‖u0‖−2βσ
Lq(Ω)T

2ασ,

where Ĉ = 9ασC−βσ1,∞ . Therefore, coming back to (4.4) with ν = −1 yields

Ĉ2‖u0‖−2σβ
Lq(Ω)T

2ασ

∫
Ω

∣∣∇x(u(t̄, x)−η
)∣∣2 dx ≤ 1

λ2C−1(q)2 T

∫
Ω
u0(x)−q dx, (4.10)
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Because u−1
0 ∈ Lq(Ω), (4.10) and (4.5) imply that u(t̄)−η ∈ H1(Ω). Then, proceeding analogously

as in Step 2, we get to(∫
Ω
u(t̄, x)2∗η dx

)1/2∗

≤ C̃−1(q)

‖u0‖−σβLq(Ω)T
ασ
√
T

(∫
Ω
u0(x)q dx

)1/2

, (4.11)

where

C̃−1(q) =
CS

λ

(
|Ω|−

σ
2

(λ/M)
σ
2

+
1

ĈC−1(q)

)
> 0.

In fact, in order to get to (4.11), the only main difference with respect to Step 1 is the treatment of
(4.6): we use Jensen’s inequality to yield

‖u(t0)−1‖qLq(Ω) ≥ |Ω|
1−q‖u(t0)−1‖q

L1(Ω)
= |Ω|1−q

(∫
Ω

(
f(t0, x)

m(x)

)−1

dx

)q

≥ |Ω|1+q

(∫
Ω

f(t0, x)

m(x)
dx

)−q
≥ |Ω|1+q(λ/M)q.

Note that C̃−1(p)→ CS
λ

(
|Ω|−

σ
2

(λ/M)
σ
2

+ 1
2Ĉ
√
rσ

)
as p→∞.

To initialise the iterative scheme we use the same notation as in the case ν = 1; we get

‖u(t1)−1‖η0

Lq1 (Ω) ≤
C̃−1(q0)

‖u(t0)‖−σβLq(Ω)T
ασ
√
T
‖u(t0)−1‖

q0
2

Lq0 (Ω).

We then follow the same strategy as in the case ν = 1. After k ∈ N iterations we obtain

‖u(tk)
−1‖Lqk (Ω) ≤

k−1∏
i=0

 2i/2C̃−1(qi)

‖u0‖−σβLq(Ω)T
ασ
√
T

 2
q̄i

∏k−1
j=i+1

qj
q̄j

‖u(t0)−1‖
∏k−1
i=0

qi
q̄i

Lq0 (Ω) .

Letting k →∞, because of the exponential growth of (qk)k we find t∞ ∈ (0, 3T ) so that

‖u(t∞)−1‖L∞(Ω) ≤

 C−1,∞(
‖u0‖−2σβ

Lq(Ω)T
1+2ασ

)A∞

B∞

‖u(t0)−1‖B∞Lq0 (Ω),

where A∞ and B∞ are as previously and

C−1,∞ :=

∞∏
i=0

(
2i/2C̃−1(qi)

) 2
q̄i > 0,

is a finite constant. By (4.3) we deduce that the Lq0 and L∞ norms of u−1 is nonincreasing, and
we thus conclude that

‖u(3T )−1‖L∞(Ω) ≤ ‖u(t∞)−1‖L∞(Ω) ≤
CB∞−1,∞(

‖u0‖−2σβ
Lq(Ω)T

1+2ασ
)A∞B∞ ‖u(t0)−1‖B∞Lq0 (Ω)

≤
CB∞−1,∞(

‖u0‖−2σβ
Lq(Ω)T

1+2ασ
)A∞B∞ ‖u−1

0 ‖
B∞
Lq0 (Ω),
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that is, with the notation given in the statement of the theorem,

‖u(3T )−1‖L∞(Ω) ≤
Cβ−1,∞

Tα(1+2ασ)
‖u0‖2ασβLq(Ω)‖u

−1
0 ‖

β
Lq(Ω).

Since it holds that u(3T ) ≤ f(3T )/λ, f0 ≤ u0/λ and u0 ≤ f0/λ, we finally recover (4.2) and
C−1 = Cβ−1,∞/λ

1+(1+2ασ)β , which ends the proof.

Remark 4.2. The proof of Proposition 4.1 has been completely approached via the continuous-
time study of the equation. In fact, it is also possible to obtain similar estimates also via the JKO
iterations, using the flow-interchange technique (as for the H1 estimates already presented in Section
2.4). Yet, there are some drawbacks to the flow-interchange approach: it requires geodesic convexity
of the functional, which means that it can only be used for positive powers (negative powers are
only geodesically convex in dimension 1) and that it would be suitable to suppose that logm be
concave; also, it does not allow to iterate infinitely many times, which finally provides estimates
on the norms ‖u‖Lp(τ) for an expression p(τ) with limτ→0 p(τ) = +∞. We decided to avoid this
computation, because of its limited interest.

5 Long-time behaviour: proof of Theorem 1.4

Thanks to the regularisation result of Section 4, we can now prove the first long-time convergence
statement of Theorem 1.4 (i.e., the L2 convergence), which we restate below:

Theorem 5.1 (Exponential convergence to equilibrium). Suppose that f0 satisfies all the assump-
tions of Proposition 4.1 and that f is a weak solution of (1.1) starting from f0. Then there exist
constants C, c > 0, independent of time, such that for all t ≥ 0 we have

‖f(t)−Mγm‖L2(Ω) ≤ Ce−ct.

Proof. By the computation in (4.3) we know that f(t) ∈ L2(Ω) for all t ≥ 0, and, because m is
bounded on a bounded domain, we also have m ∈ L2(Ω). This implies that for any c > 0 and any
t0 > 0 there exists a constant c1 > 0 such that

‖f(t)−Mγm‖L2(Ω) ≤ c1e
−t for all t ∈ [0, t0].

By the instantaneous regularisation proved in Proposition 4.1, together with the maximum principle
given in Corollary 3.8, it follows that there exist constants c0, C0 > 0 such that, for all t > t0,

c0m ≤ f(t) ≤ C0m.

This allows us to apply the very same argument as in [36, Section 3] to obtain that there exist
constants c2, c3 > 0 so that

‖f(t)−Mγm‖L2(Ω) ≤ c2e
−c3t for all t > t0.

By choosing C = max(c1, c2) and c = min(1, c3) we get the desired result.
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Remark 5.2. If ρ ≡ 1, then the convergence estimate in the above theorem reads∥∥∥∥f(t)− M

|Ω|

∥∥∥∥
L2(Ω)

≤ Ce−ct for all t ≥ 0.

We now go on studying long-time BV estimates thanks to Lemma 2.5. For convenience, we recall
the definition of the BV norm weighted by m: if u ∈ BV (Ω), we set ‖u‖BV (Ω;m) :=

∫
Ωm d|∇u|.

First, we establish the following estimate.

Lemma 5.3. Suppose D2(logm) ≤ Λ Id. Suppose that f0 satisfies all the assumptions of Proposition
4.1 and that f is a weak solution of (1.1) starting from f0. Then, for all t > 0 we have f(t)/m ∈
BV (Ω) and for every t0 > 0 there exists a constant C2 > 0 such that for t1 > t0 we have

‖f(t1)‖BV (Ω;m) ≤ e
C2Λ(t1−t0) ‖f(t0)‖BV (Ω;m) .

Proof. Using k iterated times the bound in Lemma 2.5 (as it can be understood from the beginning
of Section 3.2), we get, for τ > 0,∥∥∥∥∥f

(τ)
k

m

∥∥∥∥∥
BV (Ω;m)

≤
(

1

1− C1Λτ

)k ∥∥∥∥f0

m

∥∥∥∥
BV (Ω;m)

,

where C1 is as in Lemma 2.5. For the limit of the JKO scheme, this implies that for some C2 > 0

we get, for all t ≥ 0,
‖f(t)‖BV (Ω;m) ≤ eC2Λt‖f0‖BV (Ω;m),

as soon as f0 ∈ BV (Ω) and c0m ≤ f0 ≤ C0m (use Lemma 3.4). This can be translated into the
desired bound ‖f(t1)‖BV (Ω;m) ≤ eC2Λ(t1−t0)‖f(t0)‖BV (Ω;m) for any t0 > 0 and t1 > t0, as soon
as f(t0) is in BV (Ω) and is bounded from below and above. (We need to restart a JKO scheme
from f(t0), which the uniqueness allows us to do.) Yet, the L2 integrability of the H1 norm of
u = f/m implies that u(t) is in H1(Ω), and hence in BV (Ω), for almost every positive time t, and
the instantaneous regularisation given by Theorem 1.3 provides the lower and upper bounds, which
finally gives the desired result.

We finally show the second long-time convergence statement of Theorem 1.4 (i.e., the BV
convergence), which we restate below:

Theorem 5.4. Suppose D2(logm) ≤ Λ Id. Suppose that f0 satisfies all the assumptions of Propo-
sition 4.1 and that f is a weak solution of (1.1) starting from f0. Then, there are constants C, c > 0

such that, for t large enough, setting u = f/m, we have

‖u(t)‖BV (Ω) ≤ Ce−ct,

which implies ‖f −Mγm‖BV (Ω) ≤ Ce−ct, possibly for a different constant C.

Proof. In case Λ < 0, the result is just a simple consequence of Lemma 5.3. For Λ ≥ 0, consider
the function h(t) = ‖f(t)‖2BV (Ω;m) for all t ≥ 0. From Lemma 5.3, for t ≥ 1 we infer that for some
C > 0 it holds that

h(t) ≤ C
∫ t

t−1
h(s) ds.
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Moreover,
∫∞

1 h(s) ds <∞ since the BV norm can be bounded with the H1 norm. From

h(t) ≤ C
∫ ∞
t−1

h(s) ds, t ≥ 1,

we obtain limt→∞ h(t) = 0. Improving this from (3.1) (or (3.3)) and comparing the BV norm to
the H1 norm, we have

h(t) ≤ C
(
G(r+3)[f(t− 1)]− inf

{
G(r+3)[µ] : µ ∈MM

})
.

Jensen’s inequality together with the convexity of the power r + 3 provides

inf
{
G(r+3)[µ] : µ ∈MM

}
= G(r+3)[Mγm] = M r+3γr+2.

Since for large t the function f(t) is bounded, we can use the Taylor expansion

ur+3 ≤ (Mγ)r+3 + (r + 3)(Mγ)r+2(u−Mγ) + C|u−Mγ|2

and apply it to u = f/m. Since Mγ
∫

Ωm = M =
∫

Ω f =
∫

Ω um we have
∫

Ω(u−Mγ)m = 0, hence

G(r+3)[f ]− G(r+3)[Mγm] ≤ C
∫

Ω
|f −Mγm|2.

The L2 exponential convergence result presented in Theorem 5.1 allows to conclude.

Remark 5.5. Because of the L∞ bounds from above and from below, the long-time L2 convergence
easily implies Lp convergence for every p ≥ 1, and this convergence is still exponential. On the
other hand, getting uniform convergence is a delicate matter: in dimension one it is trivial when
BV convergence is guaranteed, in higher dimension it is not.
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