RELAXATION OF p-GROWTH INTEGRAL FUNCTIONALS UNDER
SPACE-DEPENDENT DIFFERENTIAL CONSTRAINTS

ELISA DAVOLI AND IRENE FONSECA

ABSTRACT. A representation formula for the relaxation of integral energies

(u,v) — /Q flz,u(x),v(x))dx,

is obtained, where f satisfies p-growth assumptions, 1 < p < +oo, and the fields v are
subjected to space-dependent first order linear differential constraints in the framework of
o/ -quasiconvexity with variable coefficients.

1. INTRODUCTION

The analysis of constrained relaxation problems is a central question in materials science. Many ap-
plications in continuum mechanics and, in particular, in magnetoelasticity, rely on the characterization
of minimizers of non-convex multiple integrals of the type

k
U /Qf(z:,u(:r)7 Vu(z),..., Viu(x)) de
(u,v)H/ﬂf(xm(m),v(x))dm, (1.1)

where  is an open, bounded subset of RY, u : Q@ — R™, m € N, and the fields v : Q — R%, d € N,
satisfy partial differential constraints of the type “o/v = 0” other than curlv = 0 (see e.g. [5, 9]).

In this paper we provide a representation formula for the relaxation of non-convex integral energies
of the form (1.1), in the case in which the energy density f satisfies p-growth assumptions, and the
fields v are subjected to linear first-order space-dependent differential constraints.

The natural framework to study this family of relaxation problems is within the theory of .o7-
quasiconvexity with variable coefficients. In order to present this notion, we need to introduce some
notation.

Fori=1--- N, let A" € C°(RN;M*>*?) 0 WEo(RN; M™*?) let 1 < p < +00, and consider the
differential operator

o LP(Q;RY) - WLP(Q;RY), d,l €N,
defined as
o i 90(@)
A = ;A (z) B, (1.2)

for every v € LP(€; R?), where (1.2) is to be interpreted in the sense of distributions. Assume that the
symbol A : RN x RY — M!xd,

N
Az, w) = ZA’(x)wZ for (z,w) € RN x RV,

i=1
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satisfies the uniform constant rank condition (see [22])
rank A(z,w) =r for every z € RN¥and w € S"~1. (1.3)
Let @ be the unit cube in RN with sides parallel to the coordinate axis, i.e.,
11
@:=(-33)

Denote by C22 (RY;R™) the set of R™-valued smooth maps that are Q-periodic in RY and for every

per
x € Q consider the set

N
i Ow(y)
o 0 N.pm) . _ i _
¢, = {we O, ®V:B™) /Qw(y) dy =0, and ;A @52 - 0}.
Let f: QxR™ xR? — [0, +00) be a Carathéodory function. The &7 —quasiconvex envelope of f(x,u, )
for x € Q and u € R™ is defined for £ € R¢ as

Qo) =int { [ fou &t wt)dy: wee.)

We say that f is &/ —quasiconvex if f(z,u, &) = Qu(2)f(z,u,§) for a.e. 2 € Q, and for all u € R™ and
£ e R,

The notion of o7/-quasiconvexity was first introduced by B. Dacorogna in [8], and extensively char-
acterized in [17] by I. Fonseca and S. Miiller for operators &7 defined as in (1.2), satisfying the constant
rank condition (1.3), and having constant coefficients,

Al(x) = A e M>*? for every z ¢ RV, i=1,...,N.

In that paper the authors proved (see [17, Theorems 3.6 and 3.7 ]) that under p-growth assumptions
on the energy density f, @7/-quasiconvexity is necessary and sufficient for the lower-semicontinuity of
integral functionals

I(u,v) := /Qf(x,u(x),v(x)) dx  for every (u,v) € LP(Q;R™) x LP(£; R%)

along sequences (u",v") satisfying u® — wu in measure, v — v in LP(Q;R%), and &/v" — 0 in
W=LP(Q). We remark that in the framework & = curl, i.e., when v® = V¢" for some ¢" €
WLP(;R™), d = n x m, o/-quasiconvexity reduces to Morrey’s notion of quasiconvexity.

The analysis of properties of &/ —quasiconvexity for operators with constant coefficients was ex-
tended in the subsequent paper [6], where A. Braides, I. Fonseca and G. Leoni provided an integral
representation formula for relaxation problems under p-growth assumptions on the energy density, and
presented (via I-convergence) homogenization results for periodic integrands evaluated along o/ —free
fields. These homogenization results were later generalized in [13], where I. Fonseca and S. Krémer
worked under weaker assumptions on the energy density f. In [19, 20], simultaneous homogenization
and dimension reduction was studied in the framework of .&7-quasiconvexity with constant coefficients.
Oscillations and concentrations generated by o7-free mappings are the subject of [14]. Very recently
an analysis of the case in which the energy density is nonpositive has been carried out in [18], and
applications to the theory of compressible Euler systems have been studied in [7]. A parallel analysis
for operators with constant coefficients and under linear growth assumptions for the energy density
has been developed in [1, 4, 15, 21]. A very general characterization in this setting has been obtained
in [2], following the new insight in [12].

The theory of «7-quasiconvexity for operators with variable coefficients has been characterized by
P. Santos in [23]. Homogenization results in this setting have been obtained in [10] and [11].
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This paper is devoted to proving a representation result for the relaxation of integral energies in
the framework of &/-quasiconvexity with variable coefficients. To be precise, let 1 < p,q < +o0,
d,m,l € N, and consider a Carathéodory function f : Q x R™ x R? — [0, +-00) satisfying

(H) 0< f(z,u,v) <CA+ |[ulP + |[v|?), 1<p,q<+o0,

for a.e. z € Q, and all (u,v) € R™ x R?, with C' > 0.
Denoting by O(£2) the collection of open subsets of 2, for every D € O(Q), v € LP(;R™) and
v € LI(Q;RY) with &/v = 0, we define

Z((u,v), D) := inf { liminf/ flzyun(z),vn(x)) : up = u  strongly in LP(Q; R™),
D

n—-4oo

v, = v weakly in LY(Q;RY) and /v, — 0 strongly in W~149(Q; Rl)}. (1.4)
Our main result is the following.

Theorem 1.1. Let o/ be a first order differential operator with variable coefficients, satisfying (1.3).
Let f: Q x R™ x R — [0, +00) be a Carathéodory function satisfying (H). Then,

/D Qo oy (0, u(), 0()) d = T((u,v), D)

for all D € O(Q),u € LP(;R™) and v € L(Q; R?) with «/v = 0.

Adopting the “blow-up” method introduced in [16], the proof of the theorem consists in showing
that the functional Z((u,v),-) is the trace of a Radon measure absolutely continuous with respect to
the restriction of the Lebesgue measure £V to , and proving that for a.e. € Q the Radon-Nicodym
derivative W coincides with the &/ —quasiconvex envelope of f.

The arguments used are a combination of the ideas from [6, Theorem 1.1] and from [23]. The main
difference with [6, Theorem 1.1], which reduces to our setting in the case in which the operator </ has
constant coeflicients, is in the fact that while defining the operator Z in (1.4) we can not work with
exact solutions of the PDE, but instead we need to study sequences of asymptotically &7 —vanishing
fields. As pointed out in [23], in the case of variable coefficients the natural framework is the context
of pseudo-differential operators. In this setting, we don’t know how to project directly onto the kernel
of the differential constraint, but we are able to construct an “approximate” projection operator P
such that for every field v € LP, the W~1? norm of &/ Pv is controlled by the W ~1P norm of v itself
(we refer to [23, Subsection 2.1] for a detailed explanation of this issue and to the references therein
for a treatment of the main properties of pseudo-differential operators). For the same reason, in the
proof of the inequality

dZ((u,v)-)()
acyN

an equi-integrability argument is needed (see Proposition 3.2). We also point out that the represen-
tation formula in Theorem 1.1 was obtained in a simplified setting in [11] as a corollary of the main
homogenization result. Here we provide an alternative, direct proof, which does not rely on homoge-
nization techniques.

< Q) f(x,u(z),v(r)) forae zeQ,

The paper is organized as follows: in Section 2 we establish the main assumptions on the differential
operator & and we recall some preliminary results on &/ —quasiconvexity with variable coefficients.
Section 3 is devoted to the proof of Theorem 1.1.

Notation
Throughout the paper  C R¥ is a bounded open set, 1 < p,q < +00, O(Q) is the set of open subsets
of Q, Q denotes the unit cube in RY, Q(zo,7) and B(xg,) are, respectively, the open cube and the
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open ball in RY, with center xy and radius r. Given an exponent 1 < ¢ < 400, we denote by ¢’ its
conjugate exponent, i.e., ¢’ € (1,+00) is such that

1 1

qa q
Whenever a map v € LY, C,--- is Q—periodic, that is

/

v(r+e)=v(x) i=1,---,N,

fora.e. . € RN, {ey, - ,en} being the standard basis of RY | we write v € Ll Coers - -~ We implicitly
identify the spaces L9(Q) and Lg . (RY).
We adopt the convention that C' will denote a generic constant, whose value may change from line

to line in the same formula.

2. PRELIMINARY RESULTS

In this section we introduce the main assumptions on the differential operator ./ and we recall some
preliminary results about &/ —quasiconvexity.

Fori=1,---,N, x € RV consider the linear operators A’(z) € M*4, with A* € C>°(RY; M*4)N
WLHoo(RN; MPX9). For every v € L1(Q;RY) we set

N
Av:=Y Al(x) 0T) ¢ py-rag,RY).
i=1 O 7

The symbol A : RY x RN \ {0} — M!*? associated to the differential operator o is
N
A, A) =Y Al(z)\; € M
i=1

for every z € RV, A € RV \ {0}. We assume that &/ satisfies the following uniform constant rank
condition:

N
rank (ZAl(x))\z) =r forallxz € RN and A € RV \ {0}. (2.1)
i=1

For every x € RV, A € RV \ {0}, let P(z, \) : R? — R? be the linear projection on Ker A(x,\), and
let Q(z, ) : R — R? be the linear operator given by

Q(z, M)A (z, \)v :=v — P(x, \)v for all v € R?,

Q(z,\)¢ =0 if & ¢ Range A(z, \).
The main properties of P(-,-) and Q(-,-) are recalled in the following proposition (see e.g. [23, Subsec-
tion 2.1]).

Proposition 2.1. Under the constant rank condition (2.1), for every x € RN the operators P(x,-)
and Q(x,-) are, respectively, 0-homogeneous and (—1)-homogeneous. In addition, P € C°(RYN x RN \
{0}; M¥>*4) and Q € O (RN x RN \ {0}; Mx?).

Let n € C°(92;[0,1]), n =1 in Q' for some ' CC Q. We denote by A,, the symbol

N
Ay (z,)) = Z n(x) A (z)\i, (2.2)

for every x € RN, X € RV \ {0}, and by &, the corresponding pseudo-differential operator (see
[23, Subsection 2.1] for an overview of the main properties of pseudo-differential operators). Let
x € C®°(RT;R) be such that x(|\|) = 0 for [A\| < 1 and x(]A\|) = 1 for |A\| > 2. Let also P, be the
operator associated to the symbol

Py, A) = 0 (2)P(z, A)x(|Al) (2:3)
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for every x € RN, X\ € RV \ {0}. The following proposition (see [23, Theorem 2.2 and Subsection 2.1])
collects the main properties of the operators P, and 47,.

Proposition 2.2. Let 1 < g < 400, and let o, and P, be the pseudo-differential operators associated
with the symbols (2.2) and (2.3), respectively. Then there exists a constant C such that

| Pyvll La(oirey < Cllvllpa(iray (2.4)
for every v € LY(Q;RY), and
[ Ppvllw-1.0(rey < Cllvllw-1.0(0:ire)
[ = Pyvll agarey < C(lovllw-ra@my + [vllw-1a@ma)),
| Pyollw-1a@mry < Clloflw-1aq;ra)
for every v € W—14(Q; RY).

3. PROOF OF THEOREM 1.1

Before proving Theorem 1.1 we state and prove a decomposition lemma, which generalizes [17,
Lemma 2.15] to the case of operators with variable coefficients.

Lemma 3.1. Let 1 < q < +00. Let &7 be a first order differential operator with variable coefficients,
satisfying (2.1). Let v € LY(Q;R?), and let {v,} be a bounded sequence in LI(£;RY) such that

vp — v weakly in LI(Q;RY),
v, =0 strongly in W™ RY),
{vn} generates the Young measure v.

Then, there exists a g-equiintegrable sequence {0, } C LI(;R?) such that

A0y — 0 strongly in W55 (Q; R for every 1 < s < g, (3.1)
/fjn(x) dx = / v(x)dz,

Q Q
Op — v — 0 strongly in L*(;RY)  for every 1 < s < q, (3.2)
B — v  weakly in LI(Q;RY). (3.3)

In addition, if  C Q then we can construct the sequence {t"} so that ¥, —v € L%, (RY;R%) for every

per
n € N.

Proof. Arguing as in the first part of [23, Proof of Theorem 1.1], we construct a g-equiintegrable se-
quence {0, } satisfying (3.1), (3.2) and (3.3). The conclusion follows by setting 0y, := 0, — [, On () dz+
Jov(z)de.

In the case in which Q C @, let {¢'} be a sequence of cut-off functions in @ with 0 < ¢* < 1 in Q,
such that ¢* =0 on Q \ 2 and ¢ — 1 pointwise in Q. Define w!, := ¢"(0, — v). By (3.3) for every
¢ € L9 (Q;R?) we have

1L1r+noo nll}}rloo A wy, (z)Y(x) dx = 0.

By (3.1), (3.2), and the compact embedding of L?(Q;R?) into W~1:4(; R?), there holds
_ _ N gpi
dw!, = o' A0y, + <ZAJ8;'O>@7L — 0 strongly in W~1%(Q; RY)
j=1 J

asn — +00, for every 1 < s < ¢q. Extending the maps w?, outside @ by periodicity, by the metrizability
of the weak topology on bounded sets and by Attouch’s diagonalization lemma (see [3, Lemma 1.15
and Corollary 1.16]), we obtain a sequence

L i(n
wy, = w'™,
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with {w,} C L2, (RY;R?), and such that wy, + v satisfies (3.1), (3.2) and (3.3). The thesis follows by
setting
Uy, 1= Wy, — / wp(z) dx + v.
Q
O

The following proposition will allow us to neglect vanishing perturbations of g-equiintegrable se-
quences.

Proposition 3.2. For everyn € N, let f,, : Q x R? — [0, +00) be a continuous function. Assume that
there exists a constant C' > 0 such that, for ¢ > 1,

sup fu(y,§) < C(1+[€]7)  for every y € Q and § € RY, (3.4)
neN

and that the sequence { f,(y,-)} is equicontinuous in R?, uniformly iny. Let {w,} be a q-equiintegrable
sequence in LY(Q;RY), and let {v,} C LI(Q;R?) be such that

v, — 0 strongly in LY(Q;RY). (3.5)
Then
i | [ 5nn@) dy = [ a(oa0) + ) o = 0

n—-+oo
Proof. Fix n > 0. In view of (3.5), the sequence {C(1 + |v,]? + |w,|?)} is equiintegrable in @, thus
there exists 0 < ¢ < 7 such that

sup [ C(1+ o ()l + o () dy < (36)

for every A C Q with |A| < e. By the g-equiintegrability of {w,} and {v,}, and by Chebyshev’s
inequality there holds
C

01 ({hl > M} U el > M) £ 375 [ (a0l + o)y < 57

for every n € N. Therefore, there exists My satisfying

sup [ @ 1 ({[al > Mo} U (fou] > Mo})| < (3.7)

N ™

By the uniform equicontinuity of the sequence {f,(y,-)}, there exists § > 0 such that, for every

&1,& € B(0, My), with [ — & < 4, we have

sup | fn(y,£1) = fu(y,&2)| <€ (3.8)
yeQ

for every n € N. By (3.5) and Egoroff’s theorem, there exists a set E. C Q, |E.| < §, such that
vp, — 0 uniformly in Q \ E,
and, in particular,
|vp(x)] < § forae x €@\ Ex, (3.9)
for every n > ng, for some ng € N.
We observe that

/Q Fn (s vn(y) +wn(y)) dy = Fn(y, vn(y) +wn(y)) dy (3.10)

/cv?m{wnSMO}m{UnSMO}

+ / Futy 0n(y) + wn(y)) dy.
QN({|wn|>Mo }U{|vn|>Mo})
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The first term in the right-hand side of (3.10) can be further decomposed as

/ Fu (00 () + wn(4)) dy
Qﬂ{|wn|§M0}ﬁ{|Un|§M0}

= / In(y, vn(y) +wn(y)) dy
(Q\Eo)N{|wn|<Mo}n{|v,|<Mo}

4 / Fu( vn(y) + wn(y)) dy
Esm{lwn|§MO}m{|vn|§MO}

fn(y, wn(y)) dy

/(Q\Ea)ﬁ{lwnSMo}ﬁ{vn |<Mo}

4 / (a0 0n () + 0n () — Fou(wa(v))) dy
(Q\E)N{|wn |<Mo}N{|vn|<Mo}

+f Fa0 0n(y) + wa(y)) dy
Esﬂ{|wn|§]Vfo}ﬁ{|Un|§M0}

- / Fo (s w0 () dy — / Fulys wn(y)) dy
Q Esm{‘wn‘SMO}n{‘vn‘SMO}

- / Jn(y, wn(y)) dy
QN({|wn|>Mo}U{|vn|>Mo})

4 / (a1 0n () + 0n () — Fu(wa(y))) dy
(Q\E)N{|wn |<Mo}N{|vn|<Mo}

+ / fu(y, vn(y) +wn(y)) dy.
Een{|wn|<Mo}N{|vn|<Mo}
We observe that by (3.7)
|Ee U ({[wn| > Mo} U {lon| > Mo})| <e.
Hence, for n > ng, by (3.4), (3.6), (3.8), and (3.9) we deduce the estimate

‘ /an(yywn(y))dy - /Q fn(y, vn(y) +wn(y)) dy (3.11)
2
<e+ [ 901+ [ + [on()P) dy < &+ 2.
BoU({wn]>Mo}U{|va|>Mo}) 3
The thesis follows by the arbitrariness of 7. 0

We now prove our main result.

Proof of Theorem 1.1. The proof is subdivided into 4 steps. Steps 1 and 2 follow along the lines of
[6, Proof of Theorem 1.1]. Step 3 is obtained by modifying [6, Lemma 3.5], whereas Step 4 follows by
adapting an argument in [23, Proof of Theorem 1.2]. We only outline the main ideas of Steps 1 and 2
for convenience of the reader, whilst we provide more details for Steps 3 and 4.
Step 1:
The first step consists in showing that

Z((u,v), D) = inf{ lim inf/ fz,u(x),v,(x)) de : {v,} is ¢ — equiintegrable |

D

n—-+oo

/v, — 0 strongly in W~1%(D;RY) for every 1 < s < g
and v,, — v weakly in Lq(D;Rd)}.

This identification is proved by adapting [6, Proof of Lemma 3.1]. The only difference is the application
of Lemma 3.1 instead of [6, Proposition 2.3 (i)].

Step 2:

The second step is the proof that Z((u,v),-) is the trace of a Radon measure absolutely continuous
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with respect to £V |Q. This follows as a straightforward adaptation of [6, Lemma 3.4]. The only
modifications are due to the fact that [6, Proposition 2.3 (i)] and [6, Lemma 3.1] are now replaced by
Lemma 3.1 and Step 1.
Step 3:
We claim that
dZ((u,v),-
7(251\,) )(:co) > Qo (w0)f (w0, u(z0),v(x0)) for a.e. zo € Q. (3.12)
Indeed, since g(z,&) := f(z,u(zx),&) is a Carathéodory function, by Scorza-Dragoni Theorem there
exists a sequence of compact sets K; C €2 such that
1\ K| < 5
and the restriction of g to K x R? is continuous. Hence, the set
+oo
w = U(KjﬂKJ’-‘)ﬁﬁ(u,v), (3.13)

j=1

where K7 is the set of Lebesgue point for the characteristic function of K; and L(u,v) is the set of
Lebesgue points of v and v, is such that

1
[Q\w| <Q\ K;| < = for every j,
J
and so |2\ w| = 0. Let zp € w be such that
1 1
lim — — Pdr = lim — — Idr =0 3.14
o [ ) —uorde= tim [ et ez =0, 14
and
dI((U, U)? ) . I((U,U)7Q($0,7"))
T(Q?O) = T]i)l’gl+ ']"N < +OO, (315)

where the sequence of radii r is such that Z((u,v), 9Q(xo,r)) = 0 for every r. (Such a choice of the
sequence is possible due to Step 2).
By Step 1, for every r there exists a g—equiintegrable sequence {vy ,} such that

Vpr — v  weakly in LY(Q(x,7); R),
Ay — 0 strongly in W=5*(Q(xo,7); RY) for every 1 < s < ¢ (3.16)

as n — +o00, and

lim 9(z,vnr(x)) dz < I((u,v), Q(zo,7)) + PN+

=+ JQ(wo,r)

A change of variables yields

dZ((u,v), - .. .
%(m) 2 liminf lim ; 9(wo + 1y, v(x0) + wn.r(y)) dy,

where
W (Y) = Vn (o +7y) —v(x0) for ae. y € Q.

Arguing as in [6, Proof of Lemma 3.5], Holder’s inequality and a change of variables imply
Wy, — 0 weakly in L7(Q; RY) (3.17)
as n — 400 and r — 071, in this order. We claim that
A (2o + )Wy, — 0 strongly in W~1(Q; RY), (3.18)

as n — 400, for every r and every 1 < s < q.



RELAXATION FOR &/-QUASICONVEXITY WITH VARIABLE COEFFICIENTS 9

Indeed, let ¢ € WJ’S/(Q;Rd). There holds
N

0A (xo + 1y
(A (zo + 1) Wn S0>W—1,5(Q;Rz),wf}’5/(Q;Rl) == Z {T/Q %vnw(xo +ry) - e(y) dy
i=1

i / Ao+ ry)onr(zo +ry) &P@ dy}
Q

N )
1 / DA (z) 1 . 0, (z)
= _ — ——— U (2) - Y (x) da + —— / A (z)vp, () - dx
i:z1 { riN=t Q(=zo,m) O, rN=1 Q(zo,m) O0x;

1
= m<%’0n7r7 wr>Wﬁl’s(Q(xo,T);Rl),Wol’sl(Q(xo,T‘);Rl)’

where ¢, (z) := ¢(2=22) for a.e. x € Q(zo,r). Since ¥, € WOLS/ (Q(z0,7); R?) and

)< CO)

1l @ao.ryne el @rey

we obtain the estimate

17 (0 + 7 )wn rllw-15(Qrty < C) | O rllw=1.5(Q(a0, )R-

Claim (3.18) follows by (3.16).
In view of (3.17) and (3.18), a diagonalization procedure yields a g—equiintegrable sequence {wy} C
L9(Q; RY) satisfying

W, — 0 weakly in LI(Q;R?), (3.19)

o (xo + - )p — 0 strongly in W15(Q;RY)  for every 1 < s < g, (3.20)
e ((w,v),)
dZ((u,v), -

b () > limi i . 21

o) 2 imint [ gle + g o) +n(0) dy (321)

For every ¢ € Wol’s/(Q;]Rl), 1 < s < g, there holds

<(.,Q7($0 + rk') - JZ{(Z‘()))UA}]C, SO>W—175(Q;RZ),W01’S/(Q;]RZ)

N iy , | |
> l’"k /Q O LI ) oty + [ (A% + 1) — Ao i) - 22

Q 9y
Thus,
N
(o (0 + i) =  (20) )i lw—1.2 @ty < 7o Y A lwr.oe @ sy |k || Lo (@ime)
=1

for every 1 < s < ¢. By (3.19) and (3.20) we conclude that
o (z0)wp — 0 strongly in W™1%(Q;R!)  for every 1 < s < q. (3.22)

In view of (3.19) and (3.22), an adaptation of [6, Corollary 3.3] yields a g—equiintegrable sequence
{wg} such that

wy — 0 weakly in L9(Q;R?),

/ wi(y)dy =0 for every k,
Q

o (xo)wr, =0 for every k, (3.23)
and
timinf | g(oo. o(a0) + we(y)) dy < liminf [ glao + ry.vleo) + on@)dy. (320
Q Q

k——+oo k—+oco
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Finally, by combining (3.21), (3.23), and (3.24), and by the definition of &/-quasiconvex envelope for
operators with constant coefficients, we obtain

o) = ymint [ (a0, o0+ )
= lggilgg/q) f(zo,ulzo), v(zo) + Wi (y)) dy > Q (o) f (w0, u(z0), v(20))

for a.e. z¢ € . This concludes the proof of Claim (3.12).
Step 4:
To complete the proof of the theorem we need to show that

T2 (1) < Qustan (o o), vlzo)) fox e 2o € (329)

To this aim, let x> 0, and x¢ € w be such that (3.14) and (3.15) hold. Let w € Cg2,(RY; R?) be such
that

/Q wy)dy =0, o (z0)w = 0, (3.26)
and
| 70100 0(00) 5 00)) o < Qo £, 1(r0), 0) + 1 (3.21)
Let n € C2°(€;[0,1]) be such that 7 = 1 in a neighborhood of z and let r be small enough so that
Q(zo,7) C{x:n(z) =1} and Q(xo,2r) CC Q. (3.28)
Consider a map ¢ € C°(Q(zo,7); [0, 1]) satisfying
LY(Q(zo, ) N{p #1}) < pr™, (3.29)
and define
m(x — xg)

2hn(@) = ey

We observe that 27, € L¢(€;R?), and for ¢ € L7 (Q;R?) we have

[ #te)- vty da = [ oty

:TN/"¢@0+TMWUWD‘¢@0+dey
Q

- ) for z € RV. (3.30)

m(x

%95())) () dz

By (3.26) and by the Riemann-Lebesgue lemma we have

2' =0 weakly in L(Q;R?) (3.31)
as m — +00. We claim that
limsup .7, 2, [lw 1.0 (orty < Crv 1 (3.32)
m——+00

where o7, is the pseudo-differential operator defined in (2.2). Indeed, by (3.28) we obtain
oz = Az — ﬁ%(aro)zr + sz(aro) , (3.33)

lm T N iQ?
_Z Ai(o +ZA% “m ) Zagx(i)z;l(x).
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By the regularity of the operators A* and by a change of variables, the first term in the right-hand
side of (3.33) is estimated as

HZ ((A'(x) — A'(20)) 2, ())H

Ox;

3.34
W-La(Q;R!) (3:34)

z -

<3| @) - ooy (1)

- r L9(Q(w0,r)RY)

1=

. N N
”AZHWL“’(]RN;]RLXUZ) ||<P||L°<>(Q(zo,r)) ||w(m')||Lq(Q;Rd)T ot < Cr= 1

-

<
=1

In view of (3.26) the second term in the right-hand side of (3.33) becomes

> (o ) = 3 i 22 ()

and thus converges to zero weakly in Lq(Q;Rl), as m — +oo, due to (3.26) and by the Riemann-
Lebesgue lemma. Hence,

7'
H E Al(x o () H —0 asm — +00 (3.35)
8:1:Z W—1.4(Q;R)

by the compact embedding of L(£2;R!) into W~59(Q;R!). Finally, the third term in the right-hand
side of (3.33) satisfies

Z 81;;(133) o (2) = OA (x) @(x)w(m(x — 1) ),

P ox; r

which again converges to zero weakly in L(;R!), as m — +oo, owing again to (3.26) and the
Riemann-Lebesgue lemma. Therefore,

OA (z
H E fn H —0 asm — +oo. (3.36)
Ox; W-La(QRY)

Claim (3.32) follows by comblmng (3.34)—(3.36).
Consider the maps
Uy, 1= Pz,

where P, is the projection operator introduced in (2.3). By Proposition 2.2 we have

vl e (Q(ao.r)re) < CllzillLa@ira), (3.37)
v llw—1.4(Qzo,r)rt) < Cllzmllw-1.are)s (3.38)
v llw —1.9(Q(wo,ryirY) < Cllzm lw 1.9k, (3.39)
v = 2mllLa(@o,r)ire)y < CUl@nzm llw-1a@ry) + [[2m w19 @ra))- (3.40)

By (3.31) and (3.37), the sequence {v",} is uniformly bounded in L?(Q(zq,7); R?). Thus, there exists
amap v" € L9(Q(xg,r); R?) such that, up to the extraction of a (not relabelled) subsequence,

v" =" weakly in L9(Q(xo,7); RY) (3.41)
as m — +oo. Again by (3.31), and by the compact embedding of L? into W14, we deduce that
2r =0 strongy in W 19(Q;RY) (3.42)

as m — +o0o. Therefore, by combining (3.38) and (3.41), we conclude that
vh =0 weakly in L9(Q(xo,7); RY)
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as m — +oo, and the convergence holds for the entire sequence. Additionally, by (3.28), (3.39), and
(3.42), we obtain
Al = dyvl — 0 strongly in W™H9(Q(xg,7); RY)
as m — +oo. Finally, by (3.32), (3.40), and (3.42), there holds
_N
lim lim v 9 Jon, = 25| L@ mymey = 0. (3.43)

We recall that, since z( satisfies (3.15), Step 1 yields

dZ(u,v) . I((u,v); Q(zo,7)) o 1 -
e o) = i R <l lmint o [ o) ofe) + (o)
(3.44)

We claim that

A2, 0) () = tim 205 Q@0) g g i g L / g(x,v(@) + 2, (2)) dz,  (3.45)
Q(wo,m)

acyN 0+ rN r—0+ m—rfo0 T

where ¢ is the function introduced in Step 3. Indeed, for every r € R, consider the function g" :
Q x R? = [0, +00) defined as

9" (y,€) == g(xo +1y,€) for every y € Q,& € R

Since xy € w, by (3.13) there exists K; such that o € K. In particular, this yields the existence
of rg > 0 such that for 7 < ry, the maps ¢g” are continuous on Q x R?, and the family {g"(y,-)} is
equicontinuous in R?, uniformly with respect to y. A change of variables yields

%N‘ /Q(W) f @ ux), v(w) +vp, (2)) do / [ (@, u(@),o(@) + 25, (x)) dal

Q(zo,7)
—| [ 5 vt o) + oo+ i)y [ 7 (otao )+ 25 G+ ) dy
Q Q

On the other hand, by (3.43) we have

. . . . _N
Th_%mlj}goo 2 (zo +7+) = o5 (To + )| La(Qire) = lim mgl}rlmr 7 ||2m = VmllLa(@(ao,r)iRe) = 0.

Therefore, by a diagonal procedure we extract a subsequence {m,} such that

lim sup lim sup ‘ / 9" (y,v(xo + 1Y) + v, (w0 + 1Y) dy — / 9" (y,v(zo + 1Y) + 2, (20 + 1Y) dy‘
r—0 m——+o0o Q Q
(3.46)

— lim ) / 9" (y,v(zo + 1Y) + vy, (w0 + 1Y) dy — / 9" (y,v(xo + 1Y) + 2, (T0 +7Y)) dy(,
Q Q

r—0

and

Zm (X0 + 1) — vy, (o +7-) = 0 strongly in LY(Q;RY).

2y

In view of (3.14), (3.30) and the Riemann-Lebesgue lemma, the sequence {v(xq + ) + 2}, (xo +7-)}
is g-equiintegrable in (. Hence, by (H) we are under the assumptions of Proposition 3.2, and we
conclude that

r—0

iy | [ 0060 +r0) 05, G+ o)) dy = [ (oGt )+ 25, (oo ) dy| 0. (347)
Q Q

Claim (3.45) follows by combining (3.46) with (3.47).
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Arguing as in [6, Proof of Lemma 3.5], for every z¢p € w (where w is the set defined in (3.13)) we
have

1
lim inf lim inf — /Q Tt ) + ) de
xo,T

r—0t m—+oo r

1
< liminf liminf — /Q( )f(xo,u(xo),v(afo) + 21, (x)) dz,
Zo,r

r—0+ m—+4oo r

hence by (3.45) we deduce that

dI(’LL,’U) o o s 1 T
W(xo) < ligéef}igirg o~ /Q(mwﬂ) f(zo,u(zo),v(xo) + 21, (z)) dx.

By (3.30) we obtain

dZ(u,v) TR
—_— <l fl f —= , d
g o) tmint mint o [l u(eo) (o) 35, (2) do

1 —_
z0,T

r—0+ m—+4oco 1 T

+ /Q(ﬂfoﬂ“)ﬁ{tp;ﬁl} f(xo,u(xo),v(;vo) + w<w)w<w)) dx}.

The growth assumption (H) and estimate (3.29) yield
f(mo, u(xo),v(xo) + w(x)w(M)) dx (3.48)
<C <1+ ’w(im(xfxow q) dx
Q(wo,r)N{p#1} r
< O+ [[wllf e v ey L™ (Q(o,m) N {p # 1}) < Cpar™.

/Q(ro-,r)ﬂ{sasﬁl}

Thus, by (3.48), the periodicity of w, and Riemann-Lebesgue lemma, we deduce

dZ(u,v) P | m(x — o)
o (20) < lim inf lim inf — ANy
gey (@o) < Cp - lim inf lim inf 2 /Q(moﬁr)f(f”o’“(“)’”(%) “"( r )) v

=yt Tmint | F(routro),viro) + wiomy)dy

=Cu+ /Q f(@o,u(x0),v(z0) +w(y)) dy
< Cp+ Quy(zo) f (0, u(z0), v(20)),

where the last inequality is due to (3.27). Letting u — 07 we conclude (3.25). O
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