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Abstract. An improved version of bilevel learning scheme (BLS) is introduced by utilizing the
original BLS in each subdomain, and by searching for the best combination of different subdomains

to reach a recovered image which best fits the given training data. Numerical experiments are
carried out to illustrate the improved performance of the proposed learning scheme.
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1. Introduction

The variational formulation of problems in image processing often have an underlying functional

I(u) := ‖Ku−I ‖L2(Q) + αR(u,Q), (1.1)
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where I is a given corrupted image, Q := (0, 1)× (0, 1) represents the domain of a square image,
‖Ku−I ‖L2(Q) represents the fidelity term, R represents the regularization term, and K is usually

a linear operator.

Image denoising is a fundamental task in image processing, as it is always a necessary step prior to
higher level image processing such as reconstruction and segmentation. Regarding image denoising,
we set K to be the identity operator, and we write I = C + η where C represents a noise-free
clean image, and η encodes noise. The key task of image denoising is to remove the noise η from
the given corrupted image I while preserving the clean image C as much as possible. The ROF
total variational functional

1

2

ˆ
Q

|u−I |2 dx+ αTV (u,Q), (1.2)

introduced in [31], is one of the most popular choices for such task, where the fidelity term in (1.1)
is taken to be the L2-distance, the regularization term the total variation TV (u,Q), and α ∈ R+.
The parameter α > 0 in (1.2) is used to control the balance between the regularization term and
the fidelity term, and the choice of the “best” parameter α then becomes an important task. One
way to choose the “best” α is using a bilevel learning optimization scheme, which can optimally
adapt itself to the given “perfect data”, defined in machine learning (see [10, 11, 18, 35]). This
learning scheme searches for α > 0 such that the recovered image uα, which is defined to be the
minimizer of (1.2) for each α > 0 fixed, best fits the given clean image C , measured in terms of the
L2-distance. An example of a bilevel learning scheme (B) equipped with the ROF functional is the
following:

Level 1.

αm := arg min
α>0

1

2

ˆ
Q

|uα − C |2 dx, (1.3)

Level 2.

uα := arg min
u∈SBV (Q)

{
1

2

ˆ
Q

|u−I |2 dx+ αTV (u,Q)

}
. (1.4)

The scheme (B) has been proved to have at least one solution αm ∈ (0,+∞] provide TV (I , Q) >
TV (C , Q) (see [17]), and a small modification rules out the possibility of αm = +∞.

To simplify our presentation, we define the reconstruction operator L : R+ × L2(Q)× B(Q) by

L (α, v,Q′) := arg min
u∈SBV (Q′)

{
1

2

ˆ
Q′
|u− v|2 dx+ αTV (u,Q′)

}
. (1.5)

where B(Q) := {Q′ ⊂ Q : Q′ is open in Q}. We note that L (α, v,Q′) is uniquely defined due to
the strictly convexity of TV .

Although in [17] the existence of a minimizer αm of the error function

E(α) :=
1

2

ˆ
Q

|L (α,I , Q)− C |2 dx (1.6)

has been established, an executable numerical scheme to find such a minimizer is also in need.
Moreover, it is well known that the ROF model in (1.2) suffers drawbacks like the staircasing effect,
and, unfortunately, scheme (B) inherits that feature. That is, the optimized reconstruction function
L (αm,I , Q) also exhibits the staircasing effect.
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In this work we propose a new learning scheme aiming at further reducing the value of minα>0 E(α)
and also at mitigating the staircasing effect. Our paper is organized as follows. In Section 2 we in-
troduce a new way to represent the clean image and the noise, which is compatible with a discrete
computer image data in domain Q, and hence we may apply our PDEs and functional analysis
tools to it. To be precise, we postulate an ideal clean image C ∈ BV (Q) can only be captured by a
“super” camera which has infinite resolution, and we postulate that a finite N ∈ N resolution level
image captured by a real world digital camera is a piecewise constant function CN which is related
to C via its averages

CN (x) :=

 
QN (i,j)

C dy for x ∈ QN (i, j) ,

where QN (i, j) := ((i− 1)/N, i/N)× ((j − 1)/N, j/N), 1 ≤ i, j ≤ N , and

QN := {QN (i, j), 1 ≤ i, j ≤ N} . (1.7)

That is, each QN (i, j) represents a pixel in discrete computer image data. We build our analysis
mostly based on CN rather than on C . Furthermore, we define the corrupted image data to be, at
resolution level N ,

IN := CN + ηN ,

where by ηN we denote a piecewise noise constant function over QN . That is, ηN is a constant in
each QN ∈ QN , 1 ≤ i, j ≤ N .

Moreover, we define the stopping time αs(v) of a function v ∈ L∞(Q) via the following defini-
tion.

Definition 1.1. Let v ∈ L∞(Q) be given. We say that αs(v) ∈ [0,+∞) is the stopping time for v
if

L (αs, v,Q) = L (αs + α, v,Q) =: C(v) and L (αs, v,Q) 6= L (αs − α, v,Q) (1.8)

for all α > 0, where C(v) is a constant depends on v.

By its definition, if it exists then the stopping time is unique. In Section 3.1 we show that the
minimizer of (1.6) exists in the one dimensional setting. To do so, we first show that the stopping
time αs(IN ) exists where αs(IN ) is defined in (1.8) with Q replaced by I := (0, 1). Next, in
Proposition 3.2, using Theorem 2.2 repeatedly, we show that the level N error function

EN (α) :=
1

2

ˆ
I

|L (α,IN , I)− CN |2 dx (1.9)

is continuous, and there exist finitely many 0 < α1 < α2 < · · · < αM = αs(IN ) < +∞ such that
in each interval [αi, αi+1), EN (·) is convex and E ′N (·) is linearly increasing. Hence, a direct search,
which we detail in Section 3.1.2, of a minimizer αm of (1.9) inside the finite interval [0, αs(IN )]
can be executed numerically and terminated within a finite time, although it may take a long CPU
time, in the order of O(N).

In Section 3.2 we discuss the behavior of (1.9) in the two dimensional setting. We present a two di-
mensional version of Proposition 3.2 in Proposition 3.6. Although the statement of Proposition 3.6
is weaker compared with Proposition 3.2, due to the lack of the two dimensional version of Theorem
2.2, it is still sufficient to allow us to perform the same direct search to locate αm within a finite time.
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Although the direct search of a minimizer αm is numerically executable, it takes a long CPU
time, and hence an efficient numerical scheme to locate αm is in great need. In Section 3.3 we
provide an easy way to accelerate our direct search by determining a lower bound of αm and hence
save some CPU time.

To really make an improvement on reducing the CPU time needed to locate αm, we observe from
numerical simulations that EN (·) defined in (1.9) is likely to be strictly quasi-convex ([5], Section
3.4), i.e., for any α1, α2 ∈ R+ and λ ∈ (0, 1),

EN (λα1 + (1− λ)α2) < max {EN (α1), EN (α2)} . (1.10)

If (1.10) holds, then locating αm could be done much faster and efficiently, compared to the direct
search, by using quasi-convex programming method (see, e.g., [24]). However, (1.10) only holds if
IN satisfies some very restrictive assumptions which are unlikely to be satisfied in concrete setting
(see, e.g. [25]). To overcome this drawback, we propose in [25] an alternative searching algorithm
which could locate αm, or at least a good approximation of αm with a controllable error, efficiently
without requiring EN (·) to be strictly quasi-convex. However, that algorithm is complex and its
theoretical validation would require several auxiliary results beyond the scope of this paper. We
refer readers to our upcoming work [25] for this acceleration algorithm, and also the study of the
quasi-convexity of the level N error function (1.9).

In Section 4.1 we introduce our new learning scheme (P). We recall that Q := (0, 1) × (0, 1),
and for K ∈ N, QK ⊂ R2 denotes a cube with its faces normal to the orthonormal basis of R2, and
with side-length greater than or equal to 1/K. LK will be a collection of finitely many QK such
that

LK :=
{
QK ⊂ Q : QK are mutually disjoint, Q ⊂

⋃
QK

}
,

and VK denotes the collection of all possible LK . For K = 0 we set Q0 := Q, hence L0 = {Q}. We
define our improved learning scheme (P) in resolution level N as:

Level 1.

uP,N := arg min

{ˆ
Q

|CN − uLK |
2
dx, K ≥ 0, LK ∈ VK

}
(1.11)

Level 2.

uLK (x) := L (αQK ,IN , QK) for x ∈ QK and QK ∈ LK ,

where αQK := arg min
α>0

ˆ
QK

|L (α,IN , QK)− CN |2 dx.

The new bilevel learning scheme (P) utilizes the scheme (B) in each subdomain of Q, and searches
for the best combination of different subdomains from which a recovered image uP,N , which best
fits CN , might be obtained, and hence the name “spatially dependent”.

In Section 4.2 we provide an example to demonstrate that the proposed scheme (P) can avoid
the staircasing effect in certain situations. Moreover, we compare our results with the recent results
in [22], in which the authors propose a different way to avoid the staircasing effect.
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In Section 4.3 we show that under a mild assumption on the noise ηN , the scheme (P) is able
to fully recover the clean image C as the resolution level N goes to infinite. Let

PN (K) := min
LK∈VK

ˆ
Q

|CN − uLK |
2
dx and P(N) := PN (N) =

ˆ
Q

|CN − uP,N |2 dx

where uP,N is defined in (1.11). In Theorem 4.4 we prove the following result.

Theorem 1.2. Assume that the noise ηK2 has locally average 0, that is, 
QK

ηK2 = 0 (1.12)

for any QK ∈ QK where QK is defined in (1.7). Then

lim
K→∞

P(K2) = 0.

Next, we propose a simplified version of scheme (P), the scheme (P ′), as following (recall QK from
(1.7)):

Level 1.

uP′,N := arg min

{ˆ
Q

|CN − uQK |
2
dx, K ≥ 0

}
Level 2.

uQK (x) := L (αQK ,IN , QK) for x ∈ QK and QK ∈ QK ,

where αQK := arg min
α>0

ˆ
QK

|L (α,IN , QK)− CN |2 dx.

Note that QK ∈ VK and hence we have P(N) ≤ P ′(N) where P ′(N) := ‖CN − uP′,N‖L2(Q). That

is, the optimized reconstructed image uP′,N produced by scheme (P ′) might result in a higher error
compare with the optimized reconstructed image uP,N produced by scheme (P). However, Theorem
1.2 holds for scheme (P ′) too. That is, limK→∞ P ′(K2) = 0 if (1.12) is satisfied, and that implies
limN→∞ ‖uP′,N − uP,N‖L2 = 0. Hence, scheme (P ′) could be used as a “risky” replacement of
scheme (P) since it has the same result as resolution level N goes to infinity, and more importantly,
it requires much less CPU time needed as required by scheme (P).

Lastly, in Section 5 we propose a comprehensive learning scheme (CT ) which generalizes scheme
(P) by allowing more turning options in Level 2 above. To be precise, we introduce the following
scheme:

Level 1.

uCT ,N := arg min {F (CN − u,Q) : K ≥ 0, u ∈ TK}

Level 2.

TK := {uCT K ,N , LK ∈ VK}

uCT K ,N (x) is constructed upon the information obtained by uQK ,N (1.13)

Level 3.

uQK ,N := arg min {F(IN − u,QK) +R(u, α,QK), u ∈ SBV (Q), R ∈ R} , (1.14)
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where F is the fidelity term which is quasiconvex in the sense of [12], and R is a collection of
regularizers. Note that by letting R(u, α,QK) = αTV (u,QK) in (1.14) and uCT K ,N (x) := uQK ,N
for x ∈ QK in (1.13), scheme (CT ) reduces to scheme (P). In the end, we provide examples of new
regularizers which can be inserted into (1.14) and we also comment on possible options regarding
to construction of uQK ,N is (1.13).

2. The finite resolution image and some preliminary results

2.1. The finite resolution clean image and the unavoidable noise during acquisition. As
we stated in the introduction, in the two dimensional setting we represent a finite N ×N resolution
clean image CN of an infinite resolution ideal clean image C , which is assumed to be represented
by a BV function, via its average

CN (x) :=

 
QN (i,j)

C dx for x ∈ QN (i, j) ,

where QN (i, j) := ((i− 1)/N, i/N)×((j − 1/N), j/N), for 1 ≤ i, j ≤ N , and we define the collection

QN := {QN (i, j), 1 ≤ i, j ≤ N} .

Similarly, in one dimension, we define

CN (x) :=

 
IN (k)

C dx for x ∈ IN (k), (2.1)

where IN (k) := ((k − 1)/N, k/N), for 1 ≤ k ≤ N , and introduce the collection

IN := {IN (k), 1 ≤ k ≤ N} .

The principal sources of noise in digital images are introduced during acquisition, for example,
the sensor noise caused by poor illumination, high temperature, and circuity of a scanner. Other
possible sources could be digital error during the transmission, and the unavoidable shot noise of
an photon detector. The noise is only generated during the acquiring of image, i.e., it is only added
to CN , and each time we acquire an image, we would produce a different noise ηN . Therefore, we
propose to use a piecewise constant function ηN over QN to represent the noise on the resolution
level N ∈ N, and we write

IN := CN + ηN .

That is, when a image is taken with resolution N ∈ N, although we only wish to observe CN , the
noise ηN is an unavoidable by-product, and hence the corrupted image IN is produced.

Since IN represents an image data, we may assume that

‖IN‖L∞ ≤ 1.

When N →∞, CN → C in L2, but since ηN is randomly generated, so although for a fixed N , CN
is fixed, ηN would vary. As it often assumed in image reconstruction papers (see, e.g., [9]), we also
assume that ˆ

Q

ηN dx = 0.
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2.2. The total variation and some preliminary results. We start by introducing notations
that will be used in the sequel.

Notation 2.1. Recall that I := (0, 1) ⊂ R and Q := (0, 1)× (0, 1) ⊂ R2. Here M ∈ N is a positive
integer.

1. we say a function w is a piecewise constant function with M pieces if there exist M intervals
IM (j) := (xj , xj+1), where 0 = x1 < · · · < xj < · · · < xM = 1, such that w is a constant in each
IM (j). Moreover, we use w(IM (k)) to denote the value of w(x) for x ∈ IM (j), 1 ≤ j ≤M ;

2. given a piecewise constant function ω with M pieces, we say that IM (j), 1 < j < M , is a step
region of w if

w(IM (j − 1)) ≤ w(IM (j)) ≤ w(IM (j + 1)) or w(IM (j − 1)) ≥ w(IM (j)) ≥ w(IM (j + 1));

and (IM (j)) is a high extreme region of ω if

w(IM (j)) > max {w(IM (j − 1)), w(IM (j + 1))}

and (IM (j)) is a low extreme region of ω if

w(IM (j)) < min {w(IM (j − 1)), w(IM (j + 1))} .

3. we say IM (1) is a high (low) boundary regions of ω if w(IM (1)) > (<)w(IM (2)), and IM (M) is
a high (low) boundary regions of ω if w(IM (M)) > (<)w(IM (M − 1)), respectively.

We recall that in [34] it is shown that, in one dimension, if u0 is a piecewise constant function, then
the solution uα := L (α, u0, I) defined in (1.5) is piecewise constant also.

Theorem 2.2 ([34], Theorem 2). Suppose that the function u0 is piecewise constant with M pieces,
and let α be small enough. Then the unique solution uα := L(α, u0, I) is also piecewise constant
with the same piece of u0, and we have

uα(IM (j)) = u0(IM (j))∓ 2

|IM (j)|
α, if IM (j) is a high (low) extremum region,

uα(IM (j)) = u0(IM (j)), if IM (j) is a step region,

uα(IM (j)) = u0(IM (j))∓ 1

|IM (j)|
α, if IM (j) is a high (low) boundary region.

Moreover, for α is large enough, the function uα is a constant.

Theorem 2.3 ([32], Theorem 10.10). Let v ∈ L∞(I) and α1, α2 ∈ R+ be given. Then the semigroup
property

L (α1 + α2, v, I) = L (α2,L (α1, v, I), I) = L (α1,L (α2, v, I), I) (2.2)

holds for the one dimensional scalar total variation problem.

Theorem 2.4 ([8], Theorem 3.4). Let v ∈ BV (Q) be given. Then

JL (α,v,Q) ⊂ Jv
for any α > 0, where Jv denotes the jump set of v. Moreover, the same result holds if we replace
Q by I.

Remark 2.5. It follows from Theorem 2.3 and Theorem 2.4 that

JL (α2,v,I) ⊂ JL (α1,v,I)
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for any α1 ≤ α2. Indeed, by Theorem 2.3

L (α2, v, I) = L (α2 − α1 + α1, v, I) = L (α2 − α1,L (α1, v, I), I),

and hence by Theorem 2.4 with α := α2 − α1, we obtain the result.

Proposition 2.6 ([3], Theorem 3). Let v ∈ L2(Q) be given. Then L (·, v,Q) ∈ C([0,+∞); L2(Q)).
The same result holds for one dimension case, i.e., L (·, v, I) ∈ C([0,+∞); L2(I)).

3. A direct search for a minimizer αm of error function

3.1. The one dimensional case. In Section 3.1 we will abbreviate L (α, v, I) as L (α, v) and
TV (v, I) as TV (v).

3.1.1. Some properties of piecewise constant functions.

Lemma 3.1. Let w be a piecewise constant function with M pieces where M > 1 large is a positive
integer, then there exists a positive integer M ′ ≤M and

0 = α0 < α1 < α2 < · · · < αM ′ < +∞ (3.1)

such that

1. L (αi, w) has at least one more constant piece than L (αi+1, w) for i = 0, 1, . . . ,M ′ − 1;
2. L (αi + α,w) has the same number of constant pieces of L (αi, w), for any 0 ≤ α < αi+1 − αi

where 0 ≤ i ≤M ′ − 1;
3. L (α,w) =: C(v) for all α ≥ αM ′ , where C(v) is a constant depends on v.

Moreover, the function t: [0,+∞)→ [0,+∞) defined as

t(α) := ‖L (α,w)‖2L2(I)

is continuous, and in each interval [αj , αj+1), t′ is linearly increasing and t is convex.

Proof. According to Theorem 2.2, for each 1 < j < M and α > 0 small enough, we have

(L (α,w))(IM (j)) = w(IM (j))∓ 2

|IM (j)|
α, if IM (j) is a high (low) extremum region of w,

(L (α,w))(IM (j)) = w(IM (j))∓ 1

|IM (j)|
α, if IM (j) is a high (low) boundary region of w.

Therefore, we have

‖L (α,w)‖2L2(IM (j)) =

∥∥∥∥w(IM (j))∓ 2

|IM (j)|
α

∥∥∥∥2

L2(IM (j))

provided that IM (j) is a high (low) extremum region of ω. We obtain

1

2

d

dα
‖L (α,w)‖2L2(IM (j)) = 2

(
2

|IM (j)|
α∓ w(IM (j))

)
,

which is continuous and linearly increasing in α, and

1

2

d2

dα2

(
‖L (α,w)‖2L2(IM (j))

)
=

4

|IM (j)|
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which is strictly positive. A similar result holds if IM (j) is a boundary region. Moreover, since

t(α) := ‖L (α,w)‖2L2(I) =

M∑
j=1

‖L (α,w)‖2L2(IM (j)) ,

which is a finite summation of ‖L (α,w)‖2L2(IM (j)), we conclude that t′(α) is continuous increasing

and t′′(α) > 0 for α > 0 small.

We claim that there exists an unique α1 > 0 such that for all α ∈ (0, α1)

L (α1 − α,w) has M pieces, but L (β,w) have at most M − 1 pieces, (3.2)

for all β ≥ α1.

We first show the uniqueness. Assume there exist distinct α1 and α′1 > 0 such that (3.2) holds for
both α1 and α′1. Without lose of generality we assume that α1 < α′1. Let α′′1 > 0 be such that
α1 < α′′1 < α′1. Then, on the one hand, by (3.2) and Remark 2.5 we have

L (α′′1 , w) = L (α1 + (α′′1 − α1), w) = L (α′′1 − α1,L (α1, w))

has at most M − 1 pieces, on the anther hand we have, again by (3.2), that L (α′1 − (α′1 − α′′1), w)
has M pieces since α′1 − α′′1 > 0, and we have a contradiction.

We define the set

A := {α′ > 0, L (α′, w) has at most M − 1 pieces}
and we claim that

β := inf
α>0
{α ∈ A} (3.3)

has the properties required by (3.2). First, we have that β < +∞ since by Theorem 2.2 there exists
α′ > 0 large enough such that L (α,w) is a constant, i.e., it has only one constant piece, and hence
A 6= ∅. Next, let {αn}∞n=1 ⊂ A be such that αn ↘ β. We have L (β,w) = limn→∞L (αn, w) by
Proposition, 2.6 and hence L (β,w) has at most M − 1 pieces. Finally, we claim that L (β − α,w)
has M constant pieces for any α > 0. If not, then there would be α′′ > 0 such that L (β − α′′, w)
has at most M − 1 constant pieces, but this contradicts (3.3).

We have shown that the function t has the required properties for 0 ≤ α < α1 where α1 is obtain
via (3.3) (α1 := β), and α1 satisfies items 1 and 2 in Lemma 3.1. Next, by (2.2) we may write, for
α ≥ α1, that

L (α,w) = L (α1 + α− α1, w) = L (α− α1, w1)

where w1 := L (α1, w) is a piecewise constant function with M1 pieces and M1 ≤ M − 1. We can
repeat the above argument to obtain α′2 such that w2 := L (α′2, ω1) has at most M2 constant pieces
where M2 ≤M1−1, and we define α2 := α1 +α′2. A recursive argument will lead to wM ′ a constant
for M ′ sufficiently large. Since w only has M pieces, M ′ ∈ N is finite and αM ′ < +∞ and so we
obtain (3.1) as desired. Finally, since wM ′ := L (αM ′ , w) has only one piece, wM ′(x) =: C for all
x ∈ I and C is a constant. We conclude that for all α > αM ′

L (α,w) = L (α− αM ′ , wM ′) = wM ′ .

�
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Proposition 3.2. For any given corrupted image IN and clean image CN , there exists an integer
N ′ < N and

0 = α0 < α1 < α2 < · · · < αN ′ = αs(IN ) < +∞ (3.4)

such that item 1, 2, and 3 of Lemma 3.1 holds. Moreover, in each interval (αi, αi+1) EN (·) is convex
and E ′N (·) is linearly increasing, where EN is defined in (1.9).

Proof. Since CN is a fixed piecewise constant function, we may apply Lemma 3.1 to IN to ob-
tain (3.4), and that EN (·) is convex and E ′N (·) linearly increasing within each interval (αi, αi+1).
Moreover, we conclude that αN ′ = αs(IN ) by applying items 1, 2, and 3 in Lemma 3.1 with
i = N ′. �

3.1.2. The direct search for a minimizer αm of level N error function. Proposition 3.2 allows us
to perform a direct search to find a minimizer αm of (1.9). Indeed, recall that in each interval
[αi, αi+1), EN (·) is convex and E ′N (·) is linearly increasing. Hence, we may apply Newton descent
(see, e.g., [2]) algorithm to locate the unique local minimizer αi,m for EN (α) in [αi, αi+1], and
repeat over all intervals provided by (3.4). Since there are only finitely many intervals [αi, αi+1),
we can locate all possible local minimizers αi,m within a finite time. Finally, the finite stopping time
αs(IN ) provides a natural stopping criterion for our searching algorithm. That is, we terminate
our searching progress once we reach the point when EN (·) is a constant. After we terminate our
searching progress, we only need to find the smallest local minimizer αi,m and that is our αm as
desired. Lastly, if there is a tie, i.e., two local minimizer αi,m < αi′,m such that both gave the
smallest value of EN (·), we choose αi,m as our minimizer αm and ignore αi′m.

3.2. The two dimensional case. In this section we present a two dimensional (weaker) version
of Lemma 3.1 and Proposition 3.2 in Proposition 3.6. In particular, items 1 and 2 in Lemma 3.1
will be absent due to the lack of a two dimensional version of Theorem 2.2. We remark that so far
we only have a weaker version of Theorem 2.2 in two dimensions and we refer readers to our follow
up work [25].

We start by recalling the following theorem in [7].

Theorem 3.3 ([7], Theorem 4 and 5). Let v ∈ L∞(Q) be given and let ∂TV denote the subgradient
of the TV seminorm. Considering the gradient flow defined as{

−∂tG(t, v) ∈ ∂TV (G(t, v)),

G(0, v) := v.
(3.5)

Then following hold:

1. the solution G(t, v) is uniquely defined;
2. the solution G(t, v) satisfies G(t, v) = L (α, v) for t = α;
3. there exist finitely many 0 = t0 < t1 < t2 < · · · < tK ≤ ∞ such that the solution of (3.5) is given

by

G(t, v) = G(ti, v)− (t− ti)SG(ti+1)

for t ∈ [ti, ti+1), where SG(ti+1) ∈ ∂TV (G(ti, v)).

We now prove the following two dimensional “semi-group” property.

Proposition 3.4. Let v ∈ L∞(Q) and let 0 < α1 < α2 < +∞ be given. Then

L (α2, v) = L (α2 − α1,L (α1, v)). (3.6)
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Proof. Let v1 := L (α1, v), and define a new gradient flow by

−∂tG1(t, v1) ∈ ∂TV (G1(t, v1)), G1(0, v1) := v1,

and we have G1(t, v1) is uniquely defined. By Theorem 3.3 we have that

G1(α2 − α1, v1) = L (α2 − α1,L (α1, v)),

and

G(α2, v) = L (α2, v).

Moreover, by the property of gradient flow, we have

G(α2, v) = G1(α2 − α1, v1),

and hence (3.6) hold. �

We recall that the stopping time αs was defined in Definition 1.1.

Lemma 3.5. Let v ∈ L∞(Q) be given. Then αs(v) < +∞ and L (αs(v), v) is a constant.

Proof. We note that the null space of total variation seminorm

N (TV ) =
{
v ∈ L1(Q), TV (v) = 0

}
, (3.7)

is the space of constant function (see, e.g., [1]), and hence a linear subspace of L1(Q).

By Proposition 2.1 in [9], the optimality condition of (1.5), with v in place of I , is

1

α
(L (α, v)− v) ∈ ∂TV (L (α, v)).

Let PTV denote the projection operator onto N (TV ). Hence PTV (v) is a constant by (3.7). We
claim that

1

α
(v − PTV (v)) ∈ ∂TV (0) (3.8)

for α > 0 large enough. Indeed, since ∂TV (0) has nonempty relative interior in N (TV ) (see, e.g.,
[28]), we have that (3.8) holds for α > 0 sufficient large since v ∈ L∞(Q) and PTV (v) is a constant.
Let αS > 0 be large enough such that (3.8) hold. Then we have

1

αS
(v − PTV (v)) ∈ ∂TV (0) = ∂TV (PTV (v))

where in the last inequality we used again the fact that PTV (v) is a constant. That is, we have

1

αS
(v − PTV (v)) ∈ ∂TV (PTV (v)),

and hence PTV (v) is a solution of (1.5). Since the minimizer of (1.5) is unique, we conclude that

PTV (v) = L (αS , v) (3.9)

and thus L (αS , v) is a constant.

Define

αs := inf {α > 0, L (α, v) = PTV (v)} .
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Let {αn}∞n=1 ⊂ {α > 0, L (α, v) = PTV (v)} and αn ↘ αs. We claim that αs is indeed the stopping
time of v. First, αs is unique by its definition, and αs is finite since there exists at least one
αS < +∞ such that (3.9) hold. Next, by Proposition 2.6 we have

L (αs, v) = lim
n→∞

L (αn, v) = PTV (v).

Therefore, for all α > 0, we have

L (αs + α, v) = L (α,L (αs, v)) = L (α, PTV (v)) = PTV (v),

where in the first equality we used Proposition 3.4. This concludes the proof. �

Proposition 3.6. For any given corrupted image IN and clean image CN , there exists an integer
N ′ ∈ N and

0 = α0 < α1 < α2 < · · · < αN ′ = αs(IN ) < +∞
such that, in each interval (αi, αi+1), EN (·) is convex and E ′N (·) is linearly increasing, where

EN (α) :=
1

2

ˆ
Q

|L (α,IN )− CN |2 dx. (3.10)

Proof. Applying Theorem 3.3 to IN , we obtain finitely many

0 := α0 < α1 < α2 < · · · < αN ′ ≤ +∞
such that

L (α,IN ) = L (αi,IN )− (α− αi)SG(αi+1) (3.11)

for α ∈ (αi, αi+1), where SG(αi+1) ∈ ∂TV (L (αi, v)). By Lemma 3.5 we have L (αs(IN ),IN ) is a
constant and hence SG(αs(IN )) = 0. Therefore, invoking (3.11) we deduce that αN ′ ≤ αs(IN ) <
+∞ and L (α,IN ) = L (αs(IN ),IN ) for all α ≥ αs(IN ). Moreover, by (3.11) and the fact that
CN is a fixed function, we conclude that in each interval (αi, αi+1), EN (·) is convex and E ′N (·) is
linearly increasing, as desired. �

3.3. An easy acceleration of the direct search scheme. In this section we provide a lower
bound, which can be located efficiently, of αm. Thus, we may only need to search for αm above
such lower bound and hence reduce the CPU time needed to locate αm.

In [9], it is shown that the function TV (L (·,IN )) is decreasing to 0 and hence the function

TN (α) := |TV (L (α,IN ))− TV (CN )|
is quasi-convex. Thus, solving αp := minα>0 TN (α) can be efficiently done by using quasi-convex
programming.

We next claim that, if we know apriori that TV (IN ) > TV (CN ), then we have TV (L (αp,IN )) =
TV (CN ) and

αp ≤ αm.
Indeed, if αm < αp, then, since TV (L (·,IN )) is strictly decreasing, we have that

TV (L (αm,IN )) > TV (L (αp,IN )) = TV (CN ). (3.12)

where at the last equality we used the assumption that TV (IN ) > TV (CN ) and TV (L (·,IN )) is
strictly decreasing to 0. Therefore, by letting IN

′ := L (αm,IN ), and using (3.12) and the result
from scheme (B), there exists a α′ > 0 such that∥∥L (α′,IN

′)− CN
∥∥
L2 <

∥∥IN
′ − CN

∥∥
L2 ,
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which is equivalent to

‖L (α′,L (αm,IN ))− CN‖L2 < ‖L (αm,IN )− CN‖L2 .

Invoking Theorem 3.4, we have

‖L (αm + α′,IN )− CN‖L2 = ‖L (α′,L (αm,IN ))− CN‖L2 < ‖L (αm,IN )− CN‖L2 ,

and so

EN (αm + α′) < EN (αm),

contradicting the definition of αm. Thus, we only need to search αm for α ∈ [αp, αs(IN )] and
hence save some CPU time. Moreover, in the follow-up work [25] we shall show that αp not only
is a lower bound of αm, but we can also obtain the estimate αm by αm ≤ αp + O(1/N), where
N is the resolution level of given image, and EN (αp) ≤ EN (αm) + O(1/N). The proofs of these
statements require several auxiliary results which are beyond the scope of this paper, and we refer
readers to the follow-up work ([25]).

In the end, we invoke the stochastic optimization methods to reduce further the CPU time needed
to locate the minimizer of EN (α). Roughly speaking, the stochastic optimization methods leverage
random search direction to efficiently explore the landscape of EN (α). The injected randomness
may enable the scheme to escape a local optimum and eventually to approach a global optimum
([33]). Moreover, a good initial guess could efficiently decrease the search steps needed in SDE
scheme, and we may use αp as the initial guess since it is shown to be close to αm.

4. The spatially dependent bilevel learning scheme with respect to TV

One significant drawback of TV denoising is the staircasing effect, and many attempts have been
made to avoid such effect by, for example, introducing a higher level of derivative [13, 6], or by
introducing a spatially dependent denoising parameter α(x) (see, e.g., [22]). In this section we
present a new learning scheme which is adapted from the bilevel learning scheme (B) (see (1.3),
(1.4)).

Before we introduce our new learning scheme, we prove a useful lemma.

Lemma 4.1. Let v ∈ L∞(Q) be given. Then

L (α, v) =: uα → (v)Q :=

 
Q

v dx a.e..

Proof. Recalling the definition of L (α, v) from (1.5) and using (v)Q as test function, we haveˆ
Q

|uα − v|2 dx+ αTV (uα) ≤
ˆ
Q

|(v)Q − v0|2 dx < +∞.

Hence, {uα}α>0 is bounded in L2, and (up to a not relabeled subsequence) there exists a u∞ ∈ L2

such that uα ⇀ u∞ in L2 as α→∞. In turn, TV (uα) is bounded, i.e., {uα}α>0 is bounded in BV .
Hence u∞ ∈ BV and

TV (u∞) ≤ lim inf
α→∞

TV (uα) ≤ lim
α→∞

1

α

ˆ
Q

|(v)Q − v0|2 dx = 0,
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which implies that u∞ =: c is a constant. Invoking the compactness embedding in BV space, we
have uα → c in L1, and we have (up to a not relabeled subsequence) uα → c a.e.. Moreover, by
Fatou’s Lemma, ˆ

Q

|v − c|2 dx ≤
ˆ
Q

∣∣∣v − (v)Q

∣∣∣2 dx. (4.1)

Note that
d

dλ

ˆ
Q

|v − λ|2 dx = 2

ˆ
Q

(v − λ) dx,

and hence the left hand side of (4.1) reaches the minimum value at λ = (v)Q. We conclude that
c = (v)Q, and the proof is completed. �

Remark 4.2. Combining the results from Lemma 4.1 and Lemma 3.5, we deduce that for α >
αs(v), L (α, v) = (v)Q, which is in agreement with Theorem 2.2.

4.1. A spatially dependent construction. Let N ∈ N, CN , and ηN be given. For K ∈ N,
QK ⊂ R2 denotes a cube with its faces normal to the orthonormal basis of R2, and with side-length
greater than or equal to 1/K. LK will be a collection of finitely many QK such that

LK :=
{
QK ⊂ Q : QK are mutually disjoint, Q ⊂

⋃
QK

}
, (4.2)

and VK denotes the collection of all possible LK . For K = 0 we set Q0 := Q, hence L0 = {Q}. We
define our improved learning scheme (P) in resolution level N as:

Level 1.

uP,N := arg min

{ˆ
Q

|CN − uLK |
2
dx, K ≥ 0, LK ∈ VK

}
(4.3)

Level 2.
uLK (x) := L (αQK ,IN , QK) for x ∈ QK and QK ∈ LK , (4.4)

where αQK := arg min
α>0

ˆ
QK

|L (α,IN , QK)− CN |2 dx. (4.5)

The learning scheme (P) performs the learning scheme (B) in each subdomain and combines it all
together to achieve an improved global result. Let

PN (K) := inf
LK∈VK

{ˆ
Q

|CN − uLK |
2
dx

}
where uLK is defined in (4.4), and

P(N) :=

ˆ
Q

|CN − uP,N |2 dx (4.6)

where uP,N is obtained from (4.3). Since VK ⊂ VK+1, we have PN (K) ≥ PN (K + 1) and hence

lim
K→∞

PN (K) exists

and is equal to infK∈N0 PN (K). Note that when K = 0, PN (0) = EN (αm) where EN (·) is defined
in (3.10) and αm is the minimizer. That is, the improved scheme (P) does make an improvement
since P(N) ≤ PN (0) = EN (αm).

The assumption that IN is a piecewise constant function attaining finitely many values yields
a natural stop criterion of scheme (P) and prevents us from letting K → ∞. Indeed, since IN is
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constant in each QN ∈ QN where QN is defined in (1.7), searching in cubes QK such that K > N
would not benefit us anymore since L (α, v,QK) = v for any α ≥ 0 if v is constant in QK .

4.2. The staircasing effect. In this section we first illustrate with a simple example how (P)
avoids the staircasing effect. Figure 1a shows the given corrupted image IN and the clean im-
age CN , with N = 4. Scheme (B) results in L (αm,IN , I)(I4(2)) = L (αm,IN , I)(I4(3)) and
hence the staircasing effect occurs, as Figure 1b indicates. Scheme (P) operates in the subintervals
I ′ := (0, 0.5) and I ′′ := (0.5, 1) separately, and hence L (α,IN , I

′)(I4(2)) and L (α,IN , I
′′)(I4(3))

are able to break up the staircase produced in Figure 1b and go across each other, as shown in
Figure 1c, and finally achieve a better result, as Figure 1d indicates. Moreover, as shown in the
end of this paper for the two dimensional case, where Figure 4 and 5 represents the clean image CN
and corrupted image IN , respectively. We see in Figure 7, the reconstructed image by scheme (P)
results in smaller error value, mitigated staircasing effect (upper right corner), and sharped edge
(around the middle area), compare with the reconstructed image by scheme (B) in Figure 6.

We remark that the ability to create a new jump point in L (α,IN ), as shown in Figure 1c, is
key to avoid the staircasing effect. In [22], the authors proposed a method to avoid the staircasing
effect by letting α = 0 in certain points and hence at those points new jump points could be created
in L (α,IN ). In Section 5.2 in [22] they showed that if ηN has average 0 in each subinterval Ii,

where I =
⋃M
i=1 Ii, and if CN is constant in each Ii, then they can achieve a perfect recovery (See

Figure 2a to 2c). We remark that our scheme (P) can produce the same perfect recovery result by
choosing K large enough such that {I1, . . . , IM} ⊂ LK . Indeed, invoking Lemma 4.1 we have that,
for α > 0 large enough,

L (α,IN , Ii) =

 
Ii

IN dx =

 
Ii

(CN + ηN ) dx =

 
Ii

CN dx = CN (Ii)

for any 1 ≤ i ≤ M , where in the last two equalities we used the assumptions that ηN has average
0 in Ii and that CN is constant in Ii.

Finally, we remark that scheme (P) can deal with more generalized situations which cannot be dealt
by the method proposed in [22]. For example, in Figure 3a, C (x) := x and hence CN (IN (i)) = i/N
for x ∈ IN (i), 1 ≤ i ≤ N (recall IN (i) from (2.1)). We define ηN (2i− 1) = −ηN (2i), 1 ≤ i ≤ N/2.
That is, ηN does not have average 0 in each subinterval IN (i) and so Proposition 5.5 in [22] can
not be applied. However, scheme (P) can still provide a perfect recovery result, as shown in Figure
1d, by choosing K large enough such that {I2i−1 ∪ I2i, 1 ≤ i ≤ N/2} ⊂ LK . Moreover, we observe
that scheme (B) produces, again, the staircasing effect, as shown in Fig 3b.

4.3. Approximation of the clean image and a risk acceleration of scheme (P). In the last
section of this paper, we show that, under mild assumptions on the noise ηN , the scheme (P) can
produce a perfect recovery result for an arbitrary clean image C , as the resolution level N goes to∞.

We recall that QK is defined in (1.7) and P(K) was introduced in (4.6). Also, we recall a useful
corollary for Lusin’s Theorem.

Corollary 4.3 ([19], Corollary 1, page 16. Also see [20], 7.10). Let µ be a Borel regular measure
on RN and let f : RN → RM be µ-measurable and bounded. Assume A ⊂ RN is µ-measurable
and µ(A) < +∞. Fix ε > 0. Then there exists a continuous function f̄ : RN → RM such that∥∥f̄∥∥

L∞
≤ ‖f‖L∞ and µ

{
x ∈ A : f̄(x) 6= f(x)

}
< ε.
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(c) Scheme (P) avoids staircasing
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(d) uP,N and CN overlap, a perfect recovery

Figure 1. I4(1) = (0, 0.25), I4(2) = (0.25, 0.5), I4(4) = (0.5, 0.75), I4(4) = (0.75, 1)
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(a) ηN has average 0 in I1 and I2

0 0.5 1

-6

-4

-2

0

2

4

6

(b) perfect recovery by [22]
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(c) perfect recovery by scheme (P)

Figure 2. M = 2. I1 = (0, 0.5), I2 = (0.5, 1)
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(b) L (αm,IN ) by scheme (B)
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(c) uP,N by scheme (P)

Figure 3. N = 100. The noise ηN is designed such that ηN (i) = −ηN (i + 1).
Note that in Figure 3b, scheme (B) produces staircasing; in Figure 3c, scheme (P)
produces an almost perfect recovery

The main theorem of this section is as follows.

Theorem 4.4. Assume that the noise ηK2 has locally average 0, that is 
QK

ηK2 = 0 (4.7)

for any QK ∈ QK and all k ∈ N. Then

lim
K→∞

P(K2) = 0.

Proof. Let K ∈ N be fixed. Note that QK ∈ VK . Then, according to (4.4) and invoking Lemma
4.1, for each QK ∈ QK we have

‖L (αQK ,IK2 , QK)− CK2‖2L2(QK) ≤
∥∥∥∥ 

QK

IK2dx− CK2

∥∥∥∥2

L2(QK)

=

∥∥∥∥ 
QK

CK2 dx− CK2

∥∥∥∥2

L2(QK)

,

where in the last equality we used (4.7).

Hence, we have

P(K2) ≤
∑

QK∈QK

‖L (αQK ,IK2 , QK)− CK2‖2L2(QK) ≤
∑

QK∈QK

∥∥∥∥ 
QK

CK2(x)dx− CK2

∥∥∥∥2

L2(QK)

.

We claim that

lim
K→∞

∑
QK∈QK

‖CK2 − C ‖2L2(QK) = lim
K→∞

‖CK2 − C ‖2L2(Q) = 0. (4.8)

It is clear that (4.8) holds if C is continuous and using Lebesgue Dominated Convergence Theorem.
We prove that (4.8) still hold if C ∈ L∞(Q). For simplicity, assume that ‖C ‖L∞(Q) ≤ 1. Fix

ε > 0. By Corollary 4.3 there exists a compact set W ⊂⊂ Q and a continuous function v such that
vbW = C bW , ‖v‖L∞ ≤ ‖C ‖L∞ , and L2 (W ) ≥ L2 (Q) − ε = 1 − ε, where L2 stands for the two
dimensional Lebesgure measure. Then we immediately haveˆ

Q

|v − C |2 dx < ε. (4.9)
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Let vK2 be defined similarly to CK2 and we observe that vK2 → v in L2(Q). That is,

lim
K→∞

‖vK2 − v‖2L2(Q) = 0. (4.10)

We obtain ˆ
Q

|vK2 − CK2 | dx =
∑

1≤i,j≤K2

ˆ
QK2 (i,j)

∣∣∣∣∣K2

ˆ
QK2 (i,j)

(v − C ) dx

∣∣∣∣∣ dy
≤

∑
1≤i,j≤K2

K2

ˆ
QK2 (i,j)

ˆ
QK2 (i,j)

|v − C | dxdy

=
∑

1≤i,j≤K2

ˆ
QK2 (i,j)

|v − C | dx = ‖v − C ‖L1(Q) ≤ 2ε.

Since |vK2 − CK2 | ≤ 2 uniformly in W we deduce thatˆ
Q

|vK2 − CK2 |2 dx ≤ 2

ˆ
Q

|vK2 − CK2 | dx ≤ 4ε. (4.11)

Hence, for K ∈ N large enough, and in view of (4.11), (4.10), and (4.9), in this order, we observe
that

‖CK2 − C ‖2L2(Q) = ‖CK2 − vK2 + vK2 − v + v − C ‖2L2(Q)

≤ 3 ‖CK2 − vK2‖2L2(QK) + 3 ‖vK2 − v‖2L2(QK) + 3 ‖v − C ‖2L2(QK)

≤ 12ε+ 3ε+ 3ε = 18ε

and (4.8) is verified.

Similarly, we could show that (note below we have CK , but in (4.8) we have CK2)

lim
K→∞

∑
QK

‖CK − C ‖2L2(QK) = 0. (4.12)

Note that  
QK

CK2(y)dy = CK(x) for x ∈ QK .

Then, in view of (4.8) and (4.12),∑
QK∈QK

∥∥∥∥ 
QK

CK2(x)dx− CK2

∥∥∥∥2

L2(QK)

=
∑

QK∈QK

‖CK − C + C − CK2‖2L2(QK)

≤
∑

QK∈QK

‖CK − C ‖2L2(QK) +
∑

QK∈QK

‖CK2 − C ‖2L2(QK) → 0

as K →∞.

Therefore, we deduce that

lim
K→∞

P(K2) ≤ lim
K→∞

∑
QK∈QK

∥∥∥∥ 
QK

CK2(x)dx− CK2

∥∥∥∥2

L2(QK)

= 0,
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and the proof is concluded. �

Remark 4.5. The noise ηK2 in Theorem 4.4, which has locally zero average, can be produced by
using the compound camera which is the leading technology in robotic vision. Roughly speaking,
the compound camera captures a corrupted image IK2 with resolution K2 by capturing with K2

number of small cameras, each has resolution level K and captures a part of C in the subdomain
QK , and these put together yield IK2 . It is usually assumed that each individual camera produces
noise with zero average (see, e.g., [9]), which implies that the nose ηK2 has average zero in each QK
as required.

We remark that the CPU time needed to produce the best reconstructed image uP,N by using scheme
(P) is relatively long. Typically, for a 1024× 1024 resolution image IN , it takes around 2 hours to
produce uP,N , and we note that the CPU time needed increased exponentially as resolution level
increase. One reason for such long CPU time consumed is because VK is nested, i.e., VK ⊂ VK+1,
and thus at each layer VK , we have to search within, not only VK , but all Vi, i ≤ K. However,
such design in scheme (P) is important since it guarantees that

PN (K) ≥ PN (K + 1)

and, in turn, it ensures that we are approaching to minimizer uP,N as K →∞. In practice we may
pre-fix a small acceptable error ε > 0 such that once we reach at K0 large such that

PN (K0)− PN (K0 + 1) < ε,

we stop scheme (P) and use

uP,K0
:= arg min

{ˆ
Q

∣∣CN − uLK0

∣∣2 dx, LK0
∈ VK0

}
as an approximation of the minimizer produced by scheme (P).

To further accelerate (P), we propose a simplified version of scheme (P), the scheme (P ′) as follows
(recall QK from (1.7)):

Level 1.

uP′,N := arg min

{ˆ
Q

|CN − uQK |
2
dx : K ≥ 0

}
Level 2.

uQK (x) := L (αQK ,IN , QK) for x ∈ QK and QK ∈ QK ,

where αQK := arg min

{ˆ
QK

|L (α,IN , QK)− CN |2 dx : α > 0

}
.

Note that QK ∈ VK and so P(N) ≤ P ′(N) where

P ′(N) :=

ˆ
Q

|CN − uP′,N |2 dx.

That is, the optimized reconstructed image uP′,N produced by scheme (P ′) might result in a higher
error compare with the optimized reconstructed image uP,N produced by scheme (P), and in turn,
uP′,N is worse than uP,N . However, as the resolution level N gets large, uP′,N becomes close to
uP,N as the following theorem asserts.
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Theorem 4.6. Assume that the noise ηK2 has locally average 0, that is, 
QK

ηK2 = 0

for any QK ∈ QK where QK is defined in (1.7). Then

lim
K→∞

P ′(K2) = 0.

Proof. The proof is same to the proof of Theorem 4.4. �

Theorem 4.4 and Theorem 4.6 imply that

lim
N→∞

ˆ
Q

|uP′,N − uP,N |2 dx = 0,

and hence scheme (P ′) could be used as a “risky” replacement of scheme (P) if the resolution level
N is large enough, although

P(N) < P ′(N)

might happen.

The advantage of scheme (P ′) is that, not only it can reduce the staircasing effect as the ex-
ample proposed in Figure 1c to 1d applies to (P ′) as well, but also, and more importantly, the
scheme (P ′) does require much less CPU time as compared to scheme (P), since (P ′) only searchs
within QK , which is a much smaller collection than VK in which (P) searches. In practice, for a
1024× 1024 resolution level image, (P ′) only need around 10 minutes to reach its optimal solution,
but (P) usually takes around 2 hours to reach its.

5. Adaptation of generalized regularizers - a comprehensive learning scheme

We recall that the level 2 of scheme (P) utilizes the scheme (B) in each subdomain of Q, and (B)
uses TV as its regularizer. There are many choice of possible regularizers. For example, ICTV k

in [23], TV k in [30], and TGV k in [29]. Therefore, to consider a broad spectrum of regularizers at
the same time, we introduce the following comprehensive learning scheme (CT ):

Level 1.

uCT ,N := arg min {F (CN − u,Q) : K ≥ 0, u ∈ TK}
Level 2.

TK := {uCT K ,N , LK ∈ VK}

uCT K ,N (x) is constructed upon the information obtained by uQK ,N (5.1)

Level 3.

uQK ,N := arg min {F(IN − u,QK) +R(u, α,QK), u ∈ SBV (Q), R ∈ R} ,
where F is the fidelity term which is quasiconvex in the sense of [12], and R is a collection of
regularizers. Indeed, letting F be L2 norm, R(u, α,QK) = αTV (u,QK), and in (5.1) using the
direct construction, i.e., uCT K ,N (x) := uQK ,N for x ∈ QK , we recover scheme (P).

We remark that by choosing the right regularizers, scheme (CT ) can, in addition to learn the
parameter of the regularizers, also learn the order of the regularizers. In my recent work with

Elisa Davoli (see [15]) , a new fractional order seminorm, ICTV rα̃ , r ∈ R, r ≥ 1, α̃ ∈ Rbrc+1
+ is



Page 21 Section 5.0

proposed in the one-dimensional setting, as a generalization of the standard ICTV kα̃ -seminorms,

k ∈ N, α̃ ∈ Rk+1
+ . To be precise, we recall that the Gagliardo seminorm (see [21, 27]) for u ∈ Lp is

defined as

|u|W s,p(I) :=

(ˆ
I

ˆ
I

|u(x)− u(y)|p

|x− y|1+sp
dx dy

) 1
p

.

where 0 < s < 1 and p ≥ 1. We define the fractional ICTV seminorm below:

Definition 5.1. Let 0 < s < 1, k ∈ N, and let α̃ = (α0, α1, α2, . . . , αk+1) ∈ Rk+1
+ . For every

u ∈ L1(I), we define its fractional ICTV k+s seminorm as follows:

1. for k = 1

|u|ICTV 1+s
α (I) := inf

{
α0 |u′ − sv0|Mb(I)

+ α1s(1− s) |v0|W s,1+s(1−s)(I) :

v0 ∈W s,1+s(1−s)(I),

ˆ
I

v0(x) dx = 0

}
.

2. for k > 1

|u|ICTV k+sα (I) := inf
{
α0 |u′ − v0|Mb(I)

+ α1 |v′0 − v1|Mb(I)
+

· · ·+ αk−1

∣∣v′k−2 − svk−1

∣∣
Mb(I)

+ αks(1− s) |vk−1|W s,1+s(1−s)(I) :

vi ∈ BV (I) for 0 ≤ i ≤ k − 2, vk−1 ∈W s,1+s(1−s)(I),

ˆ
I

vk−1(x) dx = 0

}
.

We say that u ∈ BCV k+s
α̃ (I) if

‖u‖BCV k+sα̃ (I) := ‖u‖L1(I) + |u|ICTV k+sα̃ (I) < +∞.

We restrict our analysis to the case in which α̃ and r satisfy the box constraint (see, e.g. [4, 16])

(α̃, r) ∈ [α̂, β̂]brc+1 × [1, r̂] (5.2)

where α̂ > 0, β̂ > 0, and r̂ > 1 are fixed real numbers. Then, using our notation, we propose
the following learning scheme (D) which takes into account the order of the regularizer and the

parameter α̃ ∈ Rbrc+1
+ simultaneously, where r ≥ 1 is given and brc denotes the largest integer

smaller than or equal to r.

Level 1.

(ᾱ, r̄) := arg min

{ˆ
I

|uα̃,r − CN |2 dx, (α̃, r) ∈ [α̂, β̂]brc+1 × [1, r̂]

}
,

Level 2.

uα̃,r := arg min
u∈BCV rα̃ (I)

{ˆ
I

|u−IN |2 dx+ |u|ICTV rα̃ (I)

}
.

Then the following theorem is established.

Theorem 5.2. Under the box constraint (5.2), the learning scheme (D) admits a unique solu-

tion (ᾱ, r̄) ∈ [α̂, β̂]br̄c+1 × [1, r̂] and provides an associated optimally reconstructed image uᾱ,r̄ ∈
BCV r̄ᾱ (I).

Then, inserting scheme (D) into the level 3 of scheme (CT ), we obtain a learning scheme which
learns a spatially dependent parameters as well as a spatially dependent regularizer, where IK , LK ,
and VK defined in one dimension similar to (4.2).
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Level 1.

uCT ,N := arg min

{ˆ
I

|CN − uLK |
2
dx, K ≥ 0, LK ∈ VK

}
Level 2.

uLK (x) := uIK ,N for x ∈ IK and IK ∈ LK ,

Level 3. uIK ,N := uᾱ,r̄ for x ∈ IK , where

(ᾱ, r̄) := arg min

{ˆ
IK

|uα̃,r − CN |2 dx, (α̃, r) ∈ [α̂, β̂]brc+1 × [1, r̂]

}
and

uα̃,r := arg min
u∈BCV rα̃ (IK)

{ˆ
IK

|u−IN |2 dx+ |u|ICTV rα̃ (IK)

}
.

We conclude this paper with an outlook on current and future works providing more options of the
regularizers and construction in (5.1).

Regarding new regularizers: in [14] a A -B quasiconvex seminorm is proposed as a further ex-
tension of fractional order ICTV r seminorm.

Regarding the new construction in (5.1): using scheme (P) as an example, in [26] we introduce
a spatially dependent parameter αPK ,N (·) defined by αPK ,N (x) := αQK ,N , for x ∈ QK ∈ PK ,
where αQK ,N is given in (4.5), and we replace uPK ,N defined in (4.4) by setting

uPK ,N := L(αPK ,N ,IN , Q).

This new construction for uPK ,N brings in several advantages. For example, uPK ,N is expected
to be “close” to CN locally in QK since αPK ,N is defined by locally optimizing parameter αQK ,N ,
and, at the same time, it is expected to have a good balance between local optimization and global
optimization since it is reconstructed over the entire domain Q.
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Denoised Image decomp alpha

Figure 7. The reconstructed image by scheme (P). The training error is 900.325.
Note that the staircasing effect is reduced, and edges are sharper


