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ABSTRACT. The Ambrosio-Tortorelli approximation scheme with weighted underlying metric is
investigated. It is shown that it I'-converges to a Mumford-Shah image segmentation functional
depending on the weight w dz, where w € SBV(Q), and on its value w™.
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1. INTRODUCTION AND MAIN RESULTS
A central problem in image processing is image denoising. Given an image ug, we decompose it as
Uy = Ug + 1N

where u, represents a noisy-free ground truth picture, while n encodes noise or textures. Examples
of models for such noise distributions are Gaussian noise in Magnetic Resonance Tomography, and
Poisson noise in radar measurements [16]. Variational PDE methods have proven to be efficient to
remove the noise n from ugy. Several successful variational PDEs have been proposed in the litera-
ture (see, for example [36, 42, 43, 44]) and, among these, the Mumford-Shah image segmentation
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functional

\Vu|®dz + aHN 1K) + / (u — up)?dx

G(u, K) ::a/ ; 1)

O\K
where u € W2(Q\ K), K C Q closed in Q,

introduced in [41], is one of the most successful approaches. By minimizing the functional (1.1)
one tries to find a “piecewise smooth” approximation of ug. The existence of such minimizers can
be proved by using compactness and lower semicontinuity theorems in SBV(Q) (see [1, 2, 3, 4]).
Furthermore, regularity results in [22, 24] give that minimizers u satisfy

ue CHQ\S,) and HY (S, NQ\ S,) =0.

Here, as in what follows, S, stands for the jump set of u.

The parameter a > 0 in (1.1), determined by the user, plays an important role. For example, choos-
ing a > 0 too large will result in over-smoothing and the edges that should have been preserved
will be lost, and choosing a > 0 too small may keep the noise un-removed. The choice of the “best”
parameter a then becomes an interesting task. In [25] the authors proposed a training scheme by
using bilevel learning optimization defined in machine learning, which is a semi-supervised learning
scheme that optimally adapts itself to the given “perfect data” (see [20, 21, 26, 27, 45, 46]). This
learning scheme searches @ > 0 such that the recovered image u,, obtained from(1.1), best fits the
given clean image u,, measured in terms of the L2-distance. A simplified bilevel learning scheme
(B) from [25] is the following:

Level 1.

o= argmin/ [ta — ug|2dx, (1.2)
a>0 Q

Level 2.

Uq = argmin {/a|Vu|2dx+a7-lN_l(Su)+/ |u—u0|2dx},
uesBV(Q) /o Q

In [25] the authors proved that the above bilevel learning scheme has at least one solution & €
(0, +00], and a small modification rules out the possibility of @ = +occ.

The model proposed in [37] is aimed at improving the above learning scheme. It is a bilevel
learning scheme which utilizes the scheme (B) in each subdomain of €2, and searches for the best
combination of different subdomains from which a recovered image %, which best fits uy, might be
obtained.

To present the model, we first fix some notation. For K € N, Qx C RY denotes a cube with

its faces normal to the orthonormal basis of RV, and with side-length greater than or equal to 1/K.
Define Pg to be a collection of finitely many @i such that

Pk = {QK c RY : Qg are mutually disjoint, Q C UQK} ,

and Vg denotes the collection of all possible Px. For K = 0 we set Qg := 2, hence Py = {Q}.

A simplified bilevel learning scheme (P) in [37] is as follows:
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Level 1.
@ := argmin {/ lug — uPK2dx} (1.3)
K>0,Prk€VK Q
where up,. := argmin {/OépK(QZ') \Vu|2dx+/ ap, (2)dHN 1 +/ lu — ug|” dx} (1.4)
uwesBV(Q) Lo Su Q
Level 2.
ap, (2) = ag, for x € Qx € Pk, where ag, = argmin/ |t — ug|2 dz,
a>0 Qx
(1.5)
U :=  argmin {/ o |Vul? da:JraHN*l(Su)Jr/ uu0|2dx}
uESBV(QKﬁQ) QrNQ QrNO

Scheme (P) allows us to perform the denoising procedure “point-wisely”, and it is an improvement
of (1.2). Note that at step K = 0, (1.3) reduces to (1.2). It is well known that the Mumford-
Shah model, as well as the ROF model in [44], leads to undesirable phenomena like the staircasing
effect (see [10, 19]). However, such staircasing effect is significantly mitigated in (1.3), according to
numerical simulations in [37] (a theoretical validation of such improvement is needed). We remark
that the most important step is (1.4) for the following reasons:

1. (1.4) is the bridge connecting level 1 and level 2;

2. since ap, is defined by locally optimizing the parameter ag, , we expect up, be “close” to u,
locally in Qg;

3. the last integrand in (1.4) keeps up, close to ug globally, hence we may expect up, to have a
good balance between local optimization and global optimization.

We may view (1.4) as a weighted version of (1.1) by changing the underlying metric from dz to
ap,dz. By the construction of ap, in (1.5), we know it is a piecewise constant function and, since
K > 0 is finite, the discontinuity set of ap,. has finite ¥ ~! measure. However, ap,. is only defined
LN-a.e., and hence the term

/ ap, (z)dHN 1

u

might be ill-defined.

In this paper, we deal with the well-definess of (1.4) by modifying ap, accordingly, and by building
a sequence of functionals which T'-converges to (1.4). To be precise, we adopt the approximation
scheme of Ambrosio and Tortorelli in [8] and change the underlying metric properly. In (1.1)
Ambrosio and Tortorelli considered a sequence of functionals reminiscent of the Cahn-Hilliard ap-
proximation, and introduced a family of elliptic functionals

1
G:(u,v) == / o |Vul? vida —|—/ o' |:€ Vo> + —(v— 1)2} dx —|—/ (u — ug)® du,
Q Q de Q
where u € W12(Q), (v —1) € W3*(Q), and up € L2(Q). The additional field v plays the role of
controlling variable on the gradient of u. In [8] a rigorous argument has been made to show that

G. — G in the sense of T-convergence ([9]), where G is defined in (1.1).

In view of (1.5), we fix a weight function w € SBV (Q) such that w is positive and HV~1(S,,) < +oo.
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Our new (weighted version) Mumford-Shah image segmentation functional is defined as
E,(u):= / \Vul|® wda +/ w dHN (1.6)
Q S,

and the (weighted version) of Ambrosio - Tortorelli functionals are defined as

1
E, -(u,v) ::/ |Vu\21)2wd:c+/ {5|Vv|2+(v1)2 wdx.
’ Q Q 4e

It is natural to take u € GSBYV,, () in (1.6) (see Definition 2.6. For basic definitions and theorems
of weighted spaces we refer to [5, 6, 11, 14, 15, 18, 32, 33]). Moreover, since K > 0 is finite and
ag, > 0in (1.5) , it is not restricted to assume that

essinf{w(x),z € Q} >, where [ > 0 is a constant.

This condition implies that all weighted spaces considered in this paper are embedded in the cor-
responding non-weighted spaces, and hence we may apply some results that hold in the context of
non-weighted spaces. For example, BV,, C BV and W}? C W2 (see Definition 2.6), and most
theorems in [8] can be applied to u € SBV,, () (for example, Theorem 2.3 in [8]).

Before we state our main result, we recall that similar problems have been studied for different
types of weight functions w (see, for example [12, 13, 35]). In particular, [12, 13] treat a uniformly
continuous and strong A, (defined in [23]) weight function on Modica-Mortola and Mumford-Shah-
type functionals, respectively, and in [35] the authors considered a C'*#-continuous weight function,
with some other minor assumptions, in the one-dimensional Cahn-Hilliard model.

Our main result is the following:

Theorem 1.1. Let Q@ C RY be open bounded, let w € SBV(Q) N L*>®°(Q), and let &, .: LL(Q) x
LY(Q) — [0, +00] be defined by

Eye(u,v) if (u,v) € Wh2(Q) x Wh3(Q), 0 <wv <1,
+00 otherwise.

Euwe(u,v) == {

Then the functionals E,, . T-converge, with respect to the L., x L' topology, to the functional
E,(u) ifue GSBV,(Q) andv =1 a.e.,
Eu(u,v) == o) ¥ . “(D)
400 otherwise.
The proof of I'-convergence consists of two steps. The first step is to prove the “liminf inequality”

liminf E,,  (ue,ve) > E,(u)
e—0 ’

for every sequence u. — u, v — v. This is obtained in Section 3.2 in the case N = 1 by using
most of the arguments proposed in [8], and the properties of SBV functions in one dimension (see
Lemma 2.5). The case N > 1 is studied in Section 4.3, and it uses a special slicing argument (see
Lemma 4.6).

The second step is the construction of a recovery sequence (u. — u,v. — 1) such that the term

/ |:€|V’U2—|-1(U— 1)?| wdz (1.7)
Q 4e
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only captures the information of w™. We note that for small ¢ > 0, (1.7) only penalizes a &-
neighborhood around the jump point of u. By using fine properties of SBV functions (see Theorem
2.4), we are able to incorporate u and v in our model such that (1.7) will only penalize along the
direction —vg,,. This will be carried out in Lemma 3.7.

We remark that the techniques we developed in this paper can be adapted to other functional
models. For example,

1. the weighted Cahn-Hilliard model defined as

CH, (u) ::/I {5Vu(x)|2+ %W(u) wdz,

for u € W}2?(Q) and with a double well potential function W: R — [0, +-00) such that {W =0} =
{0,1} with the I'-limit

CH,(u) := cw P, (u)
defined for v = xg € BV,,(2), where

1
cw 1= 2/ VW(s)ds and P, (u) := / wodHN T
0 S,
2. higher order singular perturbation models defined by the I'-limit
H,(u):= / \Vul® wdz + / w™ (x) dHN T,
Q S,

and approximation energies

1 2 1
e — 2.20d / 2k—1 |7 (k) Zo—12wd
H, e (u,v) /Q|Vu| VW x—i——c(k) Q[e ’V fu‘ —|—€(v )° | wd,

where

C(k) = min {/}R+

The analysis of items 1 and 2 above is forthcoming (see [38]).

2
0O 4 (0 = 12z, 0(0) =v/(0) =+ = v* D (0) =0, Jim o(t) = } '

This article is organized as follows: In Section 2 we introduce some definitions and we recall
preliminary results. In Section 3 we prove the one dimensional version of Theorem 1.1. Section 4
is devoted to the proof of our main result.

2. DEFINITIONS AND PRELIMINARY RESULTS

Throughout this paper, @ C RY is an open bounded set with Lipschitz boundary, and I := (—1,1).

Definition 2.1. We say that uw € BV (Q) is a special function of bounded variation, and we write
u € SBV(Q), if the Cantor part of its derivative, D°u, is zero, so that (see [4], (3.89))

Du = D%+ Diu = Vul™N |[Q+ (ut —u” ), HY 71| S,. (2.1)
Moreover, we say that u € GSBV(Q) if K AuV —K € SBV(Q) for all K € N.
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Here we always identify u € SBV(Q) with its approximation representative u, where

a(x) = 1 [u+(x) + u_(a:)} ,

2
with N
B
ut(z) = inf{t ER: Tim £t (”“"’T)Nﬂ {fu>t}) _ 0} :
r—0 r
and

u” (x) := sup {t eR: lim LY(Br) n{u<t)) = 0} .

r—0 ’r‘N

We note that @ is Borel measurable (see [29], Lemma 1, page 210), and it can be shown that @ = u
LN-ae. z €, and that

(@) (&) = u* (2) and () (z) = u~ (2)
for HN"l-ae. € Q (see [29], Corollary 1, page 216). Furthermore, we have that
—<u (z) <ut(z) < +o0 (2.2)
for HN"1-a.e. x € Q (see [29], Theorem 2, page 211). The inequality (2.2) uniquely determines the
sign of v, in (2.1).

Definition 2.2. (The weight function) We say that w: Q — (0, +00] belongs to W(RQ) if w € L' ()
and has a positive lower bound, i.e., there exists [ > 0 such that

essinf {w(x),z € Q} > L. (2.3)

Without loss of generality, we take [ = 1. Moreover, in this paper we will only consider the cases
in which w is either a continuous function or a SBV function. If w € SBV then, in addition, we
require that

HNT(S,,) < 0o and HNV (S, \ S,,) = 0.

We next fix some notation which will be used throughout this paper.

Notation 2.3. Let I' C Q be a HV~!-rectifiable set and let 2 € I' be given.

1. We denote by vr(z) a normal vector at x with respect to I'; and Q,.(x,r) is the cube centered
at « with side length r and two faces normal to vr(x);

2. T, ., stands for the hyperplane normal to vr(z) and passing through z, and P, . stands for the
projection operator from I' onto T3 ,.;

3. we define the hyperplane

T (t) =Ty pp +tvr(x)
for t € R;
4. we introduce the half-spaces
Hy(2)" ={y eR" : vp(2)- (y—z) >0}
and
Hy(z)” ={y eR": vp(z)-(y—=z) <0}.
Moreover, we define the half-cubes

lei:r‘ (I,T) = Ql/r (I’,T) n HVI" (I)i;

5. for given 7 > 0, we denote by R, ,.(z,r) the part of Q,.(x,r) which lies strictly between the
two hyperplanes T, ,,.(—77) and T} ... (77);
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6. we set
As = {x € Q: dist(z, A) < §} (2.4)
for every A C Q and ¢ > 0.
Theorem 2.4 ([29], Theorem 3, page 213). Assume that u € BV (). Then
1. for HN"1-a.e. 19 € Q\ S,

lim |u(z) — @(xo)| V-1 da = 0
r—0 B(xo,r)

2. for HN"'-a.e. o € S,

lim |u(z) — ui(x0)| Ntdr =0
70 B(xo,r)NHyg, (z0)*

3. for HN=1 a.e. 9 € S,

. 1 _ _ _
lim ﬁ/ |u+(x) —u (x)| dHN 1(:0) = |u+(:170) —u (x0)| .
e=0¢ Suﬁstu (zo,€)
Lemma 2.5. Letw € SBV(I) be such that H°(S,,) < co. For every x € I the following statements
hold:
1 if {xp}oo ) and {yn}or, C I are such that , < x < yn, n € N, and lim, o T, = lim,_y00 Y, =
x, then

liminf essinf w(y) > w™(z); (2.5)
n—o0 ye(mnvyn)
2.
Jim @ (2) = wh(2); (2.6)
{zndnta CHOL (o)
3.
lim sup esssup  w(z) = wt(z), (2.7)
dy (Kp,z)—0 z€EK,
KnCCHZ

vg,, ()
where K,, CC Huis (@) and dy denotes the Hausdorff distance (see Definition A.1).
Proof. If © ¢ S,,, then there exists ¢ > 0 such that
SeN(z—=6,x+0)=0,
and so w is absolutely continuous in (z — §,z 4+ ¢), and (2.5)-(2.7) are trivially satisfied with
w(x) = w™ (x) and with equality in place of the inequality in (2.5).
Let x € S, and, without loss of generality, assume that x = 0, and let z,, y,, — 0 with z,, < 0 < y,
for all n € N. Since H°(S,,) < oo, choose 7 > 0 such that
SN0 —7,0+7)=0.

As @ is absolutely continuous in (—7,0) and (0,7), we may extend @ uniquely to x = 0 from the
left and the right (see Exercise 3.7 (1) in [34]) to define

o(0h) = Il{‘rgl+ w(z) and @(07) == 11}%1— w(z). (2.8)
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Assume that (the case @(07) > @(0") can be treated similarly)
@(07) <@(0T). (2.9)

We first claim that
liminf inf ©(z) > ®(07). (2.10)

n—00 z&(Tn,yn)

Let € > 0 be given. By (2.8) find 7 > § > 0 small enough such that

e for all z € (0,9).

DN =

|@(z) —@(07)| < %5 for all z € (—4,0), and |w(z) —w(07)| <

This, together with (2.9), yields
1
e,

2

for all x € (—¢,9). Since z,, — 0 and y,, — 0, we may choose n large enough such that (z,,y,) C
(—4,8) and hence

w(z) > w(07) —

inf  o(z) > w(07) —c.
me(znﬂ'in)

Thus, (2.10) follows by the arbitrariness of € > 0.

We next claim that
@(0%) = w®(0). (2.11)
By Theorem 2.4 part 2 and the fact that @ = w £'-a.e., we have
1/ 1
w™(0) = lim — w(t)dt = lim — w(t)dt =w(07),

r=0r J_,. r=07r J_,.

where at the last equality we used the properties of absolutely continuous function and the defini-
tion of @(07). The equation @(0") = w*(0) can be proved similarly.

Therefore
liminf essinf w(z)=liminf inf @(z)>®(07)=w™(0),
n—00 z€(Tn,yn) n—=00 €(Tn,Yn)
which concludes (2.5), and (2.6) and (2.7) hold by (2.8) and (2.11). O

Definition 2.6. (Weighted function spaces) Let w € W(Q) and 1 < p < oo:
1. LP(R2) is the space of functions u € LP(2) such that

/ lu|” wdx < oo,
Q

1
P
= vl o= ([ o= ol wao)
Q

endowed with the norm

if u, v € LB (Q);
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2. WLP(Q) is the space of functions u € WHP(Q) such that
u € L2 (Q) and Vu € L2 (;RY),
endowed with the norm
lw = vllyre = llu = vl + IVu = Vol p
if u, v e WiP(Q);
3. BV, () is the space of functions u € BV () such that
u€ LL(Q) and /wd|Du| < 00,
Q
endowed with the norm
=y, += lu=vlyy + [ wd|Du=Dol
if u,v € BV,(Q);

4. uw€ SBV,(Q) ifu e BV,(Q)NSBV(Q), and u € GSBV,,(Q) if K AuV —K € SBV,(Q) for all
K eN.

Lemma 2.7. Let w € W(Q2) be given, and suppose that v € SBV,, (). Then
HN LS, N{w = +o0}) = 0.
Proof. By Definition 2.6 we have

+oo>/wd|Du\:/|Vu|wdx+/ |u+—u_’wdHN_1

2/ |u+—u_’wdHN_1.
SuN{w=+oc0}

Since [ut —u~|(z) > 0 for HN~t-ae. x € S,, it follows from (2.12) that HV (S, N{w = +o0}) =
0. ]

(2.12)

Lemma 2.8. The space L2 is a Hilbert space endowed with the inner product
(u,v)r2 == (v, vw)r2 = /uvwdaz. (2.13)

Proof. Tt is clear that (2.13) is an inner product. Also, (u,u)r2 = (uy/w,uy/w)r2 > 0, and if

(u,u)pz = 0 then by (2.3)
/qudx > /qum =0,
Q Q

To see that L2 is complete, and therefore a Hilbert space, let {un},—, be a Cauchy sequence
in L2 and notice that {u,/w}, ., is a Cauchy sequence in L?. Hence, there is a function v € L?
such that u,+/w — v in L?. Defining u := v/y/w, we have that u € L2 and u,, — u in L2. O

and thus u = 0 a.e.
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Lemma 2.9. Let {u,},-, C W22(Q) be such that u, — u in L}, and
sup/ Vg |> wdz < oo.
Q

Then, for every measurable set A C )

liminf/ |Vun\2wdx2/ Vu) wdz,
and u € W12(Q).

Proof. By (2.3) we have that {Vu,} -, is uniformly bounded in L*(2, R") and u,, — u in L*(Q).
Hence Vu,, — Vu in L2(Q;RY), and using standard lower semi-continuity of convex energies (see
[31], Theorem 6.3.7), we conclude that

—|—oo>lirninf/ \Vun|2wdx2/ |Vu|® w d,

for every measurable subset A C €. In particular, with A = Q and using the fact that 1 < w a.e.,
we deduce that u € W12(Q). O

Lemma 2.10. Let u € LL(Q) be such that

/\Vu|2wdx+/ wdHN T < 4o0. (2.14)
Q

u

Then HN=1(S,) < +oo and u € GSBV,,(Q).
Proof. By (2.14) and (2.3)
/ (Vul? dz +HY1(S,) < +oo,
Q

and hence by [8] we have that u € GSBV (). To show that u € GSBV,,(f2), we only need to verify
that
/ |u}7u}’wd’HN71 < 400

Sug

for every K € N and with ux := K AuV —K. Indeed, by (2.14)

/ lufe — up|wdHN " < 2K/ wdHN 1 < 2K/ wdHN ! < +oo.
S Su

u g u R

3. THE ONE DIMENSIONAL CASE

3.1. The Case w e W(I)NC(I).
Let w € W(I) N C(I) be given. Consider the functionals
1
E,(u,v) = /v2 /| w da +/ [E WP+ —(v— 1)2] wdx

’ T 112 2e

for (u,v) € W22(I) x WH2(I), and let
E,(u) := / |u’|2wdx+ z w(x)
I

TES,
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be defined for v € GSBV,,(I) (Note that E; ¢(u,v) and E;(u) are, respectively, the non-weighted
Ambrosio-Tortorelli approximation scheme and Mumford-Shah functional studied in [8]).
Theorem 3.1 (I'-Convergence). Let &, .: LL(I) x L*(I) — [0,+00] be defined by

Eye(u,v) if (u,v) € Wh2(I) x WH2(I),0 < v <1,

+00 otherwise.

Ewelu,v) = {

Then the functionals E,, . T-converge, with respect to the L, x L topology, to the functional
£, ) = E,(u) ifuce GSBVW(I) andv =1 a.e.,
+00 otherwise.
We begin with an auxiliary proposition.

Proposition 3.2. Let {v.}_.., C W"2(I) be such that 0 < v. <1, v. — 1 in L*(I) and pointwise
a.e., and

. € 2 1
lim su —l® + —(ve — 1)?| dz < 0.
wsup |51+ o0 -1

Then for arbitrary 0 < n < 1 there exists an open set H, C I satisfying:

1. the set I\ H,, is a collection of finitely many points in I;
2. for every set K compactly contained in H,, we have K C B for ¢ > 0 small enough, where

Bl :={zel:vi(z)>n}. (3.1)
Proposition 3.2 is adapted from [8], page 1020-1021 (see Lemma A.3).
Proposition 3.3. (I-liminf) For u € L (1), let
E; (u) := inf {lim inf B, o (e, ve) :
e—0
(ue,ve) € WEA(I) x WH2(I),ue = w in LY, ve. — 1 in L', 0 <0, < 1}.

We have
E (u) > E,(u).

Proof. It E (u) = 400 then there is nothing to prove. Assume that M := E_ (u) < co. Choose u,
and v, admissible for E (u) such that

lim E,, - (ue,ve) = E, (u) < o0,
e—0

and note that v. — 1 in L'(I). Since inf,eqw(z) > 1, we have
liminf Fy . (ue,ve) < liminf E,, o (ue, v:) < 400,
e—0 e—0

and by [8] we obtain that
u € GSBV(I) and H°(S,) < +oo. (3.2)

Let £ > 0 be sufficiently small so that, for all 0 < € < &,
Eye(ug,ve) < M +1.
We claim, separately, that

/ /|’ wdx < liminf/ ul|” v? w da < 400, (3.3)
I e—0 I
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and

1 1
Z w(z) < liminf/ [6 |v(;|2 +—(1- UE)Z} wdr < 400. (3.4)
= =0 J; |2 2e

Note that (3.3), (3.4), and Lemma 2.10 will yield v € GSBV,,(I).

Up to the extraction of a (not relabeled) subsequence, we have u. — u and ve — 1 a.e. in [
with
. 1 / 2 1 2 . 1 / 2 1 2
limsup [ |ze|vz|”+ —(1 —v.)?| de <limsup | |zevl|”+ —(1 —v.)* | wdz < +o0.
e—0 I 2 2e £—0 I 2 2e

Therefore, up to the extraction of a (not relabeled) subsequence, we can apply Proposition 3.2 and
deduce that, for a fixed € (1/2,1), there exists an open set H,, such that the set I\ H, contains
only a finite number of points, and for every compact subset K CC H,, K is contained in BY for
0 < e < ¢(K), where BY is defined in (3.1). We have

/ |u’|2wdx§liminf/ ul|* w da
K e—0 K

) ) (3.5)
< fliminf/ 0l wda < fliminf/v? ! |* w da,
n K n =20 Jp

e—0

where we used Lemma 2.9 in the first inequality. By letting K~ H,, on the left hand side of (3.5)
first and then 77 " 1 on the right hand side, we proved that

/ /|’ wdz < liminf/vz ul|” wdz, (3.6)
I e—0 I
where we used the fact that |1\ H,| =0.

We claim that S, C I\ H,. Indeed, if there is o € S, N H,, since H, is open there exists
an open interval I containing xy and compactly contained in H, such that for 0 < e < g,

1
/ |u’6|2dx§/ \ug|2wd:ﬂ§7/v§ | wdz < 2(M +1).
I I nJ1

Thus u € W2(I]), and hence is continuous at xo, which contradicts the fact that zo € S,,.

Let t € S, and for simplicity assume that ¢ = 0. We claim that there exist {t}L}Zozl, {’5721}2117 and
{sn}oo, such that —1 <t} <s, <12 <1,

. 1 . 2 .
lim ¢, = lim ¢, = lim s, =0,
n—oo n—oo n—oo

and, up to the extraction of a subsequence of {v.} .,

nhﬁn;o Ve(n) (th) = nhﬁn;o Ve (n) (t2) =1, and nhﬁnéo Ve(n)(8n) = 0. (3.7)
Because I \ H,, is discrete and 0 € I \ H,,, we may choose dp > 0 small enough such that
(=260, 200) N (I'\ Hy) = {0}

We claim that

lim sup limsup inf v.(z) =0, (3.8)
§—0+ e—o0t z€ls
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where I := (—6,0). Assume that

lim sup limsup inf v.(x) =: a > 0.
§—0+ e—mo0t €L

Then there exists 0 < d, < dg such that

I inf v.(z) > 2a >0
1m su mI V(T — .
E—>0+p$615a : -3

Up to the extraction of a subsequence of {v.} there exists 58"‘ > 0 such that

>0

1
inf > —a >0,
f ve(z) 2 ga

for all 0 < & < €3, and we have

/|u’|2d$§/ /| wda
Is Is

o o

2
§liminf/ |u'€\2wda:§11mi(1)1f—/ lul \ v wdx<hm1nf—/|us|2v wdr < (M+1).
I e— Is,,

e—0 «

Hence u € W2(I5,) and so u is continuous at 0 € S,,, and we reduce a contradiction. Therefore,
in view of (3.8) we may find 6, — 0T, e(n) — 07, and s,, € (—dy,,d,) such that

nl;ngo sy, = 0 and hm ve(n)(sn) =0.

We claim that for all 7 € (0,1/2),
li inf 1 —vn + inf 1 —ven =0. 3.9
i | @)+t (- (@) (3.9
To reach a contradiction, assume that there exists 7 € (0,1/2) such that
lim sup { inf (1 —wvem)(z)) + inf  (1- vs(n)(aj))} =03>0.
n—00 €(sn—T,5n) TE(Sn,Sn+T)
Without loss of generality, suppose that
1
limsup inf (1 —v.ny(x)) > 58> 0.

n—soo TE(Sp—T,8n) 2

Then
1
liminf  sup v (z) <1 - 56,

e e G

which implies that
D Va(@) S 1— 28 (3.10)

a:E(snk 7T,Snk) 3

for a subsequence {e(ny)},—; C {e(n)},—,. However, (3.10) contradicts the fact that v(,,)(z) — 1
a.e. since for k large enough so that |s,, | < 7/4 it holds

3 T
(Sny — Ty Sny) D (—47',—4> )
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Therefore, in view of (3.9) we may find ¢}, € (8n(m) — 1/m, 85,(m)) and 2 € (Sn(m)s Sn(m) + 1/m)
such that

S D P : 1y_ 1 2y _
nhﬁrrgo t,, = HILH;O tz, =0 and T}er;o Ve(n(m)) (tm) = nl;rr;o Ve(n(m)) (L) = 1.

We next show that

. . Fnim) 1 2
lim mf/ [25(71(7”)) |(U€(n(m)))/‘ +
t

m— o0 1
n
Indeed, we have

lim inf
m—r 00

n(m) [;E(H(m)) |(U5(n(m)))/|2 + m(l — Ue(n(m)))2:| dx

1
t‘?ﬂ

Sn(m)
t

m— oo 1
m

Sn(m)
/ (1 = Ve(n(m)) ) Ve(n(m)) 4@
t

m—r oo

1
= liminf —
m—oo 2

Sn(m) d
— (1 = Vepnm) ) 2dz
/t (1~ Vetn(my)

1
m

1 .. 1
== lim [(1 = ve(nim)) (Snim)))® = (1 = Ve(nim)) (t))?] = 3

where we used (3.7). Similarly, we obtain

DO =

t
. . m 1 2
lim inf [QE(n(m)) | (Ve(nim)'|” +

m— 00
Sn(m)

We observe that, since w is positive,

[ [hetoim)

m

Sn(m)
> < inf w(r)) : {/ {16(n(m))
re(th, t2,) s 2
th
o/

n(m)

/

2
Ye(n(m)) ’

1
+ m(l - vs(n(m)))2] w(x)dzx

2

U;(n(m))

1 2
+ m(l — Ve(n(m))) } dz  (3.11)

1 2 1 9
[QS(H(m)) | (Ve(n(my)'|” + W(l — Ve(n(m))) } dx} ,
and so

lim inf /ttfn [;E(n(m))

m—oo 1
m

2 1
! 2
’Ua(n(m))‘ + 2€(n(m)) (1 - Ua(n(m))) :| w(m) dx

.. . .. Snm) 1 € 2
> (lmint it o)) mint {/ sy o)+ 5 s |

o ¢,
2
t m
+
S

n(m)

> (; + ;) w(0) = w(0),

[5etm)

2 1
/ 2
vs(n(m))’ + 28(n(m)) (1 - Us(n(nb))) :| d:l?}
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where we used the fact that w is continuous at 0.

Finally, since S, C I\ H,, by (3.2) we have that S, is a finite collection of points, and we may
repeat the above argument for all ¢ € S, by partitioning I into non-overlaping intervals where there
is at most one point of S, to deduce that

1 1
liggiglf/l [26 Wl * + %(1 - UE)2:| w(z)dz > IEES w(z). (3.12)
In view of (3.6) and (3.12), we conclude that

im i > .

hgn_ggﬂ Eye(ue,ve) > E,(u)

O
Proposition 3.4. (I-limsup) For u € LL(I) N L>(I), let
E}(u) := inf {limsup Ey e (ug,ve)
e—0
(ue,v:) € Wh2(I) x Wh2(I),ue = uwin LS, v. = 1 in L', 0 < v. < 1}.
We have
B (u) < Eo(u). (3.13)

Proof. Without loss of generality, assume that E,(u) < oco. Then by Lemma 2.10 we have u €
GSBV,(I) and H°(S,) < co. To prove (3.13), we show that there exist {uc}.., € W}3(I) and
{ve}..o C WH2(I) such that uc — win L}, v — 1in L', 0 < v. < 1, and

limsup E,, o (ue, v:) < Ey,(u). (3.14)
e—0
Step 1: Assume that S, = {0}.
Fix 7 > 0, and let T > 0 and vg € W2(0,T) be such that
T
0<w<1 and / [(1 —w)? + |v6|2} dx <1+mn, (3.15)
0

with vp(0) = 0 and vo(T") = 1.

For & = o(e) we define

0 if |z| <&,
ve(@) = 4 v ("”‘;f) if & < |z] < & + €T, (3.16)
1 if |z| > & + €T

Since [|ve[| e () < 1, by Lebesgue Dominated Convergence Theorem we have ve — 1 in L. Let

u(z if |z| > i,

ue(z) = () L L . 2| 2 %fe (3.17)
affine from u (—3&.) to u (3&) if |z] < 3&..

and we observe that (recall in assumption we have u € L*°(I))

el oo 1y < Null oo 1) 5
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and
/I||u||LOC(I) wdzx < oo.

Therefore, by Lebesgue Dominated Convergence Theorem we deduce that u. — u in L},. Moreover,
by (3.16) and (3.17) we observe that

2y = {v? Wit it > e,

UE £ .
0 if & < )&,

and so v2 [ul|” < |/|*. Since B, (u) < oo we have u’ € L2(I), by Lebesgue Dominated Convergence
Theorem we obtain

lim [ o? |u;|2wdm=/\u’\2wdm.
e=0 Jr I

Next, since w is positive we have
1
/I E Wl + %(vg - 1)2} w(z)dx
—&e 1 Eet+eT 1 1 1
:/ [6 ol ” + ?(UE - 1)2] w(x)dx —|—/ F Wl |* + fg(vE - 1)2} w(x)dr + 7/ w(z)dx

—&e—eT 2

—&e c ) 1 ,
< sup w(t) | - / [ Wl)* + = (ve — 1) ] da
te(—§.—eT,§+eT) —¢.—eT 2 2e

55 +5T € 1
- [mf+ @E]ﬁ}w}+&mmm-
¢ 2 5

2%
We obtain
. g 2 1
1 = ! — (v, — 1)? d
msup [ 102+ 5 (00 = 1 wlo) do

<limsup sup w(t) |-
e—0 te€(—€-—eT - +eT)

—&e EeteT
. € 2 1 15 2 1
1 WP+ —(v.—1)2| d / WP+ —(v.—1)2| d
H?_félp{/gag [2'”5 + o (v )] T ‘. g (Ve + 5o (ve = 1)7) dz

<w(0)(1 +n),

where we used (3.15).

We conclude that
limsup Ey, ¢ (ue, v:) < / W/ wdz + w(0)(1 + 1),

e—0 I

and (3.14) follows by the arbitrariness of 7.

Step 2: In the general case in which S, is finite, we obtain u. by repeating the construction in
Step 1 (see (3.17)) in small non-overlapping intervals centered at each point in S,,. To obtain v., we
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repeat the construction (3.16) in those intervals and extend by 1 in the complement of the union
of those intervals. Hence, by Step 1 we have

timsup B (ue,v2) < [ o wdo+ (14 7) 3 w(o)
I

e=0 €S,

and again (3.14) follows by letting n — 0. O

Proof of Theorem 3.1. The lim inf inequality follows from Proposition 3.3. For the lim sup inequal-
ity, we note that for any given u € GSBYV,, such that E,(u) < +o0, by Lebesgue Monotone
Convergence Theorem we have that

E,(u) = lim E,(KAuV-K),
K—o0
and hence a diagonal argument together with Proposition 3.4 conclude the proof. (|

3.2. The Case w € W(I) N SBV(I).
Consider the functionals
1
E,c(u,v) = / /| vPw da +/ c WP+ —(—1)?2| wda

’ T I 2 2¢e

for (u,v) € WL2(I) x WH2(I), and for u € GSBV,,(I) let
E,(u) == / W/ |° wdz + Z w”(x).
I

€S,

We note that if w € W(I)NSBV(I) and w is continuous in a neighborhood of S,,, for v € GSBV,,(I),
then

and Theorem 3.1 still holds.

Here we study the case in which w is no longer continuous on a neighborhood of S,,. We recall that
w € SBV(I) implies that w € L®(I) and by definition of w € W(I), we have H°(S,,) < oo. Also,
we note that w™ is defined H-a.e, hence everywhere in I.

Theorem 3.5. Let E.: LL(I) x L*(I) — [0, +00] be defined by
Eye(u,v) if (u,v) € Wh2(I) x WH2(I),0 < v <1,
Euwe(u,v) := ’ ]
400 otherwise.
Then the functionals E,, . T-converge, with respect to the L, x L topology, to the functional
£ ) = E,(u) ifue QSBVM(I) andv =1 a.e.,
+00 otherwise.
The proof of Theorem 3.5 will be split into two propositions.
Proposition 3.6. (I-liminf) For u € L. (1), let
E; (u) := inf {hgglf Eye(te,ve) :

(ue,ve) € WE2A(I) x WH2(I), ue — w in LY, v. — 1 in L', 0 < v, < 1}.
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We have
B, (u) 2 Ey(u)-Sn(m)

Proof. Without lose of generality, assume that E_ (u) < +00. We use the same arguments of the
proof of Proposition 3.3 until (3.11). In particular, (3.2) and (3.3) still hold, that is

H°(S,) < +oo and /|u’|2wdx < limiglf/ ul | v? wdz.
I eV Jr

Invoking (3.11), we have

1

o s tgn 1 ! 2 2
hmlnf/1t {25(n(m)) vs(n(m))’ + m(l — Ve(n(m))) ] w(z)dx

m—o0o 1
m

Sn(m) 1 1
> (hm inf essinf w(r)) - lim inf {/ {QE(n(m)) ‘(vg(n(m)))/’2 + (1= Ve(nimy)?| dz
t

m—oo re(th t2) n—00 1
m

tm
_l’_/
S

[15(”“’”‘)) | (Ve(nmy)']
n(m)

>0 (5+3) =0

where the last step is justified by (2.5).

2

1 2
+ m(l — ’Us(n(m))) :| d.’)ﬁ}

Since S, is finite, we may repeat the above argument for all ¢t € S, by partitioning I into finitely
many non-overlapping intervals where there is at most one point of Sy, to conclude that

1 1
liIEILi(I)lf/I [28 W' |? + i(l - ’UE)2:| w(z)dr > $§ w”(x),

as desired. O

The construction of the recovery sequence uses a reflection argument nearby points of S, N.S,,.

Proposition 3.7. (I-limsup) For u € LL(I) N L>(I), let

Ef(u) :=inf {limsup Eye(te,ve)

e—0
(ue,v.) € WHA(I) x WH3(I),ue — w in L, v. = 1 in L', 0 < v, < 1}.
We have
B2 (u) < B (u) (3.18)
Proof. To prove (3.18), we only need to explicitly construct a sequence {(ue,v:)}.q C WL2(I) x
WL2(I) such that u. — uwin L}, v. — 1in L', 0 < v, <1, and

limsup E,, - (ue, v:) < Ey,(u). (3.19)

e—0

Step 1: Assume that {0} =5, C S,.



Page 19 Section 3.2

Recall that we always identify w with its approximation representative w, and by (2.6) we may
assume that (the converse situation may be dealt with similarly)

tl/i%l_ w(t) = w™(0) and tl\iIglJr w(t) = w™(0).

Fix n > 0. For € > 0 small enough, and with & = o(e), as in (3.15), (3.16) let

0 it Jo] < €.
B (z) = 4 v (‘Z';ﬂ if €& < |z| < € +eT
1 if |z| > & + €T,

and define
ve(x) := Ve (x + 28 + €T).

Note that from (3.16) v. — 1 a.e., and since 0 < v. < 1, by Lebesgue Dominated Convergence
Theorem we have v. — v in L'. We also note that

, 1
Sll@) + (1= (@) = 0 (3.20)
ifee(—1,-3 —2eT)U (=&, 1), and if © € (=3¢, — eT, —&. — €T') then
ve(z) = 0. (3.21)
Set

e (z) = u(x) ifxe(-1,-26 —eT)U(0,1),
T Y u(cr) e e [—26 — eT,0).

Observe that . (z) is continuous at 0 since @t (0) = 42 (0) = u™(0) by the definition of @.(x), and

e may only jump at t = —2&. — €T but not at ¢ = 0 where u jumps.

We define the recovery sequence

o) = e () if weI\[-25E —eT,—1.5¢ — T,
7 affine from . (—2.5¢. — €T) to e (—1.56. — eT)  if € [-2.5¢6. — T, —1.5¢6. — 7.

We claim that

lim [ |us —u|wdz =0 (3.22)
e=0 Jr
and
limsup/ |u’€|2 viwdr < / |u’|2wdx. (3.23)
e—0 I I
To show (3.22), we observe that
0
i — <1 — <1 . = 0.
;1_%/1 [ue — ulwdz < gl_r% s o |ue — u|wdz < 21_13%2 lull oo || foo (2.5& +€T) =0

We next prove (3.23). By (3.20) we have

0
/\u;\Qvgwdx§/|u’|2wdx+||w||Lw/ ! (—2)? da,
I I

—&c—€T
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and so

limsup/|u’5|21)§wdx§/|u’|2wdx,
I I

e—0

since «’ € L2(I), and we conclude that v’ € L?(I).

On the other hand, by (3.20) and (3.21),

/ [2 \U;f ' 2i< - ﬂ w(z) d

1
[ﬂ o+ e —ﬂ w(z) da
355—25T 2

1
ess sup = |v;|2 + —(ve — 1)2} dx
355—25T,—§5 355—25T 2e

EcteT
ess sup f|~€| —|— ( -1 } dx.
te(—36.—2¢T, 55 — ¢e—eT

Therefore,

. 3 2 1
1 = |v! —(ve — 1)? d
1msup/l {2 lvg|” + 5z (ve — 1) } w(z)dz

e—0

£5+5T € 9 1
<limsup ess sup w(t) | 4 lim sup/ [ [oL|" + — (0 — 1)2] dz
e—0 te(—36.—2eT,—&.) 0 J_g.—er |2 2e
<w(0)(1 +m),

where at the last inequality we used the definition of 7., (3.15), and (2.6).

We conclude that

limsup B c(ue,00) < [ o wdo +w7 01+ ),

e—=0 I

and (3.19) follows due to the arbitrariness of .

Step 2: In the general case, we recall that S, is finite. We may obtain u. and v. by repeating
the construction in Step 1 in small non-overlapping intervals centered at every point of S, N S,
and by repeating the construction in Step 1 in Lemma 3.4 in those non-overlaping intervals centered
at points of S, \ S,,. Hence, we have

lim sup B« (e, v2) < / WP wde + (1) Y w (),
I

e—0 xESu

and (3.19) follows due to the arbitrariness of 7. O

Proof of Theorem 3.5. The proof follows that of Theorem 3.1, using Proposition 3.6 and Proposition
3.7, in place of Proposition 3.3 and 3.4, respectively. O
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4. THE MULTI-DIMENSIONAL CASE

4.1. One-Dimensional Restrictions and Slicing Properties.

Let SV~! be the unit sphere in RY and let v € S¥~! be a fixed direction. We set

I, := {z e RN : (z,v) = 0};

QL ,={teR:z+treQ} forzelly,;
Qo ={y=zx+tr: teR}NY;
Q={zell,: Q,, #2}.

We also define the 1-d restriction function u, , of the function u as

Uz (t) = u(@ 4+ tv), €D, t€Q .

We recall the result below from [8], Theorem 3.3.

Theorem 4.1. Let v € SV~ be given, and assume that u € W2(Q). Then, for HN l-a.e.
z € Qy, uy, belongs to WH2(Q, ) and
ul, () = (Vu(z + tv),v).

z,v

Lemma 4.2. Let w € W(Q) and u € WLP(Q), for p € [1,00), be given. If v € SN~ and
v € WHP(Q) is nonnegative, then

/ |Vul? vP w dx 2/ / [, ()] V2, (£) wa,o (t) dtda.
Q o, Jaor,

Proof. Since essinfow > 1, we have W2P(Q) ¢ WHP(Q). Given v € S¥~! and a nonnegative
function v € W1P(Q), by Fubini’s Theorem and Theorem 4.1 we have

/ |Vul|P vP wdx :/ / |Vu|P oP wdt dHN 1 (2)
Q o, Jar,

> / / [(Vu(x + tv), v)|" vl (1) we (1) dtdHN ()
o, Jor,

B / / ’u;,u(t)|pvg:),u(t) ww,l/(t) dthN_l(x)’
Q, Qulr,u

where we used the fact that

|, (1) = [(Vu(z + tv),v)| < [Vu(z + tv)]

T,V

HNLae 2€Q,. O

Proposition 4.3. Let v € SV~ be a fized direction, I' C RY be such that HN~1(T') < oo, and P, :
RN — 11, be a projection operator, where by (4.1) II, C RY is a hyperplane in RN~1. Then

HNTHP,(T)) < HY U, (4.2)

and for HN"1-a.e. z €11,
HO(Q, NT) < +00. (4.3)



Page 22 Section 4.1

Proof. Note that (4.2) follows immediately from Theorem 7.5 in [40] since P, is a Lipschitz map
with Lipschitz constant less or equal to one. To show (4.3), we apply co-area formula (see [4],
Theorem 2.93) with P, and again since P, is a Lipschitz map with Lipschitz constant less or equal
to one, we are done. O

Set x = (z',xn) € RY, where
2’ € RV~ denotes the first N — 1 component of 2 € RV, (4.4)
and given u: RY~! - R and G C RV~!, we define the graph of u over G as
F(u;G) == {(2/,zn) e RV : 2/ € G, an = u(2')}.
If w is Lipschitz, then we call F(u;G) a Lipschitz -(N — 1)-graph.

Lemma 4.4. Let I' C RY be a HNL-rectifiable set, and let P ,.: RN — T, ,. be a projection
operator for x € I'. Then

lim HNil (]P:ro,up (F N Qur (x07 T)))

lim N =1 (4.5)

for HN"-a.e. xg €T.

Proof. By Proposition 4.3 we have

HN Py (TN Qup (w0, 7))
TN—l

HY I N Qur (w0, 7))
rN-1

< lim sup
r—0

lim sup
r—0

—1 (4.6)
for a.e. zyp € I'. By Theorem 2.76 in [4] we may write

r=roul T
i=1
as a disjoint union with H¥N=1(I'g) = 0, T'; = (N;, 1;(N;)) where [; : RN=1 — R is of class C! and
N; C RN-1,

Let zg € T;, for some iy € N and, without loss of generality, let (—V1I;,(x(),1) = vr(xo), with
xo a point of density one in I’y (see Exercise 10.6 in [39]). Up to a rotation and a translation, we
may assume that VI;, (zf) = (0,0,...,0) € RN~ 24 = (0,0,...,0), and Py, ,.: Ty, — RY 1 x {0}.
Therefore, for r > 0 small enough,

i, N QVF (SL’(),T) = (P$O7VF (Fio N QVF (.%‘077“)), lio((]PIO,Vr (Fio N Qlfr (l‘o,T))>/)>7

and by Theorem 9.1 in [40] we obtain that,
/‘ V1 + [V (2)PdHY " ().
Peg,op (Fio NQur (90077“))

Since [;, is of class C! and Vi, (z¢) = 0, for £ > 0 choose r. > 0 such that |Vl;,(z)| < ¢ for all
0 <7 < re. Therefore, we have that

’HN_l(]P)wo:VF (F n QVF (&Co, T))) 2 HN_l(PImVF (Fio N QVF (1'07 T)))

1 / \/—2 /
> 1+ |V, (2/)]"dx
V142 Jr, 0 (TignQup (20,7) ’

1 _
= WHN 1(Fi0 ﬁ Ql/r‘ (x()?r))'

HN_l(Fio N QVF (3?0, ’I“)) =
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We obtain

lim inf HN?I(PIOWF (I'NQur(z0,7))) > lim inf 1 IHN?I(Fio N Qur (z0,7)) _ 1

r—0 rN-1 r—=0 /1 4+ 2 rN-1 /174_ ) :

By the arbitrariness of € > 0, we deduce that
HN?I(]PIU,VF (F N Qllr (an T)))

llg(l)lf ’["N_l 2 17
and, in view of (4.6), we conclude that
lim IHN?l(]P)Io-,VF (F n QVF(:COa T))) - 1.
r—0 T‘N_l

O

Lemma 4.5. Let Q := (—1,1)Y and let T C Q be a HN ~L-rectifiable set such that HN~1(T) < oo
and

HOCN ({2} x (-1 1)) > 1 (4.7)
for HN"L.a.e. ' € (=1,1)N=L. Then there exists a HYN ~L-measurable subset I' C T such that
HO(T' N ({2} x (—=1,1))) = 1. (4.8)

for HN"1.a.e. 2/ € (—1,1)N -1
Proof. By Lemma 4.3 we have
HO(I' N ({2'} x (—1,1))) < +o0
for HN"lae. 2/ € (—1,1)N¥ L. Thus, for H¥l-ae. 2’ € (—=1,1)V "1 the set
Iy =TnN({a"} x(-1,1))

is a finite collection of singletons, hence closed, and by (4.7) is non-empty. Applying Corollary 1.1
in [28], page 237, we obtain a H~! measurable subset I” C I which satisfies (4.8). O
Lemma 4.6. Let 7 > 0 and n > 0 be given. Let u € SBV(Q) and assume that HN~1(S,) < oo.
The following statements hold:

1. there exist a set S C S, with HN=1(S, \ S) < n, and a countable collection Q of mutually
disjoint open cubes centered on elements of S, such that

Uece

QeQ
and

s\ el =o
QeQ
2. for every Q € Q there exists a direction vector vg € SN~ such that

HO(S N Qupo) = 1,
for HN=L a.e. x€QNS;

Lwhen applying Corollary 1.1, Q is (—=1,1)N=1 B is (=1,1), and Cy is T'ys, and we construct I by using @(z)
which is obtained Corollary 1.1



Page 24 Section 4.1

3. for every Q € Q, SNQ is contained in a Lipschitz (N — 1)- graph T'q with Lipschitz constant
less than T.

Proof. Let 7,m > 0 be given. By Theorem 2.76 in [4], there exist countably many Lipschitz (N —1)-
graphs I'; C R such that (up to a rotation and a translation)

Iy ={(@" zn): 2/ € N;, oy = li(2")}

with N; € RV=1 [;: RV=1 5 R of class C*, |VI;| < 7 for all i € N, and

HNE (su \ G ri> =0. (4.9)

Without lose of generality, we assume that
HNUT,NTy) =0if i #4' € N, and HYH(T;) > 0. (4.10)

We denote by P the collection of Lipschitz (N — 1)-graphs T; in (4.9)-(4.10). By (4.10), for HV~1-
a.e. x € S, there exists only one I' € P such that € I'; and we denote such I" by I', and we write

Lo ={( yn): ¥ € No CRY T ynv = 1.(y) } -
For simplicity of notation, in what follows we will abbreviate vr_ (v) = vg, (z) by v(z), Qug, (2,7)

by Q(z,r), and T s, by Tk

We also note that HVN =T’ N S,) < HVN"1(S,) < oo for each T' € P. Then HV ! ae. x has
density 1 in I'; N S, (see Theorem 2.63 in [4]). Denote by S; the set of points such that S, has
density 1 at x and

~ 1 (4.11)
Then HV-1(S, \ Sy) = 0.
Define

fola) = 00T

Since f.(z) — 1 as r — 0T for x € S;, by Egoroff’s Theorem there exists a set Sy C S7 such that
HN=L(S81\ S2) < n/4 and f, — 1 uniformly on So. Find r; > 0 such that

HN (SN Q(x, 7))

rN—-1

1
> o
-2
ie.,
HYH(S1 N Q(z, 7)) > %TN* (4.12)

for all 0 < r < 7 and « € Sy. Since Sy C Sy, S5 is also HV~l-rectifiable and so HV ! a.e. z € 95
has density one. Without loss of generality, we assume that every point in S; has density one and
satisfies (4.5) in Lemma 4.4.
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Let xo € S be given and recall (4.1). We define
Tb(.l?o,r) = {3;‘ € Q(l‘o,’l‘) NTy, : HO([Q('TO’T)]w,V(ZE()) NSy) > 2} ,
Ty(zo, 1) == {x € Q(zo,r) NTyy : HO([Q(wO,T)]m’V(%) NSs) = 1},
Sb($(), T) = U (SQ N [Q(an T)]x,y(g;o)> 3 (413)
z€Ty(x0,T)
Solwor) = U (820100, 1en))
z€Ty(xo,r)
Note that
Ty(xo,7) N Ty(zo,7) = 0 and Sy(zo,r) N Sg(zo,r) =0, (4.14)
and by Proposition 4.3 we have
HY (S (20, 7)) = HYH(Ty (w0, 7). (4.15)
We claim that
HN (S (w0, 7)) > 2HNTH(Th (w0, 7). (4.16)

By Lemma 4.5 there exists a measurable selection S} C S, (z0,7) such that
HY (S (w0, 7) N [Q(@0,7)]40(20)) =1
for HN"l-ae. z € Ty(zo,7). We define
SZ(x0,7) = Sp(x0,7) \ Si (w0, 7).

By the definition of Sp(xo,7) in (4.13), we have

HO([Q(@0, )] (mg) N s (w0,7)) = 1 and HO([Q(wo,7)], () N S5 (20, 7)) > 1

for all x € Ty(xg, 7). We observe that

HNV(Sy(20,7)) = HVH(SE (z0, 7)) + HY 71 (SE (20, 7)) > 2HN "1 (Ty (20, 7))

by Proposition 4.3 and we deduce (4.16).

We next show that

Indeed, since T}, is the tangent hyperplane to Sz at zg,
Ty(zo,7) UTy(w0,7) = Pryus, (S2 N Q(z0,7)),

and by Lemma 4.4 it follows that

HN =Ty (20, 7) U Ty(wo,7))

On the other hand, in view of (4.14), (4.15), and (4.16), we deduce that
HY T (Sp(0,7) U Sg(w0,1)) = HY 1 (Sp (o, 7)) + HV 71 (Sy (o, 7))
> 9HN (T (0, ) + HY (T, (20, 7).
That is,

(4.17)

(4.18)

HY Ty (20, 7)) < HNH(Sp(20,7) U Sy(20,7)) — [’HN_l(Tb(xOm)) + HN_l(Tg(xOJ))]
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= HN_l(Sb(xo, r) U Sg(zo, 7)) — HN_I(TZ,(:L‘(),T) U Ty(zo,T)). (4.19)
Since o € S has density 1, we have
N-1 N-1
lim H (Sp(zo, ) U Sy(zo,7)) — lim H (Se N Q(xo,7))
r—0 ’r‘N*l r—0 ’I“Nfl
In view of (4.18), (4.19), and (4.20), we conclude that

HN Ty (wo, 7))

=1. (4.20)

lim sup

r—0 TN71
. HN (S0, 1) U Sy(zo,r)) . HN Y (Ty(w,7) U Ty(zo,T))
< iy M) -ty P i) -0

which implies that
HN (T (z0,7))

lim =0.
r—0 rN—-1
This, together with (4.14) and (4.18), yields
 HY TN (T (@0, 7))
fim S =1,

and so by (4.15) we have
HY"1(Sg (w0, 7))

N-1

N—1
s iy P o)

r—0

lim inf =1,
r—0 r

while by (4.20)
HY 1Sy (w0, 7))

N-1

lim sup =1,

r—0 r

N-1
< lim H (Sb(xojvr)lu Sg(xo,1))
r—0 riv—

and we conclude that No1(g,( )
. HY T (Sg(wo, T
LTS

Now, also in view of (4.14) and (4.20), we deduce (4.17).

=1

We define, for x € Sy,
HN " (Sy(, 7))
gr(l') = TJV——I
By (4.17) we have lim,_,¢ g.(x) = 0 for all © € Sy, therefore by Egoroff’s Theorem there exists a
set S3 C S5 such that

HN1(S,\ S5) < Z

and g, — 0 uniformly on S3. Choose 0 < ro < r; such that
HN=L(Sy (7)) - n 1

— 4.21
rN—1 16 HN-1(S,) ( )
for all x € S3 and 0 < r < ry. We claim that, for x € S3 and the corresponding I',, € P,
N-1

r—0 rN-1
Suppose that
HN ! (Sg(x’ )\ [Su NT2 NQ(z,7)])

=: 0.
PN—1

0 < limsup
r—0
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By (4.11), and the fact that I', C S,,, we have that
. HNL(S, N Q(z,7))
1 =lim SN—1
AV (([Su N Q(, )]\ [Su NTw N Q(z,7)]) U[Su N T N Q(,7)])

rpN-1

HY " ([Sg(@,m)]\ [Su N Ta N Q(z,7)])

pN—-1

HNS, NT, N Q(x,7)]

N-1

= lim
r—0

> lim sup
r—0

+ lim

r—0 r

=J+1>1,

which is a contradiction.

We define, for x € S3,
_ HY T (Sy(@,m) \ [Su N T N Q(z,7)])

rN-1 !

hy(x) :

By (4.22) lim,_ h,(x) = 0 for all x € Ss, therefore by Egoroff’s Theorem there exists a set of
S, C S3 such that

HN LS5\ Sy) < 1,
and h, — 0 uniformly on S4. Choose 0 < r3 < ro such that
HN =L (S, (2, )\ [Su N T N Q(z,7)]) n 1
rN-1 16 HN-1(S,)
for all z € S4, and 0 < r < r3, and let
Q' :={Q(z,r): € 8,,0<r<rs}.

By Besicovitch’s Covering Theorem we may extract a countable collection @ of mutually disjoint
cubes from Q' such that

(4.23)

Uecoandu™ s\ | @] | =0

QeQ QeQ
Define
S:= 854\ U S(,(xQ,’I“Q) U U [SQ(Z‘Q,TQ) \ (Su N FwQ N Q)] , (4.24)
QEQ QeQ

where zg is the center of cube @ and rg is the side length of (). Note that the set S satisfies
properties 2 and 3 in the statement of Lemma 4.6. Finally, we show that

HNL(S,\ S) < 7.

Indeed, in view of (4.21) and (4.23), and using the fact that the cubes @ € Q are mutually disjoint,
we have

HY U Selzaire) | = Y HY M (S(zg,mQ)) < W ro (4.25)
QeQ QeQ “ Qeg
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and

HNE ( U [Sg(xQ’rQ) \ (Su OFIQ n Q)})

QEQ
= > HY T (Sy(2q.70) \ (SuNTay NQ)) < 16HN T ZrN L (4.26)
QeEQ QEQ
By (4.12) we obtain

> %rg_l < HYHSINQ) =HYT! ( U S OQ) <HNTY(S,). (4.27)

QEQ QeQ QEQ
Using (4.25), (4.26), and (4.27), we deduce that

HY U Seleg,ro) gg,
QeQ

and

|3

Y (U [Sy(wq @) \ (SunTag ﬂQﬂ) :

QeEQ
and so by (4.24) we get
HYTH(S1\ S) <
Since S C S4 C S3 C Sy C S C Sy, we conclude that
HNH(S,\ S)
SHN NS\ S1) + HY TS\ So) + HY TN (S2\ Ss) + HN TS5\ Sy) + HY NS4\ S)

om0 0
Sytytyty=n

=~

]

Lemma 4.7. Let w € C(2) be nonnegative, let T' C Q be a HYN ~L-rectifiable set, and let T € (0,1)
be given. Then for HN1-a.e. o € ', there exists ro := ro(zg) > 0 such that for each 0 < r < rg
there exist tg € (—7r/4,7r/4) and 0 < to, = tor(to, T,x0,7) < |to| such that

/ / w(z) dHNdl
to, | I(to,t) Y Qup (z0,m)NTug,up (1)

< / w(z) dHY 1+ (1 + w(we))O(r)rV 1,
Q

(zo,r)NI

0<t<t0 r

vr

where I(tg,t) := (to — t,t0 + ), Tuovs (1) := T ur + lr.
Proof. Fix xy € T with density 1 and let 7 > 0 be given. There exists r; > 0 such that
1 < HN YT N Qyy(z0,7))

2
1_|_7-2 — ’I"N_l S 1+T ) (428)
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for all 0 < r < r1. Since by continuity of w we have that
lim |w(z) — w(zo)| dx = 0,
"0 Qup (wo,r)

and

lim |w(z) — wlzo)| dHY ! =0,
r=0 Qup (zo,r)NT

we may choose 0 < 73 < r1 such that for all 0 < 7 < rg
][ |w(z) —w(zg)| dz < 72,
Qup (120,7”)

and

/Q S jw(z) — w(zo)| dHN ! < H_%HN_l(QVF(xO,r) nr) <O(r)rV1, (4.29)
vp (Zo,T N

where we used (4.28).

Therefore
Tr/4
/ |w(z) — w(zo)] dHN1at < / |w(z) — w(z)|dz < 72N,
—77/4J Qup (x0,7)NTag,up (1) Qur (zo,r)

and by the Mean Value Theorem there exists a set A C (—7r/4, 7r/4) with positive 1 dimensional
Lebesgue measure such that for every t € A,

/ |w(z) — w(xe)| dHN T < 27N 7L, (4.30)
Qup (20,7)NTwg, oy (t)
If ty € A then we have, by the continuity of w,

1
limi/ / w(x)d'HNfldl:/ w(x)dHN
=0 [I(to, )| J1(t0.6) J Qur. (20,m) Ty o () Qup (20,7)NTig oy (t0)

hence there exists ¢9, > 0, depending on 7, tg, 7, and xg, such that I(to,to,) C (—77/2,71/2) and

su w(x)dHN Ldl

1 / /
P —
0<t<to,r |I(t0a t)| I(to,t) Y Qup (z0,m)NTug,up (1)

<

/ w(@)dHN P+ Oo(r)rV Tt (4.31)
Qup (20,7)N Ty vy (t0)

Moreover, since
HN_l [QV[‘ (.130, ’I") N Txo,ur (tO)] = HN_I [Qur ($07 T) N Tzo,l/r] )
we have

w(zo)dHN 1 = / w(zo)dHN 1

Qup (20,7)N T,y

/Q,,F (z0,7)NTeq,up (o)

= w(xo)’l”Nil S (1 + 7’2)/ W(l'o)dHN71
Q,,F (zo,r)NI

</ w(zo)dH ¥ ! + OV,
QVF (zo,m)NC
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where in the last inequality we used (4.28), the non-negativeness of w.

By (4.31), (4.30), in this order, for every r < ry there exist tg € (—7r/4,7r/4) and 0 < tg, < [tol,
depending on to, T, xg and 7, such that

sup / / w(z) dHNtdl
0<t<t0 r t(), | I(to,t) QVF (IO, Vl"("”())(l)

< w(xg)HN ! (Q,,F(xo, )0 Loy ir(zo)) + O(T)rN 1 = w(ao)r¥ =t + O(r)rN 1
< w(@o)(1+72)HN (T N Quy (o, 7)) + O(7)rN

where we used (4 28) in the last inequality. Finally, by (4.29) we conclude that

sup / / w(z) dHN1dl
0<t<to,r toa | I(tost) J Qup (20,m)NTag vy (z0) ()
< / w(z) dHY L + (1 + w(we))O(r)rV¥ L,
Qur (wo,r)NI
as desired. H

Proposition 4.8. Letw € C(Q) be nonnegative, let T' C Q be a HN ~L-rectifiable set with HN~1(T") <
+o0, and let 7 € (0,1) be given. Then there exist a set S C Q and a countable family of disjoint
cubes F = {Qup(@n,7n)}reyq with r < 7, for all n € N, such that the following hold:
1. HNHTN\S) <7, S Upl, Que(mn,mn);

2. HN"L(SNQup (2, 7)) < (1 +72)rN=1 for all 0 <r < ry;

3. SN Que(®n,Tn) C Rejope (Tn,Tn);

4. if 0 < kK < 1 then for every n € N there exist tf € (—kry/4,krp/4) and 0 < t& < |tr],

Tn,Tn

depending on T, T,, and Kkr,, such that

sup /
o<t<ty . n7 | I(te

Tn n?

/ w(x)dHN1dl
t) QVF (l'nvf‘i"'n)mTa:n,up 0

g/ w(@) Y+ (1 + w(@))O() ()N, (4.32)
'NQur (Tp,kTn)

(th —t,th +1t).

Proof. Let 7 € (0,1) and s € (0,1) be given. Since HN~1(I") < oo, there exists S; C I' such that
HN-UT'\ S;) < 7/3, Sy is compact and contained in a finite union of (N — 1)-Lipschitz graphs T,
i=1,..., M, with Lipschitz constants less than 7/(2v/N).

where I(tFt) :

Moreover, since HN~! a.e. x € S; a point of density one, by Egorov’s Theorem, we may find
Sy C Sy such that HVN=1(S; \ S2) < 7/3 and there exists 71 > 0 such that for all 0 < r < r; and
x € SQ,

HYN L (SN Qup(z,7) < (1 + 72)rN 7L
Let L; := Sy NT; and without lose of generality we assume that L; are mutually disjoint. Let
L} C L; be such that

_ 71 )
HNL(L; \L’)<§2— and d;; := dist(L;, L};) > 0
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for i # j. We observe that

M
/HN71 (Sg \HL;) < g and d := Igél?{dw} > 0.

Define
M
S = U L.
i=1
We claim that there exists 0 < r9 < min {72, d/2, 1"1} such that for every 0 < r < ry and every z,

y € S with |z — y| < v/Nr we have
SN Ql/r(xar) - RT/2,V1"(x7T))

where we are using the notation introduced in Notation 2.3. Indeed, to verify this inclusion, we
write (up to a rotation)

SNQu(z,m) ={W 1:(¥): ¥y € Tyrr NQup(z,7)} CTy

where ' 2 is defined in (4.4) and ||Vi,|| - < 7/(2V/N). Assuming, without loss of generality, that
x =0 and [,(0) = 0, we have for all y € Ty .. N Q. (0,7)

Tr

DN | =

llo()] < Vil Lo <

because for every y € SN Q,,.(0,7) we have |y| < v/ Nr.

Next, for HV¥ la.e. x € S we may find ro(x) > 0 such that Q,.(x,r3) C Q and kra(x) < ro(z)
where 7o(z) is determined in Lemma 4.7. Let 7o(z) := min {ry,73(2)}. The collection

F={Qu.(z,r): z €S, r<io(z)}

is a fine cover for S, and so by Besicovitch’s Covering Theorem we may obtain a countable sub-
collection F C F' with pairwise disjoint cubes such that

ScC U Qup (T, 70).
Qup (Tn,rn)EF

For each Q,.(7n,rn) € F we apply Lemma 4.7 to obtain t; € (—kr,/4,kr,/4) and tf . > 0,
depending on tf , 7, kry, and z,, such that (4.32) hold.

Finally, we observe that
HNTHENS) < HNTHEN ) + HY TS\ S2) + HY T (S \ 9) < 7,
and this completes the proof. O

Proposition 4.9. Let w € C(Q) be nonnegative, let I' C Q be HN~'-rectifiable with H¥ (') <
+00, and let 7 € (0,1) be given. There exists a HYN ~'-rectifiable set S C T’ and a countable family
of disjoint cubes F = {Qup(@n,7n)}rey with r, < T such that the following hold:

1.

HYNITNS) <7, 8 C | Que(@n,n), and S0 Qup(n,mn) € Rejpy (T, 7n); (4.33)

n=1

2Yes, we assume vr(z) = ey, and this is why we say “up to a rotation” above
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2.
HY (SN Qur (2, ) < (1472 (4.34)
3. forn #m
diSt(QVr (xnarn)aQur (Imarm)) > 05 (435)
4
+oo
SNt < 4N (4.36)
n=1

5. for each n € N there exist t,, € (—1ry/4,7ry/4) and 0 < ty, »,, < |tn], depending on 7, ry, and
Ty, such that Ty, v (tn £ 2, r,) C Ryj20 (Tn, ) and

sup w(z)dHN1dl

0<t<t

i )
(s O] J1(t0.0) JQup (@ irn) (T o (1)

< / wWdHN 7+ (1 + w(zn))rra ML, (4.37)
SﬁQ,,F (Tn,rn)

Tn,Tn

where I(ty,t) := (tn — t,tn +1).

o0

Proof. We apply items 1, 2, and 3 in Proposition 4.8 to obtain a countable collection {Q,. (zn, 7))},
and a set S’ C T such that

HNUD\ §') <

505 € U Quenrh), 80 Quel@a, ) € R (a,7h),
n=1

and
HN L (SN Qu (7)) < (14 72)rN 1
for all 0 <r < r}. Find 0 < x < 1 such that

HN1 (SI\ [j Qur(xm"”;)> < %v

n=1

and let
S:=5nN <U Qur(xna/ﬁn;z)> :
n=1
Then
S c U Qur (T, K77

n=1

and

HN-UT\ 8) < HY YT\ §') + HY1(S'\ §) < g + g =
Note that the collection {Qy,. (xn, k77,)}, o satisfies (4.35). Next, we apply item 4 in Proposition
4.8 with such x > 0 to find ¢, ¢ ., such that (4.32) holds. It suffices to set r,, := k1), t, =1},

and tg, ,, =1t

/.
T T,

O
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4.2. The Case w € W(Q) N C(N).

Consider the functionals
1
Eye(u,v) := / 0? |Vul|® w da +/ |:€ Vo] + —(v— 1)?| wdz
Q Q 4e

for (u,v) € W22(Q) x WH2(Q), and let
E,(u) ::/ |Vu|2wdx—|—/ w(x) dHN 1,
Q Su

be defined for u € GSBV,,(Q).

Theorem 4.10. Let w € W(Q) N C(Q) N L>®(Q) be given. Let E,-: LL(Q) x L1(Q) — [0, +o0] be
defined by

Eye(u,v) if (u,v) € Wh2(Q) x WH2(Q), 0 <wv <1,

+00 otherwise.

Euwe(u,v) = {

Then the functionals E,, . T-converge, with respect to the L., x L' topology, to the functional

€0 (u,v) E,(u) ifue GSBV,(Q) andv =1 a.e.,
w (U, V) = .
+00 otherwise.

Theorem 4.10 will be proved in two propositions.

Proposition 4.11. (I-liminf) For w € W(2) N C() and u € LL(Q), let

w

E; (u) := inf {limi{r)lewﬁ(uE,va) :
e—
(ue,v:) € W2 (Q) x WH(Q), ue — w in L), v-. — 1 in L', 0 <v. < 1}.
We have
E; (u) > E,(u).

Proof. Without loss of generality, we assume that M := E (u) < co. Let {(ue,ve)}.o o C WS2(Q)x
W12(Q) be such that
1

u. — win LY, v. — 1in LY(Q), and hIl’(l)Ew,E(uE,UE) =E; (u) < 0.
E—r

Since inf,cqw(z) > 1, we have

liminf F4 (ue, v:) < liminf E,, ¢ (ue, ve) < 00,
e—0 e—0

and by [8] we deduce that
u € GSBV(Q) and HV1(S,) < 0.

We prove separately that
liminf/ Vel ve wdz > / \Vul|® w dz, (4.38)
e—0 Q Q
and

s 2 1 2 N-1
. _ >
hgnl(r)lf ; (5 |Vue|” + 46(1 Ve) )wdm /5u w(z)dH™ . (4.39)
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Let A be an open subset of Q. Fix v € SV¥71, and define A, ,, Al

€,V

K e RT, set ug := K AuV —K, and observe that, by Fubini’s Theorem,

and A, as in (4.1). For

lim inf |Vu5| vZ o.;dx>hm1nf/ / (ue), ZV vs) L Wey dt dHY 7Y ()
Al

e—0

e—0

/ / “y Wep dt dAHN 7 (2)

Al

2/ / |(UK);;,,| Wy dt dHN 7 (z),
A, Jay,

where in the first inequality we used Lemma 4.2, in the second inequality we used Fatou’s Lemma,
and in the third inequality we used (3.3). Since ux € L*(Q) N SBV, () C L>(Q) N SBV(Q), we
may apply Theorem 2.3 in [8] to ux to obtain

>/ hmmf/ |(ue)s. |2(v5) L Way dtdHY 71 ()
Ay Al

e—0

liminf/ |Vu5|2v?wdx2/ / ’(uK);,V|2w$,l,dtd’HN ! /|VuK W wd.
A A, Jay,

Letting K — oo and using Lebesgue Monotone Convergence Theorem we have

hminf/ [Vue|? v? wdx>/ [(Vu(z), )] wda. (4.40)

e—0

Let

On(x) = [(Vu(z), v,)|* w for LN-ae. z € Q,

where {v;,,}.-_, is a dense subset of SV, and let

Then p is a positive function, super-additivity on open sets A, B, with disjoint closures, since

e—0

u(AUB) = liminf/ Vel v wde = liminf (/ |Vu5\2v§wdx+/ Vu5|2v?wdx>
AUB B

>hm1nf/ Vue|* v wdm+hm1nf/ |Vue|® v wdz = u(A) + u(B).

Hence by Lemma 15.2 in [17], together with (4.40), we conclude (4.38).

Now we prove (4.39). Assume first that w € L°°(f2). For any open set A C Q and v € SV~1,
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by Fubini’s Theorem and Fatou’s Lemma we have

o 2 1 2
11?5ng<5|va| +£(17v5) wdx

1
> liminf/ / {e |(ve)l V|2 +—(1- (UE)W)Q] Wy dtdHN 7 ()
A, Jar ’ 4e

e—0

2/ liminf/
A, e—0 A

1
x,v

N-1
> /A u S wen(®)| dHN T (@),

t€Su, , NAL

2 (4.41)

4e

Ug, v

where the last inequality follows from (3.12).

Next, given arbitrary 7 > 0 and n > 0 we choose a set S C S, and a collection Q of mutu-
ally disjoint cubes according to Lemma 4.6 with respect to S,,. Fix one such cube Q,4(zq,7r9) € Q.
By Lemma 4.6 we have

/HN_I([QVS (x0’760>]m,us N S) =1
for HN"Lae. z € Quq(wo,m0) NS, and Q,4(wg,79) NS C 'y, such that, up to a rotation and a
translation,
Iy = {(y’, Lzo (y/)) 0 Y € Tigws N Qug(wo,70)} and ”Vla:o”Loe <T, (4.42)

where y' denotes the first N — 1 components of y € Ty o N Qug (o, o).

In (4.41) set A = Q,4(x0,70) and v = vg(xp) and, using the same notation as in the proof of
Lemma 4.6, we obtain

W v (ao) (1) | dHY T (2 4.43
/[st(zo,m)] 2. ws (o) (£) (z) (4.43)

vs(zo) \tES N[Qug (xo,r0)]

Yz,vg(zg) z,vg(zg)

> /T 3 Wr (o) (1) | dHY ()

g (wO 7T0)

tesuz,us(zo) m[Qus (mo,ro)]z,ps(zo)
_ / w(z) dHN () = / (@', gy (@))dLN ('),
T4(z0,m0) Ty (o.r0)

where the first inequality is due to the positivity of w and the last equality is because Q4 (xq, 79) N
S C Ty, which is defined in (4.42).

Next, by Theorem 9.1 in [39] and since w € C(2), we have that

/Q L /T (@', Lo (&)1 + |V (2 2’
vg (Zo,r0)N -

zg,vgNQug (%0,70)

<Viee [ (@, Ly (&),

Tag,vgNQug (To,70)
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which, together with (4.43), yields

/ > W s (ao) (1) | AHN 7Y (@)
[Qug (z0,m0)]

vg(zg) tESuI,VS(IO)O[st(wo,’!‘o)]z,ys(zo)

1 / N-1
> wdHN"L (4.44)
V1+72J0, (woro)ns

Since cubes in Q are pairwise disjoint and HY~1(S\ UgeoQ) = 0, by (4.41), (4.43), and (4.44) we
have

1
liminf/ {5 Vo + —(ve — 1)2} wdz
Ugeo@Q de

e—0

o 2 1 2

> . —_

E hgu(r)lf/ |:€VUE +45(U€ 1)* | wdx
QeQ Q

1 / N-1 1 / N-1
——— wdH = — [ wdH
\/1+T2Z SNQ V1i+712 /s

QeQ

1 _
> e ([ o el

Therefore

1
liminf/ {5 Vol + —(ve — 1)2] wdz
Q 4e

e—0

1 1
> liminf e|Vo 2+v—12]wdx></wdeN1—w ~ ),
—  e=0 [JQEQQ|: ‘ E‘ 45( &€ ) - m s, ( ) || HL T]

and (4.39) follows from the arbitrariness of n and 7, and the fact that 1 and 7 are independent.

We now remove the assumption that w € L. Define for each k > 0,

() w ifw<k,
w(x) =
F k  otherwise.

We have

1
liminf/ {5 Vol + — (v — 1)2] wdz
e=0 Jq 4e

1
> liminf/ [5 Vel + —(ve — 1)2} wy dx > / wi(2)dHN
e—0 Q 45 Su
and we conclude

1
liminf/ [5 IVoe|? + —(ve — 1)2] wdzr > / w(x)dHN !
Q 45 Su

e—0

by letting k& * oo and using Lebesgue Monotone Convergence Theorem. ]
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Proposition 4.12. (I-limsup) For w € W(Q) N C(Q) N L>®(Q) and u € LL () N L>(), let

El(u) = inf {lim sup Ey e (te, ve)

© e—0
(ue,ve) € WE2(Q) x Wh2(Q),ue = u in LY, ve = 1 in L', 0 < v, < 1}.

We have
E(u) < Eul(u). (1.45)

Proof. If E,(u) = oo then there is nothing to prove. Assume that E,(u) < +oco so that by
Lemma 2.10 we have that u € GSBV,,(Q) and H¥~1(S,) < co. By assumption u € L*°(£2), thus
u € SBV,(9).

Let 7 € (0,2/9) be given. Apply Proposition 4.9 to w and T' = S, to obtain a set S; C Sy, a
countable collection F,; = {Ql,su (xn,rn)}:il of mutually disjoint cubes with r, < 7, and corre-
sponding

tn € (—Trp/4,7ry/4) (4.46)
M,
n=1

and ty,, r, sothat items 1-5 in Proposition 4.9 hold. Extract a finite collection 7, = {stu (zp, rn)}
from F,; with M, > 0 large enough such that

M,
HY 5\ U Qua, (xn,m] <,
n=1
and we define
MT
F.:=5,n lU Qus., (mn,rn)] , (4.47)
n=1
which implies that
HNL(S,\ Fy) < HY 7S, \ Sy) + HY (S \ Fy) < 2. (4.48)

Let U, be the part of Qg (zn,7n) which lies between T, .. (£77,), U be the part above
Ty, vs, (Trn) and U, be the part below Ty, s (—7ry). Moreover, let U;t be the part of U,, which
lies above Ty, s, (tn), and U; be the part below Ty, o (tn).

We claim that if z € Utj;,
z £ 2dist (2, Ty, vs, (£770)) Vs, (Tn) € U C Quy, (T, 0) \ Ry/20s, (Tn, ). (4.49)
Let « € U;" (the case in which = € U;_ can be handled similarly), we need to prove that

Tr, < dist (x4 2dist(@, Ty, vs, (T70))V8, (Tn), Tonvss) < %

Note that
dist (2, Ty, vs, (T70)) = 7 — (& = Pa,, v, (2))vs, (0),

and since x € Utt , we have that

({E - szysu (ZL')) Vs, (xn) € (tna Trn)~

Hence, together with (4.46), we observe that
Trn, < 2dist (2, Ty, s, (1)) + (2 = Pap s, (@) vs, (@) (4.50)
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=27r, — (v — Ps. s, (x))vs, (xn) < 277, — (f

From the definition of projection operator P, ., we have

Vsy

Po, s, (@4 2dist (Te, vs, (T70)) vs, (T0)] = Pa, s, (@),
and hence
dist (z + 2dist(2, Ty, s, (770))Vs, (#n), Te, vs.) (4.51)
= ([x + 2 dist (ac, Ty vs, (T?"n))l/su (xn)]
Py, vs, [+ 2dist (T, vs, (T70)) vs, (z0)]) Vs, (zn)
= (2 dist (x, Ty s, (T?“n))usu (xn)) vs, ()
+ (x —Pr, s, [a: + 2dist (TL“,,SH (T?“n)) vs, (:r:n)]) vg, (zn)
= 2dist (x, Tepvs, (Trn)) + (x — Py, s, (x)) vs, (zn),

and by (4.50) we conclude (4.49).
We define 4, in Qg (7n,7,) as follows (see Figure 1):

u(x) ifzeUfUU,
U, () = u(z+2dist(z, Ty, s, (T70))vs, (2)) if v € U, (4.52)
u(x —2dist(2, Ty, s, (—770))vs, (zn)) ifz €U,

and

M,
Ur(x) :=u(x) if x € Q\ <U Qus, (xn,rn)> .

n=1
We observe that, as 7 — 0, and since 0 < r,, < T,

LY ({x e Q, u(z) # a,(2)}) = LN (U U u U;)
n=l (4.53)

M, M- M-
< N (Utt u Ut;) = Z (T,J:[_12T7'n) < 272 Z 7“71:[_1 < STQHN_l(Su) — 0,
n=1 n=1 n=1

where the last inequality follows from (4.36). Moreover, using the same computation, we deduce
that

M, M.
N (U Qus, (xmm) <y et <arHNTH(S8,) = O(r) — 0. (4.54)
n=1 n=1

Hence, in view of (4.53), we have

@ — u and Vi, — Vu in measure, (4.55)
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Un - u(z)
: TxnaVSu (Tlrn)
Ur | (z + 2dist(z, Ty, s, (T70))Vs, (Tn))
" Trn /4
""""""""""""""""""""""""""""""""""""""""""" tn
Aﬁn Tx”’ysu
U —T7ry, /4
u (z — 2dist(z, Ty, vs. (—77n))Vs, (Tn))
B Tmn VS (—TTn)
Uy - u(x)
Tn stu (Tn,Tn) .

FIGURE 1. Construction of 4. (x) in (4.52)

and, since in U;" UU; 1, is the reflection of u from Qg (25,7,) \ U;- UU; , we observe that

/|VQT|2wdm§/ |Vu|2wdx+||w||Loo/ Va2 do
Q O\ {u(z)#ur(z)} {u(z)#£a-(z)}

MT
g/ IVl wde + 2 |w]] Z/ Vu|? da
Q\{u(x);ﬁﬁ,(ac)} n=1 lesu(mnﬁ'n) (456)
:/ |Vu|2wdx+2HwHLm/ |Vu|® dz
Q\{u(w)iﬂ"' (1)} 71\1/1:7—1 stu (wnﬂ‘n)

S/ \Vul® wdz + O(r)
Q

where the last inequality follows from (4.54) and from the fact that because F1(u) < E,(u) < 400,
Vu is L? integrable. Moreover, in view of (4.55) and by Lebesgue Dominated Convergence Theorem
we conclude that

Jim / i — u|wda < 0] e lim / s — uldz = 0 (4.57)
Q 7—0 Q

7—0

because ||Tr|| ;0 < [Jullj00 < +00.

For simplicity of notation, in the rest of the proof of this lemma we shall abbreviate Q. (2n,7n) by

Qn and T, s by T, . Note that the jump set of %, is contained by (recall item 4 in Proposition
4.9)
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1.
M.
U [Twn (tn) N Qn] ;
n=1
2.
M,
U 0Qn nT,;
n=1

3. Sy \ Fr, where F. is defined in (4.47).

The contributions to S, from 2 and 3 are negligible. To be precise,

M,
(Su\ Fr)U (U amm)

n=1

HN71

M, [e%S)
SHNTHSN\F) + Y HYNTN0QnNTy) <2+ Cr Y _r) Tl < O(7).

n=1 n=1

where we used (4.33), (4.36), (4.48), and the fact that

M, M,
S OHNTH0QuNT,) <27y T < 8THNTI(SL).
n=1 n=1

Hence, again by (4.36),

M, )
HYNTH(S5,) <Y HN TN (T, N Q) +O(1) <D 1T+ 0(7) < o0
n=1 n=0

By (4.35), let a, denote a quarter of the minimum distance between all cubes in 7;. Let € > 0 be
such that

1
e +e << Fmin {7, ar, by, o, for 1 <n < M-} (4.58)
Hence, by item 5 in Proposition 4.9 we have
1
2+ Ve <ty <l|tal < 17 <Tn- (4.59)

We set
Ure ‘= (]- - @s)ara

where ¢, is such that

pe € C2(; [0, 1), p: =1on (Sﬂ7)52/4a and @, =01in O\ (Sﬁf)e2/2'

Since @, € WH2(Q\ Sg,), we have {ur .} ., C WH?(Q) because (1 — p.)(z) = 0 if 2 € (Sg, )e2/4-

Moreover, {urc}, ., C W.?(Q) and, using Lebesgue Dominated Convergence Theorem and (4.57),

lim lim / lure —ulw=0 (4.60)
Q

T7—=0e—0
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because w € L>®, u € L*°, and ¢. — 0 a.e.

Consider the sequence {v-c}__, C W?(Q) given by

vre(2) = Uc 0 dr ()
where d.(x) := dist(z, S5, ) and 0. is defined by

5.(t) 0 ift <e?, (4.61)
v, = .
c 1—e 2 ift> JEtel

and for e2 <t < VE+ €2 we define 7. as the solution of the differential equation
- 1 -
BL(t) = 5-(1 = 2:(0)) (4.62)

with initial condition @(¢?) = 0. An explicit computation shows that

t—e?

b(t)=—e27% +1 (4.63)
for 2 <t < /e +¢e? and 0.(y/e +€2) =1 — exp (—1/21/2), and we remark that
lim Le 5% — 0, (4.64)
e—=0 ¢
and
d (1 - 2 ~ ~/
g 5 (1= 0@)" ) = (1 -5(t) 5:(t) = 0. (4.65)

Next, since |Vd,| = 1 a.e. (see [30], Section 3.2.34), we have {v, .}
1 —exp(—1/2y/¢), and

e>0 C W1’2(9)7 0< Ur,e <

vy —1lin L' ase — 0 (4.66)

by Lebesgue Dominated Convergence Theorem since v, . — 1 a.e. by (4.63). By (4.56) and since
if p-(x) # 0 then d,(z) < £2/2 and so v, .(z) = 0,

/ |Vu778|2v3)8wdﬂc < / Vi, |* wde < / \Vul|® wdz + O(r). (4.67)
Next we prove thautQ ’ ’
/Q {5 Vure? + 4ig(l - vm)ﬂ wdr < /S wdHNTE 4+ O(e) + O(7). (4.68)
Define “
Ly :=Ts, N Qn, Ln(e) i= (T, N Qn).

and observe that, using Fubini’s Theorem,

1
/ [s Ve +—(1— 1)715)2} wda
Ly (e24+/2) 4e

Ve g2, L ~ 2 N—1
eloe(OF + (1 =) w(y) dH™ " (y) dl
e € {dr ()=} "L (24+/5)
1
+— w(x)dz,
4e L, (£2)
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where the latter term in the right hand side is of the order O(e). Next, in view of (4.62), using
integration by parts, we have that

SHVE ~/ 2 1 ~ 2 N-1
eloeI” + - (1 = (1)) w(y) dH" " (y) dl
2 € {d-(y)=U}NLn(e*+VE)

w(y) dHY " (y) dI
2 2e /{dT(y)l}ﬂLn(52+\/E) (4.69)

Ve 1 g R )
- 7/ 5 (1 —9:(1))?] / w(y) dydl
e? € {d+ (y)<UINLn(e2+Vfe)

AL+ V) - AL(E),

where
1
A0 = 51— aule))? [ () dy.
€ {dr () SH)NLy (2 4+1E)
By (4.59) and (4.64) we have
1
AR (2 +VE) = —e T w(z) dz (4.70)
2 {dr () <24 VE}NLn (245)

IN

1 _ 1
226 7 lwllpe LN (L (? +\f)):*6 7 o] e LN((Tw, N Qo2 )

2 ol 2662+ V) + (€ + VAN < O

IA

We write

/s Ve 1 g [(1 - (l))Q]/ (y) dy di
_ —— [(1 =0, wly)ay
2 2e dt {d- (y) <I}NLn (e24V5E)

—/Ezwgm (—ld (1-% (l))ﬂ) 1/ w(z)dx| di
e2 2e dt c 21 (y)<IINL, (e247) '

Recalling the notation from Proposition 4.9 and the fact that w(zy) < ||w||,«, we have

1
w(z)dr < sup / / w(x)dHNtdl
21 J d, () <AL (2 +7) r<ezpyz \ L (tn:t)] tn7t| I(tn,t) J Q(@n,r)NTa,, (1)
< / w(x) dHN "+ O(r)rl
S:NQ(zp,Tn)

where by (4.58) we could use (4.37) in the last inequality. Therefore, by (4.65)

Ve 1 4 ~ 9
[ pgla-aor [ () dr
€2 € {d- () <UINLy (e2+V/¢)

€ *ﬁ_ii 2 N-1 N-1
<2 [(1—a.(0)] Lal w(x) dHT 4 O(m)ry ™ -
£2 25 dt STQQ(Cﬂnv"‘n)
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A new integration by parts and by using (4.63) yields

/62+ﬁ_1d (1 - 5.())] 1l
2 2e dt Ve

:EQJM/EL - 2_i2 5 (2 2i_~22
(1= 0e(D)?dl = (e + VE) (1 = Be(e” + V&))* + 5 (1 = Tel€?))

2 2e 2e
e>+vE 2
- 2 € - 1 _L € -
<[, 0P as D0 —ae)R = 3 (1-F) + S0 - 06
< 1 n 1
=327 9"
which, together with (4.71) and (4.34), gives
SHVE g
—/ —— [ —55(1))2]/ w(x) dx dl (4.72)
22 2e dt {d+ () <IINL (e24/E)

< / (@) dHY 4 O 4 e wll o HY (S, N Qs ) + £O(r)rY
SrNQ(zp,Tn)
< / wz)dHN 4 O(r)rY =1+ 0(e)O(r)r) 1.
S:NQ(zp,Tn)
Hence, in view of (4.69), (4.70), (4.72), and since A, (%) > 0, we obtain that
/ [6 [V, o
Lu(247)

< / w@)dHN L+ O(r)rY =t + 0(e)O(r)rY =t + O(e)rN =1, (4.73)
S:NQ(zp,Tn)

1
L —(1-— 11775)2} wdx

4e

Next we define

Lo := (S, \ Fr)U (U oQn ﬂUn> and  Lo(e) := l(Su \ F;)U (U oQn ﬂUn>

€

Since w € L>*(Q), we have

/ {e |V, e
Lo(e2++/¢)

1
L (1- UT,5)2:| wdz

4e
2 1 2
< ol £ Vorel + (1= vr)?| da,
Lo(e2++/7) 3

and we note that the term
1
/ [g Vorel? + (1 - vﬂa)?] da

Lo(e2+V) de
is the recovery sequence constructed in [8], page 1034, Added in Proof. Therefore, recalling that
by assumption that v € SBV,, () N L (Q) C SBV(Q) N L*>°(Q) and invoking Proposition 5.1 and
5.3 in [8] and calculation within, we conclude that
1 N-1 Q: dist(z, L
limsup/ [5 Vorel” +—(1— vT’E)Q] dx < limsup " CaS ist(z, Lo) <€)

e=0  JLo(e241/7) 4e e—0 2e
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< HN"N(Lo).
Thus,
1
e|Vure* + —(1— ’()-,—75)2:| wdz < ||lw|| . (HY 71 (Lo) 4 O(e)
/LO(EZ VA) { 4e o ) (4.74)
< O(7) + O(e).
Furthermore, by (4.61)
1 1 1
/ elVure + —(1 —v,)? | wde < —e V7 W]l LY () < O(e), (4.75)
[e) _ ’ 4e ’ 4e
\(SUT)E2+\/E

where in the last inequality we used (4.64).

Since cubes in T, are pairwise disjoint, in view of (4.73), (4.74), and (4.75) we have that

1
/Q {e |V1}T,E|2 + g(l — ’U-,—75)2:| wdx
/(Su7)52+\/g
+
O\(Sar)ezy 2
S/ |:5 |V'UT,E
Lo(e2+/¢)
M,
>
n=1 L

M,
<O0()+0(r)+ Y </S o )w(sc)dHN—1 + [0(e) + O(7) 4+ O(£)O(7)] rjj-1>

=1

1
[5 Vel + Q(l - ’U-,—’E)2:| wdz

1
[5 |v1}7—,5|2 + 4—5(1 — vr,g)ﬂ wdzx

1
* E(l - 11775)2} wdx

1
[e [Vore” +—(1— UT,E)Q] wdz + O0(e)
n(c2+VE) de

S

w(x) dHY " 4+ [O(e) + O(1) + O(e)O(7)] ) V=11 0(7) + O(e)

n

<
UM (5:0Q(@n 7))

I
—

< / w(z) dHN 1+ O(e) + O(r) + 0(£)O(7),
S.

u

where in the last inequality we used (4.36), and this concludes the proof of (4.68). Hence, also in
view of (4.67) and (4.68), for each 7 > 0, we may choose ¢(7) such that

/ |Vr o(r) }2 v? c(rywdz < / Vul? wdz + O(7),
Q ' Q
and
1
/ |:8 ’va’E(T) ’2 +—(1- UT?E(T))Q} wdr < / w(@)dHN "+ O(7),
Q 4e Su
and we thus constructed a recovery sequence {(ur,v;)}, -, given by

Ur = Ur (7)) a0d Vr 1= Vr (7)
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which satisfies (4.45) and by (4.60) and (4.66) we have
lirer = ullpy <7 and fJoree = vl <
Hence, we proved Proposition 4.12. O

Proof of Theorem 4.10. The lim inf inequality follows from Lemma 4.11. On the other hand, for any
given u € GSBYV,, such that FE,(u) < co, we have, by Lebesgue Monotone Convergence Theorem,

E,(u)= lim E,(KAuV-K),
K—o0
and a diagonal argument, together with Proposition 4.12; concludes the proof. |

4.3. The Case w € W(Q)NSBV(Q).
Consider the functionals
E, - (u,v) := / v? |Vu|2wd:z: +/ |:€ |Vv|2 + i(v — 1)2 wdz,
? Q Q 45
for (u,v) € W22(Q) x WH2(Q), and
E,(u) ::/ |Vu\2wdac—|—/ w™ (z) dHN !
Q Su

defined for v € GSBV,, ().

Theorem 4.13. Let w € W(Q) N SBV(Q) N L>®(Q) be given. Let £, .: LL(Q) x L1 (Q) — [0, +o]
be defined by

Eye(u,v) if (u,v) € WhH2Q) x Wh3(Q), 0 <wv <1,

+00 otherwise.

Euwe(u,v) == {

Then the functionals E,, . T-converge, with respect to the LY, x L' topology, to the functional

€0 (u,v) E,(u) ifue GSBV,(Q) andv =1 a.e.,
w U, V) = .
+00 otherwise.

We start by proving the I'-lim inf.

Proposition 4.14. (T-liminf) For w € W(Q) N SBV(Q) and u € LL(), let

E; (u) :=inf {hminf Eye(Ue,ve)

w
e—0

(ue,ve) € WE2(Q) x WH2(Q),ue — u,v. — 1 in L x L', 0 < v, < 1}.

We have
E (u) > E,(u).

Proof. Without lose of generality, we assume that E_ (u) < 400. The proof of this lemma uses the
same arguments of the proof of Proposition 4.11 until the beginning of (4.41), and we obtain

liminf/ |Vus|2vfwd:v2/|Vu|2wdx.
Q Q

e—0
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By applying Proposition 3.6 to the last inequality of (4.41), we have
1
liminf/ (5|Vv P+ —=(1-v )Q)wdx > / wy, (t)dx.
=20 Ja T e ) Ay tESuZWAI .

The rest of the proof follows that of Proposition 4.11 with w, , in place of w,, and taking into
consideration of the fact that w; ,(t) = w™(x + tv) (see Remark 3.109 in [4]). O

The next lemma is the SBV version of Lemma 4.7. We recall that I(to,t) := (to —t,t0 +t).

Proposition 4.15. let 7 € (0,1/4) be given, and let w € SBV(Q2) N L>=(£2) be nonnegative. Then
for HN=1 a.e. 9 € S, a point of density one, there exists ro := ro(xo) > 0 such that for each
0 <r <rg there exist tg € (27r,47r) and 0 < to, = to,(to, T, x0,7) < to such that

/ / w(@)dHN " (2)dl
0<t<t0r th | I(to,t) Q o (@0 )N Tag g ()

0:vs
< / wE(@) dHN T+ Oo(r)rN T (4.76)
SuNQig (zo,7)

Proof. For simplicity of notation, in what follows we abbreviate Q.. _(7o,7) as Q(wo,7) and Th, s
as Ty, .

Since HV~1(S,) < oo, and so p := HN~1|S, is a nonnegative radon measure, and since w~ €
LY(Q, p), it follows that for HV 1 ae. 79 € S,

lim lw™ (z) — w™ (o) dHN " (2) = 0. (4.77)
70/ Q(w0,r)NS.,

Choose one such zg € S, also a point of density 1 of S, and let 7 > 0 be given. Select r; > 0
such that for all 0 < r < rq,

LAY 5,0 Q0 1)

2
T2 < N1 <147% (4.78)
Let 0 < ro < 71 be such that, in view of (4.77),
/ |lw™ (z) — w™ (o) dHN 7L < 72N (4.79)
Q(zo,r)NS

for all 0 < r < rg, and we observe that

W (2o)HN 7 [Q(0,7) N Ty (—to)] = w™ (20) r¥ 1 (4.80)
<A+ w (xo)HY 1 Q(zo, ) N SL] . ’
Since by Theorem 2.4

lim w(z) —w™ (zg)|dx =0,
r—0 Q_(Ioﬂ‘) | |

we may choose 0 < r3 < ry such that

][ |w(z) — w™ (x0)| do < 72,
Q™ (wo,r)
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for all 0 < r < r3, and so, since 3.57r < r, we have

3.571r
/ ’w(w) - w_(xo)‘ dHN 7 (z)dt < / |w(z) — w™ (z0)| dz < 2,
2.57r JQ— (zo,r)NTey (—t) Q~ (zo,r)

There exists a set A C (2.57r,3.57r) with positive 1 dimensional Lebesgue measure such that for

every t € A,
2,.N

/ |w(z) —w_(x0)|dHN_1(x) < L (4.81)
Q™ (z0,r)N T (—t) ™
and choose tg € A a Lebesgue point for

le(-r/2,7/2) — wdHN ()

Q- (IO 7r)mTT0 @)
so that

1
lim / / w(@)dHY Y (2)dl = / w(@)dHN ) (z).
=0 [I(to, )| J1(to.6) J @~ (zo.r) Ty (—1) Q~ (w0,r)NTxy (~to)

Hence, there exists ¢, > 0, depending on ty, 7, r, and zg, such that I(to,%,) C (2.57r,3.57r) and

1
sup 7/ / w(x)dHN " (x)dl
o<t<to [1(to, )| Jr(to.t) J Q- (zor)nTuy (—1)
< / w(@)dHN L N (4.82)
Q= (z0,m)NTxy (—to)

In view of (4.82), (4.81), (4.80), and (4.79), in this order, we have that for every 0 < r < rg there
exist to € (2.57r,3.57r) and 0 < g, < to such that

1
sup 7/ / w(z)dHN 1 (2)dl
o<t<to (Lo, ) J1(t0.) JQ= (wo.r)nTuy (—1)

§/ w(z)d’HNfl + Nt
Qf(Io,T)ﬂTIO(ft(])

g/ ’w(m) —w_(xo)’dHN_l
Qf(zo,T‘)ﬂT.cO(—to)

+w ™ (zo)HN [Q (w0,7) N Tyy(—to)] + N1
<O(M)rN M+ (1472w (wo)HY 1 [Q(20,7) N S,]

<O(r)yrV "t + 1+ 72)/ w (z)dHN L
Q(zo,r)NS,,
Since w € L>®(2), we have w™ € L*(S,,) and thus, invoking (4.78),
7'2/ w(z)dHN T < O(7) lwll HYHQ(zo,7) N S, < O(T)rNE,
Q(zo,m)NS,,

and we deduce the w™ version of (4.76).

Similarly, we may refine ¢y, ro > 0, and 0 < g, < to such that

1
sup 7/ / w(x)dHNdl < / wh(z)dHN =t 4 O(r)rN L
o<t<to, [ (to, D)l Jitto,) JQ+ (wor)nTug 1) Q(ao.)NS.
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O

Proposition 4.16. Let w € SBV(Q2) N L>(Q2) be nonnegative and let 7 € (0,1/4) be given. Then,
there exist a set S C S, and a countable family of disjoint cubes F = {stw (mn,rn)}oo with
rn < T, such that the following hold:

1. HNH S\ S) <7 and S C Uy Qus, (Tn,m0);

2.

n=1’

diSt(Qusw (xn: 7171)7 Qusw (xma Tm)) >0

forn #m;
3.

> Tt < anNT(S,);
n=1

4..85N stw (zna Tn) - RT/QJISW (xna Tn);
5. for each n € N, there exists t,, € (2.57r,,3.57r,) and 0 < ty, ,. < t,, depending on 7, ry,, and
Ty, such that

TIn,l/sw (_tn + tzn,r") C Q;Sw (-rn, rn) \ RT/Q,VS_) (l’n, rn)
and

1
sup 7/ / w(x)dHN 1dl
0<t<ty, vy L) J1c, ) Qug, (@) Ty o ()

< / wodHN T 4 O (4.83)
SI’WQUSN (T yrn)

where I(ty,t) := (—t, —t, —t, +1t).

Proof. The proof of this proposition uses the same arguments of the proof of Proposition 4.8 and
Proposition 4.9 where we apply Lemma 4.15 in place of Lemma 4.7. ]

Proposition 4.17. (I-limsup) For w € W(Q) N SBV(Q) N L>(Q) and u € LL(Q) N L>®(Q), let

El(u) = inf {lim sup Ey e (te, ve)

w
e—0

(ue,ve) € WE2(Q) x Wh2(Q),ue = u in LY, ve = 1 in L', 0 < v, < 1}.

We have
E(u) < Eu(u). (4.84)

Proof. Step 1: Assume HY~1((S, \ Su) U (Su \ Sw)) =0, i.e., S, and S, coincide HN 1 a.e.

If E,(u) = oo then there is nothing to prove. If E,(u) < 400 then by Lemma 2.10 we have
that u € GSBV,,(Q) and HV~1(S,) < +oo0.

Fix 7 € (0,2/21). Applying Proposition 4.16 to w we obtain a set S, C S,, a countable col-
lection of mutually disjoint cubes F, = {stw (zn, rn)}zo:l, and corresponding

t, € (2.577ry,3.571y,) (4.85)
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and t,, . for which (4.83) holds. Extract a finite collection 7, = {stw (zn, rn)}f:rl from F, with
M, > 0 large enough such that

MT
HNL lsf\ U @vs, (xn,rn)l <, (4.86)
n=1
and we define
M,
F.:=5,n lU Qus,, (a:n,rn)] : (4.87)
n=1

Let U, be the part of Q. (2n,7,) which lies between T

Tn,VS,
T,

s, (tn), and U be the part below Ty, 1o (—tn)-

(£tn), U be the part above

We claim that if x € U,,
x4 2dist(x, Ty, ,vs_ (tn))vs, (xn) € U, (4.88)
Note that
dist (2, Ty, vs_ (tn)) = tn — (2 — P, s (@) vs,, (@),
and since x € U,, we have that
(2 = Pa, s, () vs, (Tn) € (—tn,tn)
and

1
tn < 2dist (2, Ty, 0s_ (tn)) + (2 = Papve, (7)) vs, (@n) < 3ty < 10577, < 37

Hence, following a similar computation in (4.51), we deduce (4.88).

Moreover, according to (4.85) and the definition of R/, (%n,75), we have that
(UFUU )N R: 2 (2n,m0) = 0.
We define @, as follows (see Figure 2):
if Uuruu;
ay(x) = @ Lo e Yy U, (4.89)
u (x + 2dist(z, Ty, v (tn))vs, (zn))  if © € Uy,

and

tr(z) :=u(z)if z € Q\ (U Qus, (:cn,rn)> .

n=1

Note that the jump set of @, is contained by
1.

M,
U [T%,sz (—tn) N Qusw (Tn, rn)] ;

n=1

M, -
U 9(Qus, (n.)) NT;
n=1

3. Sy \ Fr, where F; is defined in (4.87).
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Ui u(z)
3.5Trn
Tﬁ?n,'/sw (tn)
2.57Try
Un Tn T$n7VSw
u (z + 2dist(z, Ty, s, (tn))vs, (2n))

Txn VSw (_tn)

Un u(z)

Tn Qusw(xn,rn)

FIGURE 2. Construction of 4. (x) in (4.89)

The construction of {uc},.q C W?(Q) and {v.},., C W?(Q) satisfying (4.84) is same as in the
proof of Proposition 4.12, using (4.89) instead of (4.52), and at (4.71) we apply (4.83) instead of
(4.37).

Step 2: Suppose that HN~1((S, \ Su) U (Su \ Su)) > 0. Note that we are only interested in
the part Sy, \ S, but not S, \ Sy, because we only need to recover S,,.

o0

We first apply Proposition 4.9 on S, to obtain a countable family of disjoint cubes F = {Q,,Su (zn, rn)}
such that (4.33)-(4.36) hold. Furthermore, extract a finite collection 7 from F such that (4.86)
holds.

n=1

We define %, inside each Q. (¥n,7,) € T7 as follows (see Figure 3):

1. if , € S, we apply Proposition 4.15 to obtain item 5 in Proposition 4.16 for this Qus, (Tn,Tn),
and we define @, in this cube in the way of (4.89);

2. if z,, € S, \ S,,, we apply Lemma 4.7 to obtain item 5 in Proposition 4.9 for this Qus, (Tn,Tn),
and we define @, in this cube in the way of (4.52).

For points x outside T, we define @, (z) := u(x).

Reasoning as in Proposition 4.12 and Proposition 4.17, we conclude (4.84). |

Proof of Theorem 4.13. The liminf inequality follows from Proposition 4.14. On the other hand,
for any given u € GSBYV,, such that E,(u) < oo, we have, by Lebesgue Monotone Convergence
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@

FIGURE 3. Applying (4.89) in dotted line cube and (4.52) in straight line cube.

Theorem,
E,(u)= lim E,(KAuV-K),
K—oo

and a diagonal argument, together with Proposition 4.17, yields the lim sup inequality for u. (Il

APPENDIX

Definition A.1 ([7], Definition 4.4.9). Let X be a metric space. We denote by Cx the family of
all nonempty closed subsets of X. Then

dy(C,D) :=min{1,h(C,D)}, C,D € Cy,
where
h(C,D) :=1inf {6 € [0,+cc] : C C Ds and D C Cys},

is a metric on Cx, and is called the Hausdorff distance between the set C' and D (see (2.4) for
definition of Ds and Cy).

Consider X to be the interval (0, 1) with the Euclidian distance. We remark that for two intervals
[a1,b1] and [ag,bs] in (0,1),

dy([a1,b1], [az, b2]) = min {1, max {|a; — az|, |b1 — b2|}}. (A.1)
Indeed, the §-neighborhood of [a1,b;] is [a; — J,b1 + §], and contains [az, bo] if and only if

1) Z max{a1 —ag,bg —bl}
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Similarly, the é-neighborhood of [ag, ba] contains [a1,bq] if and only if
0 > max {as —a1,b; — ba},
and we conclude (A.1).
Lemma A.2. Let I, := [an,b,] C (—1,1). Then, up to the extraction of a subsequence,
I, B 1. c (-1,1),
where I is connected and closed in (—1,1), and
LMI) = lim L£H(1,).

Moreover, for arbitrary K CC I, K must be contained in I, for n large enough.

Proof. Because I,, C (—1,1), we have that {a,} ., and {b,} -, are bounded and so, up to the
extraction of a subsequence, there exist

oo := lim a, and by := lim b,, (A.2)
n—oo n—o0

where —1 < a0 < boo < 1. We define Iog := [aoo, boo] If =1 < oo < boo < 1, Ino := (—1,bs] if

oo = —1, and I = [aco, 1) if boo = 1. Hence I is connected and closed in (—1,1) (in the case
in which G = boo = —1, Or ao, = boo = 1, we have I, = & and it is still closed in (—1,1)).
Hence

nh_)rr;odH(Im I.) = nh_)rr;omaxﬂan — ool |brn — boo|} =0,

and we have for I, # &,

LYNI00) = boo — Goe = lim (b, —ay,) = lim L£}(1,),

n—0o0 n—oo

as desired.

Next, if K CC I, then K C (a,f) for some «, 8 such that ap, < @ < 8 < bs. By (A.2)
choose N large enough such that for all n > N,
anp < a < f < by,

so that K C I, for all n > N. O

Lemma A.3. Let {v.}_ ., C WH2(I) be such that 0 < v. <1, v. — 1 in L*(I) and pointwise a.e.,
and

1
limsup/ [6 \v;|2 + —(ve — 1)?| dz < . (A.3)
e—0 I 2 2¢e

Then for arbitrary 0 < n < 1 there exists an open set H, C I satisfying:

1. the set I\ H, is a collection of finitely many points in I;
2. for every set K compactly contained in H,, we have K C BY for e > 0 small enough, where

Bl :={zel:vi(z)>n}.
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Proof. Choose a constant M > 0 such that

1
M > hmsup/ {; \v;|2 + %(U‘S - 1)2} dx > hmsup/|1}5| |1 — v da?fhmsup /|cs|d:17

e—0
where c.(z) := (1 — v.(x))%. Note that by (A.3), cc — 0 in L(I). Fix o, § with
0<o<d<l

By the co-area formula we have, for 0 < ¢ < gy with eg sufficiently small,
oo §
2M +1 > / |cL(z)] dx = / HO({z: co(z) =t})dt > / HO({x : cc(x) = t})dt.
I —o00 o
Hence, for each € > 0 there exist J. € (0,0) such that

2 > W (o o) = 02)), (A1)

Define, for a fixed r > 0,

Al:={zel: c(x) <r}.
Since v. € WH2(I), v. is continuous and so is c., therefore A% is closed and has at most
(2M + 1)/(6 — o) + 1 connected components because of (A.4) and in view of the continuity of
ce. Note that the number (2M + 1)/(6 — o) does not depend on € > 0.

For € € (0,e9) and k € N depending only on § — o and M, we have

1. A% = Uz L I, where each I is a closed interval or &;

2. foralli<j,max{z: 2z €I} <min{z:zell}.
By Lemma A.2, up to the extraction of a subsequence, for each i € {1,2,...,k} let I{ be the

Hausdorff limit of the I! as e — 0, i.e., I’ 1 I}, with I{ is connected and closed in I, and for all
i < j, max I{ < minI}.

Set
k k

Ts == | J(I§)° and T := | J(ID)°, (A.5)
i=1 i=1
where by (-)° we denote the interior of a set. Since

INA> c{zel: c(z)>0}
and c¢. — 0 in L!(I), by Chebyshev’s inequality we have

. 1 T 1 o

;%E (Ts.e) = tll_I)I(l),C (Ae) = 2.

Moreover, since T . At Ts, by Lemma A.2 we have
Zﬁl (I})° Zgncl I)° = hchl (1)° = lim £1(T5,) = 2.

Thus |1\ Ts| = 0. Moreover7 since T has at most k connected components, I \ T is a finite collec-
tion of points in 1.

Next, let K CC T be a compact subset. We claim that K must be contained in Age for € > 0 small
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enough. Recall I§ and I! from (A.5). Define K; := K N (I§)° for i = 1,...,k. Then K; CC (I})°
for each i, and so by Lemma A.2 there exists ¢; > 0 such that for all 0 < € < &;, K; C I. Define

/ .
e = min Eir -
ie{l,...,k}{ i}

For 0 < ¢ < ¢/ we have K; C I!, and so

k k
K=|JKicl|JIi=A%
=1 =1

2
)

Finally, given n € (0,1), set § := (1 —ﬁ)2 with H, = T(1_ )32 and B := Agli‘/ﬁ) and
properties 1 and 2 are satisfied. (Il
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