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Abstract. The Ambrosio-Tortorelli approximation scheme with weighted underlying metric is

investigated. It is shown that it Γ-converges to a Mumford-Shah image segmentation functional
depending on the weight ω dx, where ω ∈ SBV (Ω), and on its value ω−.
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1. Introduction and Main Results

A central problem in image processing is image denoising. Given an image u0, we decompose it as

u0 = ug + n

where ug represents a noisy-free ground truth picture, while n encodes noise or textures. Examples
of models for such noise distributions are Gaussian noise in Magnetic Resonance Tomography, and
Poisson noise in radar measurements [16]. Variational PDE methods have proven to be efficient to
remove the noise n from u0. Several successful variational PDEs have been proposed in the litera-
ture (see, for example [36, 42, 43, 44]) and, among these, the Mumford-Shah image segmentation
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functional

G(u,K) := α

ˆ
Ω\K
|∇u|2dx+ αHN−1(K) +

ˆ
Ω

(u− u0)2dx

where u ∈W 1,2(Ω \K), K ⊂ Ω closed in Ω,

(1.1)

introduced in [41], is one of the most successful approaches. By minimizing the functional (1.1)
one tries to find a “piecewise smooth” approximation of u0. The existence of such minimizers can
be proved by using compactness and lower semicontinuity theorems in SBV (Ω) (see [1, 2, 3, 4]).
Furthermore, regularity results in [22, 24] give that minimizers u satisfy

u ∈ C1(Ω \ Su) and HN−1(Su ∩ Ω \ Su) = 0.

Here, as in what follows, Su stands for the jump set of u.

The parameter α > 0 in (1.1), determined by the user, plays an important role. For example, choos-
ing α > 0 too large will result in over-smoothing and the edges that should have been preserved
will be lost, and choosing α > 0 too small may keep the noise un-removed. The choice of the “best”
parameter α then becomes an interesting task. In [25] the authors proposed a training scheme by
using bilevel learning optimization defined in machine learning, which is a semi-supervised learning
scheme that optimally adapts itself to the given “perfect data” (see [20, 21, 26, 27, 45, 46]). This
learning scheme searches α > 0 such that the recovered image uα, obtained from(1.1), best fits the
given clean image ug, measured in terms of the L2-distance. A simplified bilevel learning scheme
(B) from [25] is the following:

Level 1.

ᾱ := arg min
α>0

ˆ
Ω

|uα − ug|2 dx, (1.2)

Level 2.

uα := arg min
u∈SBV (Ω)

{ˆ
Ω

α |∇u|2 dx+ αHN−1(Su) +

ˆ
Ω

|u− u0|2 dx
}
,

In [25] the authors proved that the above bilevel learning scheme has at least one solution ᾱ ∈
(0,+∞], and a small modification rules out the possibility of ᾱ = +∞.

The model proposed in [37] is aimed at improving the above learning scheme. It is a bilevel
learning scheme which utilizes the scheme (B) in each subdomain of Ω, and searches for the best
combination of different subdomains from which a recovered image ū, which best fits ug, might be
obtained.

To present the model, we first fix some notation. For K ∈ N, QK ⊂ RN denotes a cube with
its faces normal to the orthonormal basis of RN , and with side-length greater than or equal to 1/K.
Define PK to be a collection of finitely many QK such that

PK :=
{
QK ⊂ RN : QK are mutually disjoint, Ω ⊂

⋃
QK

}
,

and VK denotes the collection of all possible PK . For K = 0 we set Q0 := Ω, hence P0 = {Ω}.

A simplified bilevel learning scheme (P) in [37] is as follows:
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Level 1.

ū := arg min
K≥0,PK∈VK

{ˆ
Ω

|ug − uPK |
2
dx

}
(1.3)

where uPK := arg min
u∈SBV (Ω)

{ˆ
Ω

αPK (x) |∇u|2 dx+

ˆ
Su

αPk(x)dHN−1 +

ˆ
Ω

|u− u0|2 dx
}

(1.4)

Level 2.

αPK (x) := αQK for x ∈ QK ∈ PK , where αQK := arg min
α>0

ˆ
QK

|uα − ug|2 dx,

uα := arg min
u∈SBV (QK∩Ω)

{ˆ
QK∩Ω

α |∇u|2 dx+ αHN−1(Su) +

ˆ
QK∩Ω

|u− u0|2 dx
} (1.5)

Scheme (P) allows us to perform the denoising procedure “point-wisely”, and it is an improvement
of (1.2). Note that at step K = 0, (1.3) reduces to (1.2). It is well known that the Mumford-
Shah model, as well as the ROF model in [44], leads to undesirable phenomena like the staircasing
effect (see [10, 19]). However, such staircasing effect is significantly mitigated in (1.3), according to
numerical simulations in [37] (a theoretical validation of such improvement is needed). We remark
that the most important step is (1.4) for the following reasons:

1. (1.4) is the bridge connecting level 1 and level 2;
2. since αPK is defined by locally optimizing the parameter αQK , we expect uPK be “close” to ug

locally in QK ;
3. the last integrand in (1.4) keeps uPK close to u0 globally, hence we may expect uPK to have a

good balance between local optimization and global optimization.

We may view (1.4) as a weighted version of (1.1) by changing the underlying metric from dx to
αPKdx. By the construction of αPk in (1.5), we know it is a piecewise constant function and, since
K > 0 is finite, the discontinuity set of αPK has finite HN−1 measure. However, αPK is only defined
LN -a.e., and hence the term ˆ

Su

αPk(x)dHN−1

might be ill-defined.

In this paper, we deal with the well-definess of (1.4) by modifying αPK accordingly, and by building
a sequence of functionals which Γ-converges to (1.4). To be precise, we adopt the approximation
scheme of Ambrosio and Tortorelli in [8] and change the underlying metric properly. In (1.1)
Ambrosio and Tortorelli considered a sequence of functionals reminiscent of the Cahn-Hilliard ap-
proximation, and introduced a family of elliptic functionals

Gε(u, v) :=

ˆ
Ω

α |∇u|2 v2dx+

ˆ
Ω

α

[
ε |∇v|2 +

1

4ε
(v − 1)2

]
dx+

ˆ
Ω

(u− u0)
2
dx,

where u ∈ W 1,2(Ω), (v − 1) ∈ W 1,2
0 (Ω), and u0 ∈ L2(Ω). The additional field v plays the role of

controlling variable on the gradient of u. In [8] a rigorous argument has been made to show that
Gε → G in the sense of Γ-convergence ([9]), where G is defined in (1.1).

In view of (1.5), we fix a weight function ω ∈ SBV (Ω) such that ω is positive and HN−1(Sω) < +∞.
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Our new (weighted version) Mumford-Shah image segmentation functional is defined as

Eω(u) :=

ˆ
Ω

|∇u|2 ω dx+

ˆ
Su

ω− dHN−1, (1.6)

and the (weighted version) of Ambrosio - Tortorelli functionals are defined as

Eω,ε(u, v) :=

ˆ
Ω

|∇u|2 v2ω dx+

ˆ
Ω

[
ε |∇v|2 +

1

4ε
(v − 1)2

]
ω dx.

It is natural to take u ∈ GSBVω(Ω) in (1.6) (see Definition 2.6. For basic definitions and theorems
of weighted spaces we refer to [5, 6, 11, 14, 15, 18, 32, 33]). Moreover, since K ≥ 0 is finite and
αQK > 0 in (1.5) , it is not restricted to assume that

essinf {ω(x), x ∈ Ω} ≥ l, where l > 0 is a constant.

This condition implies that all weighted spaces considered in this paper are embedded in the cor-
responding non-weighted spaces, and hence we may apply some results that hold in the context of
non-weighted spaces. For example, BVω ⊂ BV and W 1,2

ω ⊂ W 1,2 (see Definition 2.6), and most
theorems in [8] can be applied to u ∈ SBVω(Ω) (for example, Theorem 2.3 in [8]).

Before we state our main result, we recall that similar problems have been studied for different
types of weight functions ω (see, for example [12, 13, 35]). In particular, [12, 13] treat a uniformly
continuous and strong A∞ (defined in [23]) weight function on Modica-Mortola and Mumford-Shah-
type functionals, respectively, and in [35] the authors considered a C1,β-continuous weight function,
with some other minor assumptions, in the one-dimensional Cahn-Hilliard model.

Our main result is the following:

Theorem 1.1. Let Ω ⊂ RN be open bounded, let ω ∈ SBV (Ω) ∩ L∞(Ω), and let Eω,ε: L1
ω(Ω) ×

L1(Ω)→ [0,+∞] be defined by

Eω,ε(u, v) :=

{
Eω,ε(u, v) if (u, v) ∈W 1,2

ω (Ω)×W 1,2(Ω), 0 ≤ v ≤ 1,

+∞ otherwise.

Then the functionals Eω,ε Γ-converge, with respect to the L1
ω × L1 topology, to the functional

Eω(u, v) :=

{
Eω(u) if u ∈ GSBVω(Ω) and v = 1 a.e.,

+∞ otherwise.

The proof of Γ-convergence consists of two steps. The first step is to prove the “lim inf inequality”

lim inf
ε→0

Eω,ε(uε, vε) ≥ Eω(u)

for every sequence uε → u, vε → v. This is obtained in Section 3.2 in the case N = 1 by using
most of the arguments proposed in [8], and the properties of SBV functions in one dimension (see
Lemma 2.5). The case N > 1 is studied in Section 4.3, and it uses a special slicing argument (see
Lemma 4.6).

The second step is the construction of a recovery sequence (uε → u, vε → 1) such that the termˆ
Ω

[
ε |∇v|2 +

1

4ε
(v − 1)2

]
ω dx (1.7)
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only captures the information of ω−. We note that for small ε > 0, (1.7) only penalizes a ε-
neighborhood around the jump point of u. By using fine properties of SBV functions (see Theorem
2.4), we are able to incorporate u and v in our model such that (1.7) will only penalize along the
direction −νSω . This will be carried out in Lemma 3.7.

We remark that the techniques we developed in this paper can be adapted to other functional
models. For example,

1. the weighted Cahn-Hilliard model defined as

CHω,ε(u) :=

ˆ
I

[
ε |∇u(x)|2 +

1

ε
W (u)

]
ω dx,

for u ∈W 1,2
ω (Ω) and with a double well potential function W : R→ [0,+∞) such that {W = 0} =

{0, 1} with the Γ-limit

CHω(u) := cWPω(u)

defined for u = χE ∈ BVω(Ω), where

cW := 2

ˆ 1

0

√
W (s) ds and Pω(u) :=

ˆ
Su

ω−dHN−1;

2. higher order singular perturbation models defined by the Γ-limit

Hω(u) :=

ˆ
Ω

|∇u|2 ω dx+

ˆ
Su

ω−(x) dHN−1,

and approximation energies

Hω,ε(u, v) :=

ˆ
Ω

|∇u|2 v2ω dx+
1

C(k)

ˆ
Ω

[
ε2k−1

∣∣∣∇(k)v
∣∣∣2 +

1

ε
(v − 1)2

]
ω dx,

where

C(k) := min

{ˆ
R+

∣∣∣v(k)
∣∣∣2 + (v − 1)2dx, v(0) = v′(0) = · · · = v(k−1)(0) = 0, lim

t→∞
v(t) = 1

}
.

The analysis of items 1 and 2 above is forthcoming (see [38]).

This article is organized as follows: In Section 2 we introduce some definitions and we recall
preliminary results. In Section 3 we prove the one dimensional version of Theorem 1.1. Section 4
is devoted to the proof of our main result.

2. Definitions and Preliminary Results

Throughout this paper, Ω ⊂ RN is an open bounded set with Lipschitz boundary, and I := (−1, 1).

Definition 2.1. We say that u ∈ BV (Ω) is a special function of bounded variation, and we write
u ∈ SBV (Ω), if the Cantor part of its derivative, Dcu, is zero, so that (see [4], (3.89))

Du = Dau+Dju = ∇uLNbΩ + (u+ − u−)νuHN−1bSu. (2.1)

Moreover, we say that u ∈ GSBV (Ω) if K ∧ u ∨ −K ∈ SBV (Ω) for all K ∈ N.
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Here we always identify u ∈ SBV (Ω) with its approximation representative ū, where

ū(x) :=
1

2

[
u+(x) + u−(x)

]
,

with

u+(x) := inf

{
t ∈ R : lim

r→0

LN (B(x, r) ∩ {u > t})
rN

= 0

}
,

and

u−(x) := sup

{
t ∈ R : lim

r→0

LN (B(x, r) ∩ {u < t})
rN

= 0

}
.

We note that ū is Borel measurable (see [29], Lemma 1, page 210), and it can be shown that ū = u
LN -a.e. x ∈ Ω, and that

(ū)+(x) = u+(x) and (ū)−(x) = u−(x)

for HN−1-a.e. x ∈ Ω (see [29], Corollary 1, page 216). Furthermore, we have that

− < u−(x) ≤ u+(x) < +∞ (2.2)

for HN−1-a.e. x ∈ Ω (see [29], Theorem 2, page 211). The inequality (2.2) uniquely determines the
sign of νu in (2.1).

Definition 2.2. (The weight function) We say that ω: Ω→ (0,+∞] belongs to W(Ω) if ω ∈ L1(Ω)
and has a positive lower bound, i.e., there exists l > 0 such that

ess inf {ω(x), x ∈ Ω} ≥ l. (2.3)

Without loss of generality, we take l = 1. Moreover, in this paper we will only consider the cases
in which ω is either a continuous function or a SBV function. If ω ∈ SBV then, in addition, we
require that

HN−1(Sω) <∞ and HN−1(Sω \ Sω) = 0.

We next fix some notation which will be used throughout this paper.

Notation 2.3. Let Γ ⊂ Ω be a HN−1-rectifiable set and let x ∈ Γ be given.

1. We denote by νΓ(x) a normal vector at x with respect to Γ, and QνΓ(x, r) is the cube centered
at x with side length r and two faces normal to νΓ(x);

2. Tx,νΓ
stands for the hyperplane normal to νΓ(x) and passing through x, and Px,νΓ

stands for the
projection operator from Γ onto Tx,νΓ

;
3. we define the hyperplane

Tx,νΓ(t) := Tx,νΓ + tνΓ(x)

for t ∈ R;
4. we introduce the half-spaces

HνΓ
(x)+ :=

{
y ∈ RN : νΓ(x) · (y − x) ≥ 0

}
and

HνΓ(x)− :=
{
y ∈ RN : νΓ(x) · (y − x) ≤ 0

}
.

Moreover, we define the half-cubes

Q±νΓ
(x, r) := QνΓ

(x, r) ∩HνΓ
(x)±;

5. for given τ > 0, we denote by Rτ,νΓ(x, r) the part of QνΓ(x, r) which lies strictly between the
two hyperplanes Tx,νΓ(−τr) and Tx,νΓ(τr);
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6. we set

Aδ := {x ∈ Ω : dist(x,A) < δ} (2.4)

for every A ⊂ Ω and δ > 0.

Theorem 2.4 ([29], Theorem 3, page 213). Assume that u ∈ BV (Ω). Then

1. for HN−1-a.e. x0 ∈ Ω \ Su,

lim
r→0

 
B(x0,r)

|u(x)− ū(x0)|
N
N−1 dx = 0;

2. for HN−1-a.e. x0 ∈ Su,

lim
r→0

 
B(x0,r)∩HνSu (x0)±

∣∣u(x)− u±(x0)
∣∣ N
N−1 dx = 0;

3. for HN−1 a.e. x0 ∈ Su

lim
ε→0

1

εN−1

ˆ
Su∩QνSu (x0,ε)

∣∣u+(x)− u−(x)
∣∣ dHN−1(x) =

∣∣u+(x0)− u−(x0)
∣∣ .

Lemma 2.5. Let ω ∈ SBV (I) be such that H0(Sω) <∞. For every x ∈ I the following statements
hold:

1. if {xn}∞n=1 and {yn}∞n=1 ⊂ I are such that xn < x < yn, n ∈ N, and limn→∞ xn = limn→∞ yn =
x, then

lim inf
n→∞

ess inf
y∈(xn,yn)

ω(y) ≥ ω−(x); (2.5)

2.

lim
zn→x

{zn}∞n=1⊂H
±
νSω

(x)

ω̄(zn) = ω±(x); (2.6)

3.

lim sup
dH(Kn,x)→0

ess sup
z∈Kn

Kn⊂⊂H±νSω (x)

ω(z) = ω±(x), (2.7)

where Kn ⊂⊂ H±νSω (x) and dH denotes the Hausdorff distance (see Definition A.1).

Proof. If x /∈ Sω, then there exists δ > 0 such that

Sω ∩ (x− δ, x+ δ) = ∅,

and so ω is absolutely continuous in (x − δ, x + δ), and (2.5)-(2.7) are trivially satisfied with
ω(x) = ω−(x) and with equality in place of the inequality in (2.5).

Let x ∈ Sω and, without loss of generality, assume that x = 0, and let xn, yn → 0 with xn < 0 < yn
for all n ∈ N. Since H0(Sω) <∞, choose r̄ > 0 such that

Sω ∩ (0− r̄, 0 + r̄) = 0.

As ω̄ is absolutely continuous in (−r̄, 0) and (0, r̄), we may extend ω̄ uniquely to x = 0 from the
left and the right (see Exercise 3.7 (1) in [34]) to define

ω̄(0+) := lim
x↘0+

ω̄(x) and ω̄(0−) := lim
x↗0−

ω̄(x). (2.8)
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Assume that (the case ω̄(0−) ≥ ω̄(0+) can be treated similarly)

ω̄(0−) ≤ ω̄(0+). (2.9)

We first claim that

lim inf
n→∞

inf
x∈(xn,yn)

ω̄(x) ≥ ω̄(0−). (2.10)

Let ε > 0 be given. By (2.8) find r̄ > δ > 0 small enough such that∣∣ω̄(x)− ω̄(0−)
∣∣ ≤ 1

2
ε for all x ∈ (−δ, 0), and

∣∣ω̄(x)− ω̄(0+)
∣∣ ≤ 1

2
ε for all x ∈ (0, δ).

This, together with (2.9), yields

ω̄(x) ≥ ω̄(0−)− 1

2
ε,

for all x ∈ (−δ, δ). Since xn → 0 and yn → 0, we may choose n large enough such that (xn, yn) ⊂
(−δ, δ) and hence

inf
x∈(xn,yn)

ω̄(x) ≥ ω̄(0−)− ε.

Thus, (2.10) follows by the arbitrariness of ε > 0.

We next claim that

ω̄(0±) = ω±(0). (2.11)

By Theorem 2.4 part 2 and the fact that ω̄ = ω L1-a.e., we have

ω−(0) = lim
r→0

1

r

ˆ 0

−r
ω(t) dt = lim

r→0

1

r

ˆ 0

−r
ω̄(t) dt = ω̄(0−),

where at the last equality we used the properties of absolutely continuous function and the defini-
tion of ω̄(0−). The equation ω̄(0+) = ω+(0) can be proved similarly.

Therefore

lim inf
n→∞

ess inf
x∈(xn,yn)

ω(x) = lim inf
n→∞

inf
x∈(xn,yn)

ω̄(x) ≥ ω̄(0−) = ω−(0),

which concludes (2.5), and (2.6) and (2.7) hold by (2.8) and (2.11). �

Definition 2.6. (Weighted function spaces) Let ω ∈ W(Ω) and 1 ≤ p <∞:

1. Lpω(Ω) is the space of functions u ∈ Lp(Ω) such thatˆ
Ω

|u|p ω dx <∞,

endowed with the norm

‖u− v‖Lpω :=

(ˆ
Ω

|u− v|p ω dx
) 1
p

if u, v ∈ Lpω(Ω);
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2. W 1,p
ω (Ω) is the space of functions u ∈W 1,p(Ω) such that

u ∈ Lpω(Ω) and ∇u ∈ Lpω(Ω;RN ),

endowed with the norm

‖u− v‖W 1,p
ω

:= ‖u− v‖Lpω + ‖∇u−∇v‖Lpω
if u, v ∈W 1,p

ω (Ω);

3. BVω(Ω) is the space of functions u ∈ BV (Ω) such that

u ∈ L1
ω(Ω) and

ˆ
Ω

ω d |Du| <∞,

endowed with the norm

‖u− v‖BVω := ‖u− v‖L1
ω

+

ˆ
Ω

ω d |Du−Dv|

if u, v ∈ BVω(Ω);
4. u ∈ SBVω(Ω) if u ∈ BVω(Ω) ∩ SBV (Ω), and u ∈ GSBVω(Ω) if K ∧ u ∨−K ∈ SBVω(Ω) for all

K ∈ N.

Lemma 2.7. Let ω ∈ W(Ω) be given, and suppose that u ∈ SBVω(Ω). Then

HN−1(Su ∩ {ω = +∞}) = 0.

Proof. By Definition 2.6 we have

+∞ >

ˆ
Ω

ω d |Du| =
ˆ

Ω

|∇u|ω dx+

ˆ
Su

∣∣u+ − u−
∣∣ω dHN−1

≥
ˆ
Su∩{ω=+∞}

∣∣u+ − u−
∣∣ω dHN−1.

(2.12)

Since |u+ − u−| (x) > 0 for HN−1-a.e. x ∈ Su, it follows from (2.12) that HN−1(Su∩{ω = +∞}) =
0. �

Lemma 2.8. The space L2
ω is a Hilbert space endowed with the inner product

(u, v)L2
ω

:= (u, v ω)L2 =

ˆ
u v ω dx. (2.13)

Proof. It is clear that (2.13) is an inner product. Also, (u, u)L2
ω

= (u
√
ω, u
√
ω)L2 ≥ 0, and if

(u, u)L2
ω

= 0 then by (2.3) ˆ
Ω

u2ω dx ≥
ˆ

Ω

u2dx = 0,

and thus u = 0 a.e.

To see that L2
ω is complete, and therefore a Hilbert space, let {un}∞n=1 be a Cauchy sequence

in L2
ω and notice that {un

√
ω}∞n=1 is a Cauchy sequence in L2. Hence, there is a function v ∈ L2

such that un
√
ω → v in L2. Defining u := v/

√
ω, we have that u ∈ L2

ω and un → u in L2
ω. �
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Lemma 2.9. Let {un}∞n=1 ⊂W 1,2
ω (Ω) be such that un → u in L1

ω and

sup

ˆ
Ω

|∇un|2 ω dx <∞.

Then, for every measurable set A ⊂ Ω

lim inf
n→∞

ˆ
A

|∇un|2 ω dx ≥
ˆ
A

|∇u|2 ω dx,

and u ∈W 1,2
ω (Ω).

Proof. By (2.3) we have that {∇un}∞n=1 is uniformly bounded in L2(Ω,RN ) and un → u in L1(Ω).
Hence ∇un ⇀ ∇u in L2(Ω;RN ), and using standard lower semi-continuity of convex energies (see
[31], Theorem 6.3.7), we conclude that

+∞ > lim inf
n→∞

ˆ
A

|∇un|2 ω dx ≥
ˆ
A

|∇u|2 ω dx,

for every measurable subset A ⊂ Ω. In particular, with A = Ω and using the fact that 1 ≤ ω a.e.,
we deduce that u ∈W 1,2

ω (Ω). �

Lemma 2.10. Let u ∈ L1
ω(Ω) be such thatˆ

Ω

|∇u|2 ω dx+

ˆ
Su

ω dHN−1 < +∞. (2.14)

Then HN−1(Su) < +∞ and u ∈ GSBVω(Ω).

Proof. By (2.14) and (2.3) ˆ
Ω

|∇u|2 dx+HN−1(Su) < +∞,

and hence by [8] we have that u ∈ GSBV (Ω). To show that u ∈ GSBVω(Ω), we only need to verify
that ˆ

SuK

∣∣u+
K − u

−
K

∣∣ω dHN−1 < +∞

for every K ∈ N and with uK := K ∧ u ∨ −K. Indeed, by (2.14)ˆ
SuK

∣∣u+
K − u

−
K

∣∣ω dHN−1 ≤ 2K

ˆ
SuK

ω dHN−1 ≤ 2K

ˆ
Su

ω dHN−1 < +∞.

�

3. The One Dimensional Case

3.1. The Case ω ∈ W(I) ∩ C(I).

Let ω ∈ W(I) ∩ C(I) be given. Consider the functionals

Eω,ε(u, v) :=

ˆ
I

v2 |u′|2 ω dx+

ˆ
I

[
ε

2
|v′|2 +

1

2ε
(v − 1)2

]
ω dx

for (u, v) ∈W 1,2
ω (I)×W 1,2(I), and let

Eω(u) :=

ˆ
I

|u′|2 ω dx+
∑
x∈Su

ω(x)
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be defined for u ∈ GSBVω(I) (Note that E1,ε(u, v) and E1(u) are, respectively, the non-weighted
Ambrosio-Tortorelli approximation scheme and Mumford-Shah functional studied in [8]).

Theorem 3.1 (Γ-Convergence). Let Eω,ε: L1
ω(I)× L1(I)→ [0,+∞] be defined by

Eω,ε(u, v) :=

{
Eω,ε(u, v) if (u, v) ∈W 1,2

ω (I)×W 1,2(I), 0 ≤ v ≤ 1,

+∞ otherwise.

Then the functionals Eω,ε Γ-converge, with respect to the L1
ω × L1 topology, to the functional

Eω(u, v) :=

{
Eω(u) if u ∈ GSBVω(I) and v = 1 a.e.,

+∞ otherwise.

We begin with an auxiliary proposition.

Proposition 3.2. Let {vε}ε>0 ⊂ W 1,2(I) be such that 0 ≤ vε ≤ 1, vε → 1 in L1(I) and pointwise
a.e., and

lim sup
ε→0

ˆ
I

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
dx <∞.

Then for arbitrary 0 < η < 1 there exists an open set Hη ⊂ I satisfying:

1. the set I \Hη is a collection of finitely many points in I;
2. for every set K compactly contained in Hη, we have K ⊂ Bηε for ε > 0 small enough, where

Bηε :=
{
x ∈ I : v2

ε(x) ≥ η
}
. (3.1)

Proposition 3.2 is adapted from [8], page 1020-1021 (see Lemma A.3).

Proposition 3.3. (Γ-lim inf) For u ∈ L1
ω(I), let

E−ω (u) := inf
{

lim inf
ε→0

Eω,ε(uε, vε) :

(uε, vε) ∈W 1,2
ω (I)×W 1,2(I), uε → u in L1

ω, vε → 1 in L1, 0 ≤ vε ≤ 1
}
.

We have
E−ω (u) ≥ Eω(u).

Proof. If E−ω (u) = +∞ then there is nothing to prove. Assume that M := E−ω (u) <∞. Choose uε
and vε admissible for E−ω (u) such that

lim
ε→0

Eω,ε(uε, vε) = E−ω (u) <∞,

and note that vε → 1 in L1(I). Since infx∈Ω ω(x) ≥ 1, we have

lim inf
ε→0

E1,ε(uε, vε) ≤ lim inf
ε→0

Eω,ε(uε, vε) < +∞,

and by [8] we obtain that

u ∈ GSBV (I) and H0(Su) < +∞. (3.2)

Let ε̄ > 0 be sufficiently small so that, for all 0 < ε < ε̄,

Eω,ε(uε, vε) ≤M + 1.

We claim, separately, that ˆ
I

|u′|2 ω dx ≤ lim inf
ε→0

ˆ
I

|u′ε|
2
v2
ε ω dx < +∞, (3.3)
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and ∑
x∈Su

ω(x) ≤ lim inf
ε→0

ˆ
I

[
1

2
ε |v′ε|

2
+

1

2ε
(1− vε)2

]
ω dx < +∞. (3.4)

Note that (3.3), (3.4), and Lemma 2.10 will yield u ∈ GSBVω(I).

Up to the extraction of a (not relabeled) subsequence, we have uε → u and vε → 1 a.e. in I
with

lim sup
ε→0

ˆ
I

[
1

2
ε |v′ε|

2
+

1

2ε
(1− vε)2

]
dx ≤ lim sup

ε→0

ˆ
I

[
1

2
ε |v′ε|

2
+

1

2ε
(1− vε)2

]
ω dx < +∞.

Therefore, up to the extraction of a (not relabeled) subsequence, we can apply Proposition 3.2 and
deduce that, for a fixed η ∈ (1/2, 1), there exists an open set Hη such that the set I \Hη contains
only a finite number of points, and for every compact subset K ⊂⊂ Hη, K is contained in Bηε for
0 < ε < ε(K), where Bηε is defined in (3.1). We haveˆ

K

|u′|2 ω dx ≤ lim inf
ε→0

ˆ
K

|u′ε|
2
ω dx

≤ 1

η
lim inf
ε→0

ˆ
K

v2
ε |u′ε|

2
ω dx ≤ 1

η
lim inf
ε→0

ˆ
I

v2
ε |u′ε|

2
ω dx,

(3.5)

where we used Lemma 2.9 in the first inequality. By letting K ↗ Hη on the left hand side of (3.5)
first and then η ↗ 1 on the right hand side, we proved thatˆ

I

|u′|2 ω dx ≤ lim inf
ε→0

ˆ
I

v2
ε |u′ε|

2
ω dx, (3.6)

where we used the fact that |I \Hη| = 0.

We claim that Su ⊂ I \ Hη. Indeed, if there is x0 ∈ Su ∩ Hη, since Hη is open there exists
an open interval I ′0 containing x0 and compactly contained in Hη such that for 0 < ε < ε′0ˆ

I′0

|u′ε|
2
dx ≤

ˆ
I′0

|u′ε|
2
ω dx ≤ 1

η

ˆ
I

v2
ε |u′ε|

2
ω dx ≤ 2(M + 1).

Thus u ∈W 1,2(I ′0), and hence is continuous at x0, which contradicts the fact that x0 ∈ Su.

Let t ∈ Su, and for simplicity assume that t = 0. We claim that there exist
{
t1n
}∞
n=1

,
{
t2n
}∞
n=1

, and

{sn}∞n=1 such that −1 < t1n < sn < t2n < 1,

lim
n→∞

t1n = lim
n→∞

t2n = lim
n→∞

sn = 0,

and, up to the extraction of a subsequence of {vε}ε>0,

lim
n→∞

vε(n)(t
1
n) = lim

n→∞
vε(n)(t

2
n) = 1, and lim

n→∞
vε(n)(sn) = 0. (3.7)

Because I \Hη is discrete and 0 ∈ I \Hη, we may choose δ0 > 0 small enough such that

(−2δ0, 2δ0) ∩ (I \Hη) = {0} .

We claim that

lim sup
δ→0+

lim sup
ε→0+

inf
x∈Iδ

vε(x) = 0, (3.8)
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where Iδ := (−δ, δ). Assume that

lim sup
δ→0+

lim sup
ε→0+

inf
x∈Iδ

vε(x) =: α > 0.

Then there exists 0 < δα < δ0 such that

lim sup
ε→0+

inf
x∈Iδα

vε(x) ≥ 2

3
α > 0.

Up to the extraction of a subsequence of {vε}ε>0, there exists εδα0 > 0 such that

inf
x∈Iδα

vε(x) ≥ 1

2
α > 0,

for all 0 < ε < εδα0 , and we have

ˆ
Iδα

|u′|2 dx ≤
ˆ
Iδα

|u′|2 ω dx

≤ lim inf
ε→0

ˆ
Iδα

|u′ε|
2
ω dx ≤ lim inf

ε→0

2

α

ˆ
Iδα

|u′ε|
2
v2
ε ω dx ≤ lim inf

ε→0

2

α

ˆ
I

|u′ε|
2
v2
ε ω dx <

2

α
(M + 1).

Hence u ∈ W 1,2(Iδα) and so u is continuous at 0 ∈ Su, and we reduce a contradiction. Therefore,
in view of (3.8) we may find δn → 0+, ε(n)→ 0+, and sn ∈ (−δn, δn) such that

lim
n→∞

sn = 0 and lim
n→∞

vε(n)(sn) = 0.

We claim that for all τ ∈ (0, 1/2),

lim
n→∞

[
inf

x∈(sn−τ,sn)
(1− vε(n)(x)) + inf

y∈(sn,sn+τ)
(1− vε(n)(x))

]
= 0. (3.9)

To reach a contradiction, assume that there exists τ ∈ (0, 1/2) such that

lim sup
n→∞

[
inf

x∈(sn−τ,sn)
(1− vε(n)(x)) + inf

x∈(sn,sn+τ)
(1− vε(n)(x))

]
=: β > 0.

Without loss of generality, suppose that

lim sup
n→∞

inf
x∈(sn−τ,sn)

(1− vε(n)(x)) ≥ 1

2
β > 0.

Then

lim inf
n→∞

sup
x∈(sn−τ,sn)

vε(n)(x) ≤ 1− 1

2
β,

which implies that

sup
x∈(snk−τ,snk )

vε(nk)(x) ≤ 1− 1

3
β (3.10)

for a subsequence {ε(nk)}∞k=1 ⊂ {ε(n)}∞n=1. However, (3.10) contradicts the fact that vε(nk)(x)→ 1
a.e. since for k large enough so that |snk | < τ/4 it holds

(snk − τ, snk) ⊃
(
−3

4
τ,−τ

4

)
.
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Therefore, in view of (3.9) we may find t1m ∈ (sn(m) − 1/m, sn(m)) and t2m ∈ (sn(m), sn(m) + 1/m)
such that

lim
n→∞

t1m = lim
n→∞

t2m = 0 and lim
n→∞

vε(n(m))(t
1
m) = lim

n→∞
vε(n(m))(t

2
m) = 1.

We next show that

lim inf
m→∞

ˆ sn(m)

t1m

[
1

2
ε(n(m))

∣∣(vε(n(m)))
′∣∣2 +

1

2ε(n(m))
(1− vε(n(m)))

2

]
dx ≥ 1

2
.

Indeed, we have

lim inf
m→∞

ˆ sn(m)

t1m

[
1

2
ε(n(m))

∣∣(vε(n(m)))
′∣∣2 +

1

2ε(n(m))
(1− vε(n(m)))

2

]
dx

≥ lim inf
m→∞

ˆ sn(m)

t1m

(1− vε(n(m)))
∣∣∣v′ε(n(m))

∣∣∣ dx ≥ lim inf
m→∞

∣∣∣∣∣
ˆ sn(m)

t1m

(1− vε(n(m)))v
′
ε(n(m))dx

∣∣∣∣∣
= lim inf

m→∞

1

2

∣∣∣∣∣
ˆ sn(m)

t1m

d

dt
(1− vε(n(m)))

2dx

∣∣∣∣∣
=

1

2
lim
n→∞

[
(1− vε(n(m))(sn(m)))

2 − (1− vε(n(m))(t
1
m))2

]
=

1

2
,

where we used (3.7). Similarly, we obtain

lim inf
m→∞

ˆ t2m

sn(m)

[
1

2
ε(n(m))

∣∣(vε(n(m)))
′∣∣2 +

1

2ε(n(m))
(1− vε(n(m)))

2

]
dx ≥ 1

2
.

We observe that, since ω is positive,

ˆ t2m

t1m

[
1

2
ε(n(m))

∣∣∣v′ε(n(m))

∣∣∣2 +
1

2ε(n(m))
(1− vε(n(m)))

2

]
ω(x) dx

≥
(

inf
r∈(t1m,t

2
m)
ω(r)

)
·

{ˆ sn(m)

t1m

[
1

2
ε(n(m))

∣∣∣v′ε(n(m))

∣∣∣2 +
1

2ε(n(m))
(1− vε(n(m)))

2

]
dx

+

ˆ t2m

sn(m)

[
1

2
ε(n(m))

∣∣(vε(n(m)))
′∣∣2 +

1

2ε(n(m))
(1− vε(n(m)))

2

]
dx

}
,

(3.11)

and so

lim inf
m→∞

ˆ t2m

t1m

[
1

2
ε(n(m))

∣∣∣v′ε(n(m))

∣∣∣2 +
1

2ε(n(m))
(1− vε(n(m)))

2

]
ω(x) dx

≥
(

lim inf
m→∞

inf
r∈(t1m,t

2
m)
ω(r)

)
lim inf
n→∞

{ˆ sn(m)

t1m

[
1

2ε(n(m))
(1− vε(n(m)))

2 +
ε

2

∣∣(vε(n(m)))
′∣∣2] dx

+

ˆ t2m

sn(m)

[
1

2
ε(n(m))

∣∣∣v′ε(n(m))

∣∣∣2 +
1

2ε(n(m))
(1− vε(n(m)))

2

]
dx

}

≥
(

1

2
+

1

2

)
ω(0) = ω(0),
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where we used the fact that ω is continuous at 0.

Finally, since Su ⊂ I \ Hη, by (3.2) we have that Su is a finite collection of points, and we may
repeat the above argument for all t ∈ Su by partitioning I into non-overlaping intervals where there
is at most one point of Su, to deduce that

lim inf
ε→0

ˆ
I

[
1

2
ε |v′ε|

2
+

1

2ε
(1− vε)2

]
ω(x) dx ≥

∑
x∈Su

ω(x). (3.12)

In view of (3.6) and (3.12), we conclude that

lim inf
ε→0

Eω,ε(uε, vε) ≥ Eω(u).

�

Proposition 3.4. (Γ-lim sup) For u ∈ L1
ω(I) ∩ L∞(I), let

E+
ω (u) := inf

{
lim sup
ε→0

Eω,ε(uε, vε) :

(uε, vε) ∈W 1,2
ω (I)×W 1,2(I), uε → u in L1

ω, vε → 1 in L1, 0 ≤ vε ≤ 1
}
.

We have

E+
ω (u) ≤ Eω(u). (3.13)

Proof. Without loss of generality, assume that Eω(u) < ∞. Then by Lemma 2.10 we have u ∈
GSBVω(I) and H0(Su) < ∞. To prove (3.13), we show that there exist {uε}ε>0 ⊂ W 1,2

ω (I) and

{vε}ε>0 ⊂W 1,2(I) such that uε → u in L1
ω, vε → 1 in L1, 0 ≤ vε ≤ 1, and

lim sup
ε→0

Eω,ε(uε, vε) ≤ Eω(u). (3.14)

Step 1: Assume that Su = {0}.

Fix η > 0, and let T > 0 and v0 ∈W 1,2(0, T ) be such that

0 ≤ v0 ≤ 1 and

ˆ T

0

[
(1− v0)2 + |v′0|

2
]
dx ≤ 1 + η, (3.15)

with v0(0) = 0 and v0(T ) = 1.

For ξε = o(ε) we define

vε(x) :=


0 if |x| ≤ ξε,
v0

(
|x|−ξε
ε

)
if ξε < |x| < ξε + εT,

1 if |x| ≥ ξε + εT.

(3.16)

Since ‖vε‖L∞(I) ≤ 1, by Lebesgue Dominated Convergence Theorem we have vε → 1 in L1. Let

uε(x) :=

{
u(x) if |x| ≥ 1

2ξε,

affine from u
(
− 1

2ξε
)

to u
(

1
2ξε
)

if |x| < 1
2ξε.

(3.17)

and we observe that (recall in assumption we have u ∈ L∞(I))

‖uε‖L∞(I) ≤ ‖u‖L∞(I) ,
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and ˆ
I

‖u‖L∞(I) ω dx <∞.

Therefore, by Lebesgue Dominated Convergence Theorem we deduce that uε → u in L1
ω. Moreover,

by (3.16) and (3.17) we observe that

v2
ε |u′ε|

2
=

{
v2
ε |u′|

2
if x ≥ |ξε| ,

0 if x < |ξε| ,

and so v2
ε |u′ε|

2 ≤ |u′|2. Since Eω(u) <∞ we have u′ ∈ L2
ω(I), by Lebesgue Dominated Convergence

Theorem we obtain

lim
ε→0

ˆ
I

v2
ε |u′ε|

2
ω dx =

ˆ
I

|u′|2 ω dx.

Next, since ω is positive we have
ˆ
I

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
ω(x) dx

=

ˆ −ξε
−ξε−εT

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
ω(x) dx+

ˆ ξε+εT

ξε

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
ω(x) dx+

1

2ε

ˆ ξε

−ξε
ω(x)dx

≤

(
sup

t∈(−ξε−εT,ξε+εT )

ω(t)

)
·

{ˆ −ξε
−ξε−εT

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
dx

+

ˆ ξε+εT

ξε

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
dx

}
+
ξε
ε
‖ω‖L∞ .

We obtain

lim sup
ε→0

ˆ
I

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
ω(x) dx

≤ lim sup
ε→0

(
sup

t∈(−ξε−εT,ξε+εT )

ω(t)

)
·

lim sup
ε→0

{ˆ −ξε
−ξε−εT

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
dx+

ˆ ξε+εT

ξε

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
dx

}
≤ω(0)(1 + η),

where we used (3.15).

We conclude that

lim sup
ε→0

Eω,ε(uε, vε) ≤
ˆ
I

|u′|2 ω dx+ ω(0)(1 + η),

and (3.14) follows by the arbitrariness of η.

Step 2: In the general case in which Su is finite, we obtain uε by repeating the construction in
Step 1 (see (3.17)) in small non-overlapping intervals centered at each point in Su. To obtain vε, we
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repeat the construction (3.16) in those intervals and extend by 1 in the complement of the union
of those intervals. Hence, by Step 1 we have

lim sup
ε→0

Eω,ε(uε, vε) ≤
ˆ
I

|u′|2 ω dx+ (1 + η)
∑
x∈Su

ω(x),

and again (3.14) follows by letting η → 0+. �

Proof of Theorem 3.1. The lim inf inequality follows from Proposition 3.3. For the lim sup inequal-
ity, we note that for any given u ∈ GSBVω such that Eω(u) < +∞, by Lebesgue Monotone
Convergence Theorem we have that

Eω(u) = lim
K→∞

Eω(K ∧ u ∨ −K),

and hence a diagonal argument together with Proposition 3.4 conclude the proof. �

3.2. The Case ω ∈ W(I) ∩ SBV (I).

Consider the functionals

Eω,ε(u, v) :=

ˆ
I

|u′|2 v2ω dx+

ˆ
I

[
ε

2
|v′|2 +

1

2ε
(v − 1)2

]
ω dx

for (u, v) ∈W 1,2
ω (I)×W 1,2(I), and for u ∈ GSBVω(I) let

Eω(u) :=

ˆ
I

|u′|2 ω dx+
∑
x∈Su

ω−(x).

We note that if ω ∈ W(I)∩SBV (I) and ω is continuous in a neighborhood of Su, for u ∈ GSBVω(I),
then ∑

x∈Su

ω−(x) =
∑
x∈Su

ω(x)

and Theorem 3.1 still holds.

Here we study the case in which ω is no longer continuous on a neighborhood of Su. We recall that
ω ∈ SBV (I) implies that ω ∈ L∞(I) and by definition of ω ∈ W(I), we have H0(Sω) < ∞. Also,
we note that ω− is defined H0-a.e, hence everywhere in I.

Theorem 3.5. Let Eε: L1
ω(I)× L1(I)→ [0,+∞] be defined by

Eω,ε(u, v) :=

{
Eω,ε(u, v) if (u, v) ∈W 1,2

ω (I)×W 1,2(I), 0 ≤ v ≤ 1,

+∞ otherwise.

Then the functionals Eω,ε Γ-converge, with respect to the L1
ω × L1 topology, to the functional

Eω(u, v) :=

{
Eω(u) if u ∈ GSBVω(I) and v = 1 a.e.,

+∞ otherwise.

The proof of Theorem 3.5 will be split into two propositions.

Proposition 3.6. (Γ-lim inf) For u ∈ L1
ω(I), let

E−ω (u) := inf
{

lim inf
ε→0

Eω,ε(uε, vε) :

(uε, vε) ∈W 1,2
ω (I)×W 1,2(I), uε → u in L1

ω, vε → 1 in L1, 0 ≤ vε ≤ 1
}
.
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We have

E−ω (u) ≥ Eω(u).sn(m)

Proof. Without lose of generality, assume that E−ω (u) < +∞. We use the same arguments of the
proof of Proposition 3.3 until (3.11). In particular, (3.2) and (3.3) still hold, that is

H0(Su) < +∞ and

ˆ
I

|u′|2 ω dx ≤ lim inf
ε→0

ˆ
I

|u′ε|
2
v2
ε ω dx.

Invoking (3.11), we have

lim inf
m→∞

ˆ t2m

t1m

[
1

2
ε(n(m))

∣∣∣v′ε(n(m))

∣∣∣2 +
1

2ε(n(m))
(1− vε(n(m)))

2

]
ω(x) dx

≥
(

lim inf
m→∞

ess inf
r∈(t1m,t

2
m)
ω(r)

)
· lim inf
n→∞

{ˆ sn(m)

t1m

[
1

2
ε(n(m))

∣∣(vε(n(m)))
′∣∣2 +

1

2ε(n(m))
(1− vε(n(m)))

2

]
dx

+

ˆ t2m

sn(m)

[
1

2
ε(n(m))

∣∣(vε(n(m)))
′∣∣2 +

1

2ε(n(m))
(1− vε(n(m)))

2

]
dx

}

≥ ω−(0)

(
1

2
+

1

2

)
= ω−(0),

where the last step is justified by (2.5).

Since Su is finite, we may repeat the above argument for all t ∈ Su by partitioning I into finitely
many non-overlapping intervals where there is at most one point of Su, to conclude that

lim inf
ε→0

ˆ
I

[
1

2
ε |v′ε|

2
+

1

2ε
(1− vε)2

]
ω(x) dx ≥

∑
x∈Su

ω−(x),

as desired. �

The construction of the recovery sequence uses a reflection argument nearby points of Sω ∩ Su.

Proposition 3.7. (Γ-lim sup) For u ∈ L1
ω(I) ∩ L∞(I), let

E+
ω (u) := inf

{
lim sup
ε→0

Eω,ε(uε, vε) :

(uε, vε) ∈W 1,2
ω (I)×W 1,2(I), uε → u in L1

ω, vε → 1 in L1, 0 ≤ vε ≤ 1
}
.

We have

E+
ω (u) ≤ Eω(u). (3.18)

Proof. To prove (3.18), we only need to explicitly construct a sequence {(uε, vε)}ε>0 ⊂ W 1,2
ω (I)×

W 1,2(I) such that uε → u in L1
ω, vε → 1 in L1, 0 ≤ vε ≤ 1, and

lim sup
ε→0

Eω,ε(uε, vε) ≤ Eω(u). (3.19)

Step 1: Assume that {0} = Su ⊂ Sω.
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Recall that we always identify ω with its approximation representative ω̄, and by (2.6) we may
assume that (the converse situation may be dealt with similarly)

lim
t↗0−

ω(t) = ω−(0) and lim
t↘0+

ω(t) = ω+(0).

Fix η > 0. For ε > 0 small enough, and with ξε = o(ε), as in (3.15), (3.16) let

ṽε(x) :=


0 if |x| ≤ ξε
v0

(
|x|−ξε
ε

)
if ξε < |x| < ξε + εT

1 if |x| ≥ ξε + εT,

and define

vε(x) := ṽε(x+ 2ξε + εT ).

Note that from (3.16) vε → 1 a.e., and since 0 ≤ vε ≤ 1, by Lebesgue Dominated Convergence
Theorem we have vε → v in L1. We also note that

ε

2
|v′ε(x)|2 +

1

2ε
(1− vε(x))2 = 0 (3.20)

if x ∈ (−1,−3ξε − 2εT ) ∪ (−ξε, 1), and if x ∈ (−3ξε − εT,−ξε − εT ) then

vε(x) = 0. (3.21)

Set

ũε(x) :=

{
u(x) if x ∈ (−1,−2ξε − εT ) ∪ (0, 1),

u(−x) if x ∈ [−2ξε − εT, 0].

Observe that ũε(x) is continuous at 0 since ũ+
ε (0) = ũ−ε (0) = u+(0) by the definition of ũε(x), and

ũε may only jump at t = −2ξε − εT but not at t = 0 where u jumps.

We define the recovery sequence

uε(x) :=

{
ũε(x) if x ∈ I \ [−2.5ξε − εT,−1.5ξε − εT ],

affine from ũε(−2.5ξε − εT ) to ũε(−1.5ξε − εT ) if x ∈ [−2.5ξε − εT,−1.5ξε − εT ].

We claim that

lim
ε→0

ˆ
I

|uε − u|ω dx = 0 (3.22)

and

lim sup
ε→0

ˆ
I

|u′ε|
2
v2
ε ω dx ≤

ˆ
I

|u′|2 ω dx. (3.23)

To show (3.22), we observe that

lim
ε→0

ˆ
I

|uε − u|ω dx ≤ lim
ε→0

ˆ 0

−2.5ξε−εT
|uε − u|ω dx ≤ lim

ε→0
2 ‖u‖L∞ ‖ω‖L∞ (2.5ξε + εT ) = 0.

We next prove (3.23). By (3.20) we have
ˆ
I

|u′ε|
2
v2
ε ω dx ≤

ˆ
I

|u′|2 ω dx+ ‖ω‖L∞
ˆ 0

−ξε−εT
|u′(−x)|2 dx,
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and so

lim sup
ε→0

ˆ
I

|u′ε|
2
v2
ε ω dx ≤

ˆ
I

|u′|2 ω dx,

since u′ ∈ L2
ω(I), and we conclude that u′ ∈ L2(I).

On the other hand, by (3.20) and (3.21),

ˆ
I

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
ω(x) dx

=

ˆ −ξε
−3ξε−2εT

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
ω(x) dx

≤

(
ess sup

t∈(−3ξε−2εT ,−ξε)
ω(t)

)ˆ −ξε
−3ξε−2εT

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
dx

=

(
ess sup

t∈(−3ξε−2εT ,−ξε)
ω(t)

)ˆ ξε+εT

−ξε−εT

[
ε

2
|ṽ′ε|

2
+

1

2ε
(ṽε − 1)2

]
dx.

Therefore,

lim sup
ε→0

ˆ
I

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
ω(x) dx

≤ lim sup
ε→0

(
ess sup

t∈(−3ξε−2εT ,−ξε)
ω(t)

){
lim sup
ε→0

ˆ ξε+εT

−ξε−εT

[
ε

2
|ṽ′ε|

2
+

1

2ε
(ṽε − 1)2

]
dx

}
≤ω−(0)(1 + η),

where at the last inequality we used the definition of ṽε, (3.15), and (2.6).

We conclude that

lim sup
ε→0

Eω,ε(uε, vε) ≤
ˆ
I

|u′|2 ω dx+ ω−(0)(1 + η),

and (3.19) follows due to the arbitrariness of η.

Step 2: In the general case, we recall that Su is finite. We may obtain uε and vε by repeating
the construction in Step 1 in small non-overlapping intervals centered at every point of Su ∩ Sω,
and by repeating the construction in Step 1 in Lemma 3.4 in those non-overlaping intervals centered
at points of Su \ Sω. Hence, we have

lim sup
ε→0

Eω,ε(uε, vε) ≤
ˆ
I

|u′|2 ω dx+ (1 + η)
∑
x∈Su

ω−(x),

and (3.19) follows due to the arbitrariness of η. �

Proof of Theorem 3.5. The proof follows that of Theorem 3.1, using Proposition 3.6 and Proposition
3.7, in place of Proposition 3.3 and 3.4, respectively. �
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4. The Multi-Dimensional Case

4.1. One-Dimensional Restrictions and Slicing Properties.

Let SN−1 be the unit sphere in RN and let ν ∈ SN−1 be a fixed direction. We set
Πν :=

{
x ∈ RN : 〈x, ν〉 = 0

}
;

Ω1
x,ν := {t ∈ R : x+ tν ∈ Ω} for x ∈ Πν ;

Ωx,ν := {y = x+ tν : t ∈ R} ∩ Ω;

Ων := {x ∈ Πν : Ωx,ν 6= ∅} .

(4.1)

We also define the 1-d restriction function ux,ν of the function u as

ux,ν(t) := u(x+ tν), x ∈ Ων , t ∈ Ω1
x,ν .

We recall the result below from [8], Theorem 3.3.

Theorem 4.1. Let ν ∈ SN−1 be given, and assume that u ∈ W 1,2(Ω). Then, for HN−1-a.e.
x ∈ Ων , ux,ν belongs to W 1,2(Ωx,ν) and

u′x,ν(t) = 〈∇u(x+ tν), ν〉 .

Lemma 4.2. Let ω ∈ W(Ω) and u ∈ W 1,p
ω (Ω), for p ∈ [1,∞), be given. If ν ∈ SN−1 and

v ∈W 1,p(Ω) is nonnegative, thenˆ
Ω

|∇u|p vp ω dx ≥
ˆ

Ων

ˆ
Ω1
x,ν

∣∣u′x,ν(t)
∣∣p vpx,ν(t)ωx,ν(t) dtdx.

Proof. Since ess infΩ ω ≥ 1, we have W 1,p
ω (Ω) ⊂ W 1,p(Ω). Given ν ∈ SN−1 and a nonnegative

function v ∈W 1,p(Ω), by Fubini’s Theorem and Theorem 4.1 we haveˆ
Ω

|∇u|p vp ω dx =

ˆ
Ων

ˆ
Ω1
x,ν

|∇u|p vp ω dt dHN−1(x)

≥
ˆ

Ων

ˆ
Ω1
x,ν

|〈∇u(x+ tv), ν〉|p vpx,ν(t)ωx,ν(t) dtdHN−1(x)

=

ˆ
Ων

ˆ
Ω1
x,ν

∣∣u′x,ν(t)
∣∣p vpx,ν(t)ωx,ν(t) dtdHN−1(x),

where we used the fact that∣∣u′x,ν(t)
∣∣ = |〈∇u(x+ tν), ν〉| ≤ |∇u(x+ tν)|

HN−1-a.e. x ∈ Ων . �

Proposition 4.3. Let ν ∈ SN−1 be a fixed direction, Γ ⊂ RN be such that HN−1(Γ) <∞, and Pν :
RN → Πν be a projection operator, where by (4.1) Πν ⊂ RN is a hyperplane in RN−1. Then

HN−1(Pν(Γ)) ≤ HN−1(Γ), (4.2)

and for HN−1-a.e. x ∈ Πν ,

H0(Ωx,ν ∩ Γ) < +∞. (4.3)
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Proof. Note that (4.2) follows immediately from Theorem 7.5 in [40] since Pν is a Lipschitz map
with Lipschitz constant less or equal to one. To show (4.3), we apply co-area formula (see [4],
Theorem 2.93) with Pν and again since Pν is a Lipschitz map with Lipschitz constant less or equal
to one, we are done. �

Set x = (x′, xN ) ∈ RN , where

x′ ∈ RN−1 denotes the first N − 1 component of x ∈ RN , (4.4)

and given u: RN−1 → R and G ⊂ RN−1, we define the graph of u over G as

F (u;G) :=
{

(x′, xN ) ∈ RN : x′ ∈ G, xN = u(x′)
}
.

If u is Lipschitz, then we call F (u;G) a Lipschitz -(N − 1)-graph.

Lemma 4.4. Let Γ ⊂ RN be a HN−1-rectifiable set, and let Px,νΓ
: RN → Tx,νΓ

be a projection
operator for x ∈ Γ. Then

lim
r→0

HN−1(Px0,νΓ(Γ ∩QνΓ(x0, r)))

rN−1
= 1 (4.5)

for HN−1-a.e. x0 ∈ Γ.

Proof. By Proposition 4.3 we have

lim sup
r→0

HN−1(Px0,νΓ
(Γ ∩QνΓ

(x0, r)))

rN−1
≤ lim sup

r→0

HN−1(Γ ∩QνΓ
(x0, r))

rN−1
= 1 (4.6)

for a.e. x0 ∈ Γ. By Theorem 2.76 in [4] we may write

Γ = Γ0 ∪
∞⋃
i=1

Γi

as a disjoint union with HN−1(Γ0) = 0, Γi = (Ni, li(Ni)) where li : RN−1 → R is of class C1 and
Ni ⊂ RN−1.

Let x0 ∈ Γi0 for some i0 ∈ N and, without loss of generality, let (−∇li0(x′0), 1) = νΓ(x0), with
x0 a point of density one in Γ0 (see Exercise 10.6 in [39]). Up to a rotation and a translation, we
may assume that ∇li0(x′0) = (0, 0, . . . , 0) ∈ RN−1, x0 = (0, 0, . . . , 0), and Px0,νΓ

: Γi0 → RN−1×{0}.
Therefore, for r > 0 small enough,

Γi0 ∩QνΓ
(x0, r) = (Px0,νΓ

(Γi0 ∩QνΓ
(x0, r)) , li0((Px0,νΓ

(Γi0 ∩QνΓ
(x0, r)))

′)),

and by Theorem 9.1 in [40] we obtain that,

HN−1(Γi0 ∩QνΓ
(x0, r)) =

ˆ
Px0,νΓ(Γi0∩QνΓ (x0,r))

√
1 + |∇li0(x′)|2dHN−1(x′).

Since li0 is of class C1 and ∇li0(x0) = 0, for ε > 0 choose rε > 0 such that |∇li0(x)| < ε for all
0 < r < rε. Therefore, we have that

HN−1(Px0,νΓ
(Γ ∩QνΓ

(x0, r))) ≥ HN−1(Px0,νΓ
(Γi0 ∩QνΓ

(x0, r)))

≥ 1√
1 + ε2

ˆ
Px0,νΓ(Γi0∩QνΓ (x0,r))

√
1 + |∇li0(x′)|2dx′

=
1√

1 + ε2
HN−1(Γi0 ∩QνΓ

(x0, r)).



Page 23 Section 4.1

We obtain

lim inf
r→0

HN−1(Px0,νΓ
(Γ ∩QνΓ

(x0, r)))

rN−1
≥ lim inf

r→0

1√
1 + ε2

HN−1(Γi0 ∩QνΓ
(x0, r))

rN−1
=

1√
1 + ε2

.

By the arbitrariness of ε > 0, we deduce that

lim inf
r→0

HN−1(Px0,νΓ
(Γ ∩QνΓ

(x0, r)))

rN−1
≥ 1,

and, in view of (4.6), we conclude that

lim
r→0

HN−1(Px0,νΓ
(Γ ∩QνΓ

(x0, r)))

rN−1
= 1.

�

Lemma 4.5. Let Q := (−1, 1)N and let Γ ⊂ Q be a HN−1-rectifiable set such that HN−1(Γ) <∞
and

H0(Γ ∩ ({x′} × (−1, 1))) ≥ 1 (4.7)

for HN−1-a.e. x′ ∈ (−1, 1)N−1. Then there exists a HN−1-measurable subset Γ′ ⊂ Γ such that

H0(Γ′ ∩ ({x′} × (−1, 1))) = 1. (4.8)

for HN−1-a.e. x′ ∈ (−1, 1)N−1.

Proof. By Lemma 4.3 we have

H0(Γ′ ∩ ({x′} × (−1, 1))) < +∞
for HN−1-a.e. x′ ∈ (−1, 1)N−1. Thus, for HN−1-a.e. x′ ∈ (−1, 1)N−1, the set

Γx′ := Γ ∩ ({x′} × (−1, 1))

is a finite collection of singletons, hence closed, and by (4.7) is non-empty. Applying Corollary 1.11

in [28], page 237, we obtain a HN−1 measurable subset Γ′ ⊂ Γ which satisfies (4.8). �

Lemma 4.6. Let τ > 0 and η > 0 be given. Let u ∈ SBV (Ω) and assume that HN−1(Su) < ∞.
The following statements hold:

1. there exist a set S ⊂ Su with HN−1(Su \ S) < η, and a countable collection Q of mutually
disjoint open cubes centered on elements of Su such that⋃

Q∈Q
Q ⊂ Ω,

and

HN−1

S \ ⋃
Q∈Q

Q

 = 0;

2. for every Q ∈ Q there exists a direction vector νQ ∈ SN−1 such that

H0(S ∩Qx,νQ) = 1,

for HN−1 a.e. x ∈ Q ∩ S;

1when applying Corollary 1.1, Ω is (−1, 1)N−1, B is (−1, 1), and Cx is Γx′ , and we construct Γ′ by using ū(x)
which is obtained Corollary 1.1
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3. for every Q ∈ Q, S ∩ Q is contained in a Lipschitz (N − 1)- graph ΓQ with Lipschitz constant
less than τ .

Proof. Let τ, η > 0 be given. By Theorem 2.76 in [4], there exist countably many Lipschitz (N−1)-
graphs Γi ⊂ RN such that (up to a rotation and a translation)

Γi = {(x′, xN ) : x′ ∈ Ni, xN = li(x
′)}

with Ni ⊂ RN−1, li: RN−1 → R of class C1, |∇li| < τ for all i ∈ N, and

HN−1

(
Su \

∞⋃
i=1

Γi

)
= 0. (4.9)

Without lose of generality, we assume that

HN−1(Γi ∩ Γi′) = 0 if i 6= i′ ∈ N, and HN−1(Γi) > 0. (4.10)

We denote by P the collection of Lipschitz (N − 1)-graphs Γi in (4.9)-(4.10). By (4.10), for HN−1-
a.e. x ∈ Su there exists only one Γ ∈ P such that x ∈ Γ, and we denote such Γ by Γx and we write

Γx =
{

(y′, yN ) : y′ ∈ Nx ⊂ RN−1, yN = lx(y′)
}
.

For simplicity of notation, in what follows we will abbreviate νΓx(x) = νSu(x) by ν(x), QνSu (x, r)
by Q(x, r), and Tx,νSu by Tx.

We also note that HN−1(Γ ∩ Su) < HN−1(Su) < ∞ for each Γ ∈ P. Then HN−1- a.e. x has
density 1 in Γx ∩ Su (see Theorem 2.63 in [4]). Denote by S1 the set of points such that Su has
density 1 at x and

lim
r→0

HN−1(Su ∩ Γx ∩QνΓx
(x, r))

rN−1
= 1. (4.11)

Then HN−1(Su \ S1) = 0.

Define

fr(x) :=
HN−1(S1 ∩Q(x, r))

rN−1
.

Since fr(x) → 1 as r → 0+ for x ∈ S1, by Egoroff’s Theorem there exists a set S2 ⊂ S1 such that
HN−1(S1 \ S2) < η/4 and fr → 1 uniformly on S2. Find r1 > 0 such that

HN−1(S1 ∩Q(x, r))

rN−1
≥ 1

2
,

i.e.,

HN−1(S1 ∩Q(x, r)) ≥ 1

2
rN−1 (4.12)

for all 0 < r < r1 and x ∈ S2. Since S2 ⊂ S1, S2 is also HN−1-rectifiable and so HN−1 a.e. x ∈ S2

has density one. Without loss of generality, we assume that every point in S2 has density one and
satisfies (4.5) in Lemma 4.4.
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Let x0 ∈ S2 be given and recall (4.1). We define

Tb(x0, r) :=
{
x ∈ Q(x0, r) ∩ Tx0

: H0([Q(x0, r)]x,ν(x0) ∩ S2) ≥ 2
}
,

Tg(x0, r) :=
{
x ∈ Q(x0, r) ∩ Tx0

: H0([Q(x0, r)]x,ν(x0) ∩ S2) = 1
}
,

Sb(x0, r) :=
⋃

x∈Tb(x0,r)

(
S2 ∩ [Q(x0, r)]x,ν(x0)

)
,

Sg(x0, r) :=
⋃

x∈Tg(x0,r)

(
S2 ∩ [Q(x0, r)]x,ν(x0)

)
.

(4.13)

Note that
Tb(x0, r) ∩ Tg(x0, r) = ∅ and Sb(x0, r) ∩ Sg(x0, r) = ∅, (4.14)

and by Proposition 4.3 we have

HN−1(Sg(x0, r)) ≥ HN−1(Tg(x0, r)). (4.15)

We claim that
HN−1(Sb(x0, r)) ≥ 2HN−1(Tb(x0, r)). (4.16)

By Lemma 4.5 there exists a measurable selection S1
b ⊂ Sb(x0, r) such that

HN−1(S1
b (x0, r) ∩ [Q(x0, r)]x,ν(x0)) = 1

for HN−1-a.e. x ∈ Tb(x0, r). We define

S2
b (x0, r) := Sb(x0, r) \ S1

b (x0, r).

By the definition of Sb(x0, r) in (4.13), we have

H0([Q(x0, r)]x,ν(x0) ∩ S
1
b (x0, r)) ≥ 1 and H0([Q(x0, r)]x,ν(x0) ∩ S

2
b (x0, r)) ≥ 1

for all x ∈ Tb(x0, r). We observe that

HN−1(Sb(x0, r)) = HN−1(S1
b (x0, r)) +HN−1(S2

b (x0, r)) ≥ 2HN−1(Tb(x0, r))

by Proposition 4.3 and we deduce (4.16).

We next show that

lim
r→0

HN−1(Sb(x0, r))

rN−1
= 0. (4.17)

Indeed, since Tx0 is the tangent hyperplane to S2 at x0,

Tb(x0, r) ∪ Tg(x0, r) = Px0,νSu
(S2 ∩Q(x0, r)),

and by Lemma 4.4 it follows that

lim
r→0

HN−1(Tb(x0, r) ∪ Tg(x0, r))

rN−1
= 1. (4.18)

On the other hand, in view of (4.14), (4.15), and (4.16), we deduce that

HN−1(Sb(x0, r) ∪ Sg(x0, r)) = HN−1(Sb(x0, r)) +HN−1(Sg(x0, r))

≥ 2HN−1(Tb(x0, r)) +HN−1(Tg(x0, r)).

That is,

HN−1(Tb(x0, r)) ≤ HN−1(Sb(x0, r) ∪ Sg(x0, r))−
[
HN−1(Tb(x0, r)) +HN−1(Tg(x0, r))

]
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= HN−1(Sb(x0, r) ∪ Sg(x0, r))−HN−1(Tb(x0, r) ∪ Tg(x0, r)). (4.19)

Since x0 ∈ S2 has density 1, we have

lim
r→0

HN−1(Sb(x0, r) ∪ Sg(x0, r))

rN−1
= lim
r→0

HN−1(S2 ∩Q(x0, r))

rN−1
= 1. (4.20)

In view of (4.18), (4.19), and (4.20), we conclude that

lim sup
r→0

HN−1(Tb(x0, r))

rN−1

≤ lim
r→0

HN−1(Sb(x0, r) ∪ Sg(x0, r))

rN−1
− lim
r→0

HN−1(Tb(x0, r) ∪ Tg(x0, r))

rN−1
= 0,

which implies that

lim
r→0

HN−1(Tb(x0, r))

rN−1
= 0.

This, together with (4.14) and (4.18), yields

lim
r→0

HN−1(Tg(x0, r))

rN−1
= 1,

and so by (4.15) we have

lim inf
r→0

HN−1(Sg(x0, r))

rN−1
≥ lim
r→0

HN−1(Tg(x0, r))

rN−1
= 1,

while by (4.20)

lim sup
r→0

HN−1(Sg(x0, r))

rN−1
≤ lim
r→0

HN−1(Sb(x0, r) ∪ Sg(x0, r))

rN−1
= 1,

and we conclude that

lim
r→0

HN−1(Sg(x0, r))

rN−1
= 1.

Now, also in view of (4.14) and (4.20), we deduce (4.17).

We define, for x ∈ S2,

gr(x) :=
HN−1(Sb(x, r))

rN−1
.

By (4.17) we have limr→0 gr(x) = 0 for all x ∈ S2, therefore by Egoroff’s Theorem there exists a
set S3 ⊂ S2 such that

HN−1(S2 \ S3) <
η

4
and gr → 0 uniformly on S3. Choose 0 < r2 < r1 such that

HN−1(Sb(x, r))

rN−1
<

η

16

1

HN−1(Su)
(4.21)

for all x ∈ S3 and 0 < r < r2. We claim that, for x ∈ S3 and the corresponding Γx ∈ P,

lim
r→0

HN−1 (Sg(x, r) \ [Su ∩ Γx ∩Q(x, r)])

rN−1
= 0. (4.22)

Suppose that

0 < lim sup
r→0

HN−1 (Sg(x, r) \ [Su ∩ Γx ∩Q(x, r)])

rN−1
=: δ.
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By (4.11), and the fact that Γx ⊂ Su, we have that

1 = lim
r→0

HN−1(Su ∩Q(x, r))

rN−1

= lim
r→0

HN−1 (([Su ∩Q(x, r)] \ [Su ∩ Γx ∩Q(x, r)]) ∪ [Su ∩ Γx ∩Q(x, r)])

rN−1

≥ lim sup
r→0

HN−1 ([Sg(x, r)] \ [Su ∩ Γx ∩Q(x, r)])

rN−1

+ lim
r→0

HN−1[Su ∩ Γx ∩Q(x, r)]

rN−1

= δ + 1 > 1,

which is a contradiction.

We define, for x ∈ S3,

hr(x) :=
HN−1 (Sg(x, r) \ [Su ∩ Γx ∩Q(x, r)])

rN−1
.

By (4.22) limr→0 hr(x) = 0 for all x ∈ S3, therefore by Egoroff’s Theorem there exists a set of
S4 ⊂ S3 such that

HN−1(S3 \ S4) <
η

4
,

and hr → 0 uniformly on S4. Choose 0 < r3 < r2 such that

HN−1 (Sg(x, r) \ [Su ∩ Γx ∩Q(x, r)])

rN−1
<

η

16

1

HN−1(Su)
(4.23)

for all x ∈ S4 and 0 < r < r3, and let

Q′ := {Q(x, r) : x ∈ S4, 0 < r < r3} .

By Besicovitch’s Covering Theorem we may extract a countable collection Q of mutually disjoint
cubes from Q′ such that ⋃

Q∈Q
Q ⊂ Ω and HN−1

S4 \

 ⋃
Q∈Q

Q

 = 0.

Define

S := S4 \

 ⋃
Q∈Q

Sb(xQ, rQ)

 ∪
 ⋃
Q∈Q

[
Sg(xQ, rQ) \

(
Su ∩ ΓxQ ∩Q

)] , (4.24)

where xQ is the center of cube Q and rQ is the side length of Q. Note that the set S satisfies
properties 2 and 3 in the statement of Lemma 4.6. Finally, we show that

HN−1(Su \ S) < η.

Indeed, in view of (4.21) and (4.23), and using the fact that the cubes Q ∈ Q are mutually disjoint,
we have

HN−1

 ⋃
Q∈Q

Sb(xQ, rQ)

 =
∑
Q∈Q
HN−1(Sb(xQ, rQ)) ≤ η

16HN−1(Su)

∑
Q∈Q

rN−1
Q , (4.25)



Page 28 Section 4.1

and

HN−1

 ⋃
Q∈Q

[
Sg(xQ, rQ) \

(
Su ∩ ΓxQ ∩Q

)]
=
∑
Q∈Q
HN−1(Sg(xQ, rQ) \

(
Su ∩ ΓxQ ∩Q

)
) ≤ η

16HN−1(Su)

∑
Q∈Q

rN−1
Q . (4.26)

By (4.12) we obtain

∑
Q∈Q

1

2
rN−1
Q ≤

∑
Q∈Q
HN−1(S1 ∩Q) = HN−1

 ⋃
Q∈Q

Su ∩Q

 ≤ HN−1(Su). (4.27)

Using (4.25), (4.26), and (4.27), we deduce that

HN−1

 ⋃
Q∈Q

Sb(xQ, rQ)

 ≤ η

8
,

and

HN−1

 ⋃
Q∈Q

[
Sg(xQ, rQ) \

(
Su ∩ ΓxQ ∩Q

)] ≤ η

8
,

and so by (4.24) we get

HN−1(S4 \ S) ≤ η

4
.

Since S ⊂ S4 ⊂ S3 ⊂ S2 ⊂ S1 ⊂ Su, we conclude that

HN−1(Su \ S)

≤HN−1(Su \ S1) +HN−1(S1 \ S2) +HN−1(S2 \ S3) +HN−1(S3 \ S4) +HN−1(S4 \ S)

≤η
4

+
η

4
+
η

4
+
η

4
= η.

�

Lemma 4.7. Let ω ∈ C(Ω) be nonnegative, let Γ ⊂ Ω be a HN−1-rectifiable set, and let τ ∈ (0, 1)
be given. Then for HN−1-a.e. x0 ∈ Γ, there exists r0 := r0(x0) > 0 such that for each 0 < r < r0

there exist t0 ∈ (−τr/4, τr/4) and 0 < t0,r = t0,r(t0, τ, x0, r) < |t0| such that

sup
0<t≤t0,r

1

|I(t0, t)|

ˆ
I(t0,t)

ˆ
QνΓ (x0,r)∩Tx0,νΓ

(l)

ω(x) dHN−1dl

≤
ˆ
QνΓ (x0,r)∩Γ

ω(x) dHN−1 + (1 + ω(x0))O(τ)rN−1,

where I(t0, t) := (t0 − t, t0 + t), Tx0,νδ(l) := Tx0,νΓ
+ lνΓ.

Proof. Fix x0 ∈ Γ with density 1 and let τ > 0 be given. There exists r1 > 0 such that

1

1 + τ2
≤ H

N−1(Γ ∩QνΓ(x0, r))

rN−1
≤ 1 + τ2, (4.28)
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for all 0 < r < r1. Since by continuity of ω we have that

lim
r→0

 
QνΓ (x0,r)

|ω(x)− ω(x0)| dx = 0,

and

lim
r→0

 
QνΓ (x0,r)∩Γ

|ω(x)− ω(x0)| dHN−1 = 0,

we may choose 0 < r2 < r1 such that for all 0 < r < r2 
QνΓ (x0,r)

|ω(x)− ω(x0)| dx ≤ τ2,

and ˆ
QνΓ (x0,r)∩Γ

|ω(x)− ω(x0)| dHN−1 ≤ τ

1 + τ2
HN−1(QνΓ(x0, r) ∩ Γ) ≤ O(τ)rN−1, (4.29)

where we used (4.28).

Thereforeˆ τr/4

−τr/4

ˆ
QνΓ (x0,r)∩Tx0,νΓ

(t)

|ω(x)− ω(x0)| dHN−1dt ≤
ˆ
QνΓ (x0,r)

|ω(x)− ω(x0)| dx ≤ τ2rN ,

and by the Mean Value Theorem there exists a set A ⊂ (−τr/4, τr/4) with positive 1 dimensional
Lebesgue measure such that for every t ∈ A,ˆ

QνΓ (x0,r)∩Tx0,νΓ
(t)

|ω(x)− ω(x0)| dHN−1 ≤ 2τrN−1. (4.30)

If t0 ∈ A then we have, by the continuity of ω,

lim
t→0

1

|I(t0, t)|

ˆ
I(t0,t)

ˆ
QνΓ (x0,r)∩Tx0,νΓ

(l)

ω(x)dHN−1dl =

ˆ
QνΓ (x0,r)∩Tx0,νΓ

(t0)

ω(x)dHN−1,

hence there exists t0,r > 0, depending on r, t0, τ , and x0, such that I(t0, t0,r) ⊂ (−τr/2, τr/2) and

sup
0<t≤t0,r

1

|I(t0, t)|

ˆ
I(t0,t)

ˆ
QνΓ (x0,r)∩Tx0,νΓ

(l)

ω(x)dHN−1dl

≤
ˆ
QνΓ (x0,r)∩Tx0,νΓ

(t0)

ω(x)dHN−1 +O(τ)rN−1. (4.31)

Moreover, since

HN−1 [QνΓ(x0, r) ∩ Tx0,νΓ(t0)] = HN−1 [QνΓ(x0, r) ∩ Tx0,νΓ ] ,

we haveˆ
QνΓ (x0,r)∩Tx0,νΓ

(t0)

ω(x0)dHN−1 =

ˆ
QνΓ (x0,r)∩Tx0,νΓ

ω(x0)dHN−1

= ω(x0)rN−1 ≤ (1 + τ2)

ˆ
QνΓ (x0,r)∩Γ

ω(x0)dHN−1

≤
ˆ
QνΓ (x0,r)∩Γ

ω(x0)dHN−1 +O(τ)rN−1,
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where in the last inequality we used (4.28), the non-negativeness of ω.

By (4.31), (4.30), in this order, for every r ≤ r2 there exist t0 ∈ (−τr/4, τr/4) and 0 < t0,r < |t0|,
depending on t0, τ , x0 and r, such that

sup
0<t≤t0,r

1

|I(t0, t)|

ˆ
I(t0,t)

ˆ
QνΓ (x0,r)∩Tx0,νΓ(x0)(l)

ω(x) dHN−1dl

≤ ω(x0)HN−1
(
QνΓ(x0, r) ∩ Tx0,νΓ(x0)

)
+O(τ)rN−1 = ω(x0)rN−1 +O(τ)rN−1

≤ ω(x0)(1 + τ2)HN−1 (Γ ∩QνΓ(x0, r)) +O(τ)rN−1

where we used (4.28) in the last inequality. Finally, by (4.29) we conclude that

sup
0<t≤t0,r

1

|I(t0, t)|

ˆ
I(t0,t)

ˆ
QνΓ (x0,r)∩Tx0,νΓ(x0)(l)

ω(x) dHN−1dl

≤
ˆ
QνΓ (x0,r)∩Γ

ω(x) dHN−1 + (1 + ω(x0))O(τ)rN−1,

as desired. �

Proposition 4.8. Let ω ∈ C(Ω) be nonnegative, let Γ ⊂ Ω be a HN−1-rectifiable set with HN−1(Γ) <
+∞, and let τ ∈ (0, 1) be given. Then there exist a set S ⊂ Ω and a countable family of disjoint
cubes F = {QνΓ

(xn, rn)}∞n=1 with rn ≤ τ , for all n ∈ N, such that the following hold:

1. HN−1(Γ \ S) < τ , S ⊂
⋃∞
n=1QνΓ

(xn, rn);
2. HN−1 (S ∩QνΓ

(xn, r)) ≤ (1 + τ2)rN−1 for all 0 < r < rn;
3. S ∩QνΓ(xn, rn) ⊂ Rτ/2,νΓ

(xn, rn);
4. if 0 < κ < 1 then for every n ∈ N there exist tκn ∈ (−κrn/4, κrn/4) and 0 < tκxn,rn < |tκn|,

depending on τ , xn, and κrn, such that

sup
0<t≤tκxn,rn

1

|I(tκn, t)|

ˆ
I(tκn,t)

ˆ
QνΓ (xn,κrn)∩Txn,νΓ (l)

ω(x)dHN−1dl

≤
ˆ

Γ∩QνΓ (xn,κrn)

ω(x)dHN−1 + (1 + ω(xn))O(τ)(κrn)N−1, (4.32)

where I(tκn, t) := (tκn − t, tκn + t).

Proof. Let τ ∈ (0, 1) and κ ∈ (0, 1) be given. Since HN−1(Γ) < ∞, there exists S1 ⊂ Γ such that
HN−1(Γ \ S1) < τ/3, S1 is compact and contained in a finite union of (N − 1)-Lipschitz graphs Γi,

i = 1, . . . ,M , with Lipschitz constants less than τ/(2
√
N).

Moreover, since HN−1 a.e. x ∈ S1 a point of density one, by Egorov’s Theorem, we may find
S2 ⊂ S1 such that HN−1(S1 \ S2) < τ/3 and there exists r1 > 0 such that for all 0 < r < r1 and
x ∈ S2,

HN−1 (S1 ∩QνΓ
(x, r)) ≤ (1 + τ2)rN−1.

Let Li := S2 ∩ Γi and without lose of generality we assume that Li are mutually disjoint. Let
L′i ⊂ Li be such that

HN−1(Li \ L′i) <
τ

3

1

2i
and dij := dist(L′i, L

′
j) > 0
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for i 6= j. We observe that

HN−1

(
S2 \

M⋃
i=1

L′i

)
<
τ

3
and d := min

i 6=j
{dij} > 0.

Define

S :=

M⋃
i=1

L′i.

We claim that there exists 0 < r2 < min
{
τ2, d/2, r1

}
such that for every 0 < r < r2 and every x,

y ∈ S with |x− y| <
√
Nr we have

S ∩QνΓ
(x, r) ⊂ Rτ/2,νΓ

(x, r),

where we are using the notation introduced in Notation 2.3. Indeed, to verify this inclusion, we
write (up to a rotation)

S ∩QνΓ
(x, r) = {(y′, lx(y′)) : y ∈ Tx,νΓ

∩QνΓ
(x, r)} ⊂ Γx

where y′ 2 is defined in (4.4) and ‖∇lx‖L∞ < τ/(2
√
N). Assuming, without loss of generality, that

x = 0 and lx(0) = 0, we have for all y ∈ T0,νΓ ∩QνΓ(0, r)

|l0(y)| ≤ ‖∇l0‖L∞ ≤
1

2
τr

because for every y ∈ S ∩QνΓ
(0, r) we have |y| <

√
Nr.

Next, for HN−1-a.e. x ∈ S we may find r2(x) > 0 such that QνΓ(x, r3) ⊂ Ω and κr2(x) ≤ r0(x)
where r0(x) is determined in Lemma 4.7. Let r̄0(x) := min {r1, r2(x)}. The collection

F ′ := {QνΓ
(x, r) : x ∈ S, r < r̄0(x)}

is a fine cover for S, and so by Besicovitch’s Covering Theorem we may obtain a countable sub-
collection F ⊂ F ′ with pairwise disjoint cubes such that

S ⊂
⋃

QνΓ (xn,rn)∈F

QνΓ(xn, rn).

For each QνΓ
(xn, rn) ∈ F we apply Lemma 4.7 to obtain tκn ∈ (−κrn/4, κrn/4) and tκxn,rn > 0,

depending on tκxn , τ , κrn, and xn, such that (4.32) hold.

Finally, we observe that

HN−1(Γ \ S) ≤ HN−1(Γ \ S1) +HN−1(S1 \ S2) +HN−1(S2 \ S) ≤ τ,
and this completes the proof. �

Proposition 4.9. Let ω ∈ C(Ω) be nonnegative, let Γ ⊂ Ω be HN−1-rectifiable with HN−1(Γ) <
+∞, and let τ ∈ (0, 1) be given. There exists a HN−1-rectifiable set S ⊂ Γ and a countable family
of disjoint cubes F = {QνΓ

(xn, rn)}∞n=1 with rn < τ such that the following hold:

1.

HN−1(Γ \ S) < τ, S ⊂
∞⋃
n=1

QνΓ
(xn, rn), and S ∩QνΓ

(xn, rn) ⊂ Rτ/2,νΓ
(xn, rn); (4.33)

2Yes, we assume νΓ(x) = eN , and this is why we say “up to a rotation” above
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2.

HN−1 (S ∩QνΓ
(xn, rn)) ≤ (1 + τ2)rN−1

n ; (4.34)

3. for n 6= m

dist(QνΓ(xn, rn), QνΓ(xm, rm)) > 0; (4.35)

4.
+∞∑
n=1

rN−1
n ≤ 4HN−1(Γ) (4.36)

5. for each n ∈ N there exist tn ∈ (−τrn/4, τrn/4) and 0 < txn,rn < |tn|, depending on τ , rn, and
xn, such that Txn,νΓ

(tn ± txn,rn) ⊂ Rτ/2,νΓ
(xn, rn) and

sup
0<t≤txn,rn

1

|I(tn, t)|

ˆ
I(tn,t)

ˆ
QνΓ (xn,rn)∩Txn,νΓ (l)

ω(x)dHN−1dl

≤
ˆ
S∩QνΓ (xn,rn)

ωdHN−1 + (1 + ω(xn))τrn
N−1, (4.37)

where I(tn, t) := (tn − t, tn + t).

Proof. We apply items 1, 2, and 3 in Proposition 4.8 to obtain a countable collection {QνΓ(xn, r
′
n)}∞n=1

and a set S′ ⊂ Γ such that

HN−1(Γ \ S′) < τ

2
, S′ ⊂

∞⋃
n=1

QνΓ(xn, r
′
n), S′ ∩QνΓ(xn, r

′
n) ⊂ Rτ/2,νΓ

(xn, r
′
n),

and

HN−1 (S ∩QνΓ
(xn, r)) ≤ (1 + τ2)rN−1

for all 0 < r < r′n. Find 0 < κ < 1 such that

HN−1

(
S′ \

∞⋃
n=1

QνΓ(xn, κr
′
n)

)
<
τ

2
,

and let

S := S′ ∩

( ∞⋃
n=1

QνΓ
(xn, κr

′
n)

)
.

Then

S ⊂
∞⋃
n=1

QνΓ(xn, κr
′
n)

and

HN−1(Γ \ S) ≤ HN−1(Γ \ S′) +HN−1(S′ \ S) ≤ τ

2
+
τ

2
= τ.

Note that the collection {QνΓ(xn, κr
′
n)}∞n=1 satisfies (4.35). Next, we apply item 4 in Proposition

4.8 with such κ > 0 to find tκn, tκxn,r′n such that (4.32) holds. It suffices to set rn := κr′n, tn := tκn,

and txn,rn := tκxn,r′n .

�
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4.2. The Case ω ∈ W(Ω) ∩ C(Ω).

Consider the functionals

Eω,ε(u, v) :=

ˆ
Ω

v2 |∇u|2 ω dx+

ˆ
Ω

[
ε |∇v|2 +

1

4ε
(v − 1)2

]
ω dx

for (u, v) ∈W 1,2
ω (Ω)×W 1,2(Ω), and let

Eω(u) :=

ˆ
Ω

|∇u|2 ω dx+

ˆ
Su

ω(x) dHN−1,

be defined for u ∈ GSBVω(Ω).

Theorem 4.10. Let ω ∈ W(Ω) ∩ C(Ω) ∩ L∞(Ω) be given. Let Eω,ε: L1
ω(Ω)× L1(Ω)→ [0,+∞] be

defined by

Eω,ε(u, v) :=

{
Eω,ε(u, v) if (u, v) ∈W 1,2

ω (Ω)×W 1,2(Ω), 0 ≤ v ≤ 1,

+∞ otherwise.

Then the functionals Eω,ε Γ-converge, with respect to the L1
ω × L1 topology, to the functional

Eω(u, v) :=

{
Eω(u) if u ∈ GSBVω(Ω) and v = 1 a.e.,

+∞ otherwise.

Theorem 4.10 will be proved in two propositions.

Proposition 4.11. (Γ-lim inf) For ω ∈ W(Ω) ∩ C(Ω) and u ∈ L1
ω(Ω), let

E−ω (u) := inf
{

lim inf
ε→0

Eω,ε(uε, vε) :

(uε, vε) ∈W 1,2
ω (Ω)×W 1,2(Ω), uε → u in L1

ω, vε → 1 in L1, 0 ≤ vε ≤ 1
}
.

We have

E−ω (u) ≥ Eω(u).

Proof. Without loss of generality, we assume thatM := E−ω (u) <∞. Let {(uε, vε)}ε>0 ⊂W 1,2
ω (Ω)×

W 1,2(Ω) be such that

uε → u in L1
ω, vε → 1 in L1(Ω), and lim

ε→0
Eω,ε(uε, vε) = E−ω (u) <∞.

Since infx∈Ω ω(x) ≥ 1, we have

lim inf
ε→0

E1,ε(uε, vε) ≤ lim inf
ε→0

Eω,ε(uε, vε) <∞,

and by [8] we deduce that

u ∈ GSBV (Ω) and HN−1(Su) <∞.

We prove separately that

lim inf
ε→0

ˆ
Ω

|∇uε|2 vε ω dx ≥
ˆ

Ω

|∇u|2 ω dx, (4.38)

and

lim inf
ε→0

ˆ
Ω

(
ε |∇vε|2 +

1

4ε
(1− vε)2

)
ω dx ≥

ˆ
Su

ω(x)dHN−1. (4.39)
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Let A be an open subset of Ω. Fix ν ∈ SN−1, and define Ax,ν , A1
x,ν , and Aν as in (4.1). For

K ∈ R+, set uK := K ∧ u ∨ −K, and observe that, by Fubini’s Theorem,

lim inf
ε→0

ˆ
A

|∇uε|2 v2
ε ω dx ≥ lim inf

ε→0

ˆ
Aν

ˆ
A1
x,ν

∣∣(uε)′x,ν∣∣2 (vε)
2
x,ν ωx,ν dt dHN−1(x)

≥
ˆ
Aν

lim inf
ε→0

ˆ
A1
x,ν

∣∣(uε)′x,ν∣∣2 (vε)
2
x,ν ωx,ν dt dHN−1(x)

≥
ˆ
Aν

ˆ
A1
x,ν

∣∣u′x,ν∣∣2 ωx,ν dt dHN−1(x)

≥
ˆ
Aν

ˆ
A1
x,ν

∣∣(uK)′x,ν
∣∣2 ωx,ν dt dHN−1(x),

where in the first inequality we used Lemma 4.2, in the second inequality we used Fatou’s Lemma,
and in the third inequality we used (3.3). Since uK ∈ L∞(Ω) ∩ SBVω(Ω) ⊂ L∞(Ω) ∩ SBV (Ω), we
may apply Theorem 2.3 in [8] to uK to obtain

lim inf
ε→0

ˆ
A

|∇uε|2 v2
ε ω dx ≥

ˆ
Aν

ˆ
A1
x,ν

∣∣(uK)′x,ν
∣∣2 ωx,ν dt dHN−1(x) ≥

ˆ
A

|〈∇uK(x), ν〉|2 ω dx.

Letting K →∞ and using Lebesgue Monotone Convergence Theorem we have

lim inf
ε→0

ˆ
A

|∇uε|2 v2
ε ω dx ≥

ˆ
A

|〈∇u(x), ν〉|2 ω dx. (4.40)

Let

φn(x) := |〈∇u(x), νn〉|2 ω for LN -a.e. x ∈ Ω,

where {νn}∞n=1 is a dense subset of SN−1, and let

µ(A) := lim inf
ε→0

ˆ
A

|∇uε|2 v2
ε ω dx.

Then µ is a positive function, super-additivity on open sets A, B, with disjoint closures, since

µ(A ∪B) = lim inf
ε→0

ˆ
A∪B
|∇uε|2 v2

ε ω dx = lim inf
ε→0

(ˆ
A

|∇uε|2 v2
ε ω dx+

ˆ
B

|∇uε|2 v2
ε ω dx

)
≥ lim inf

ε→0

ˆ
A

|∇uε|2 v2
ε ω dx+ lim inf

ε→0

ˆ
B

|∇uε|2 v2
ε ω dx = µ(A) + µ(B).

Hence by Lemma 15.2 in [17], together with (4.40), we conclude (4.38).

Now we prove (4.39). Assume first that ω ∈ L∞(Ω). For any open set A ⊂ Ω and ν ∈ SN−1,
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by Fubini’s Theorem and Fatou’s Lemma we have

lim inf
ε→0

ˆ
A

(
ε |∇vε|2 +

1

4ε
(1− vε)2

)
ω dx

≥ lim inf
ε→0

ˆ
Aν

ˆ
A1
x,ν

[
ε
∣∣(vε)′x,ν∣∣2 +

1

4ε
(1− (vε)x,ν)

2

]
ωx,ν dtdHN−1(x)

≥
ˆ
Aν

lim inf
ε→0

ˆ
A1
x,ν

[
ε
∣∣(vε)′x,ν∣∣2 +

1

4ε
(1− (vε)x,ν)

2

]
ωx,ν dtdHN−1(x)

≥
ˆ
Aν

 ∑
t∈Sux,ν∩A1

x,ν

ωx,ν(t)

 dHN−1(x),

(4.41)

where the last inequality follows from (3.12).

Next, given arbitrary τ > 0 and η > 0 we choose a set S ⊂ Su and a collection Q of mutu-
ally disjoint cubes according to Lemma 4.6 with respect to Su. Fix one such cube QνS (x0, r0) ∈ Q.
By Lemma 4.6 we have

HN−1([QνS (x0, r0)]x,νS ∩ S) = 1

for HN−1-a.e. x ∈ QνS (x0, r0) ∩ S, and QνS (x0, r0) ∩ S ⊂ Γx0
such that, up to a rotation and a

translation,

Γx0 = {(y′, lx0(y′)) : y ∈ Tx0,νS ∩QνS (x0, r0)} and ‖∇lx0‖L∞ < τ, (4.42)

where y′ denotes the first N − 1 components of y ∈ Tx0,νS ∩QνS (x0, r0).

In (4.41) set A = QνS (x0, r0) and ν = νS(x0) and, using the same notation as in the proof of
Lemma 4.6, we obtain

ˆ
[QνS (x0,r0)]

νS(x0)

 ∑
t∈Sux,νS(x0)

∩[QνS (x0,r0)]
x,νS(x0)

ωx,νS(x0)(t)

 dHN−1(x) (4.43)

≥
ˆ
Tg(x0,r0)

 ∑
t∈Sux,νS(x0)

∩[QνS (x0,r0)]
x,νS(x0)

∩S

ωx,νS(x0)(t)

 dHN−1(x)

=

ˆ
Tg(x0,r0)

ω(x) dHN−1(x) =

ˆ
Tg(x0,r0)

ω(x′, lx0(x′))dLN−1(x′),

where the first inequality is due to the positivity of ω and the last equality is because QνS (x0, r0)∩
S ⊂ Γx0

which is defined in (4.42).

Next, by Theorem 9.1 in [39] and since ω ∈ C(Ω), we have thatˆ
QνS (x0,r0)∩S

ω dHN−1 =

ˆ
Tx0,νS

∩QνS (x0,r0)

ω(x′, lx0
(x′))

√
1 + |∇lx0

(x′)|2dx′

≤
√

1 + τ2

ˆ
Tx0,νS

∩QνS (x0,r0)

ω(x′, lx0
(x′))dx′,
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which, together with (4.43), yields

ˆ
[QνS (x0,r0)]

νS(x0)

 ∑
t∈Sux,νS(x0)

∩[QνS (x0,r0)]
x,νS(x0)

ωx,νS(x0)(t)

 dHN−1(x)

≥ 1√
1 + τ2

ˆ
QνS (x0,r0)∩S

ω dHN−1. (4.44)

Since cubes in Q are pairwise disjoint and HN−1(S \ ∪Q∈QQ) = 0, by (4.41), (4.43), and (4.44) we
have

lim inf
ε→0

ˆ
∪Q∈QQ

[
ε |∇vε|2 +

1

4ε
(vε − 1)2

]
ω dx

≥
∑
Q∈Q

lim inf
ε→0

ˆ
Q

[
ε |∇vε|2 +

1

4ε
(vε − 1)2

]
ω dx

≥ 1√
1 + τ2

∑
Q∈Q

ˆ
S∩Q

ω dHN−1 =
1√

1 + τ2

ˆ
S

ω dHN−1

≥ 1√
1 + τ2

(ˆ
Su

ω dHN−1 − ‖ω‖L∞ η
)
.

Therefore

lim inf
ε→0

ˆ
Ω

[
ε |∇vε|2 +

1

4ε
(vε − 1)2

]
ω dx

≥ lim inf
ε→0

ˆ
∪Q∈QQ

[
ε |∇vε|2 +

1

4ε
(vε − 1)2

]
ω dx ≥ 1√

1 + τ2

(ˆ
Su

ω(x)dHN−1 − ‖ω‖L∞ η
)
,

and (4.39) follows from the arbitrariness of η and τ , and the fact that η and τ are independent.

We now remove the assumption that ω ∈ L∞. Define for each k > 0,

ωk(x) :=

{
ω if ω ≤ k,
k otherwise.

We have

lim inf
ε→0

ˆ
Ω

[
ε |∇vε|2 +

1

4ε
(vε − 1)2

]
ω dx

≥ lim inf
ε→0

ˆ
Ω

[
ε |∇vε|2 +

1

4ε
(vε − 1)2

]
ωk dx ≥

ˆ
Su

ωk(x)dHN−1,

and we conclude

lim inf
ε→0

ˆ
Ω

[
ε |∇vε|2 +

1

4ε
(vε − 1)2

]
ω dx ≥

ˆ
Su

ω(x)dHN−1

by letting k ↗∞ and using Lebesgue Monotone Convergence Theorem. �
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Proposition 4.12. (Γ-lim sup) For ω ∈ W(Ω) ∩ C(Ω) ∩ L∞(Ω) and u ∈ L1
ω(Ω) ∩ L∞(Ω), let

E+
ω (u) := inf

{
lim sup
ε→0

Eω,ε(uε, vε) :

(uε, vε) ∈W 1,2
ω (Ω)×W 1,2(Ω), uε → u in L1

ω, vε → 1 in L1, 0 ≤ vε ≤ 1
}
.

We have
E+
ω (u) ≤ Eω(u). (4.45)

Proof. If Eω(u) = ∞ then there is nothing to prove. Assume that Eω(u) < +∞ so that by
Lemma 2.10 we have that u ∈ GSBVω(Ω) and HN−1(Su) < ∞. By assumption u ∈ L∞(Ω), thus
u ∈ SBVω(Ω).

Let τ ∈ (0, 2/9) be given. Apply Proposition 4.9 to ω and Γ = Su to obtain a set Sτ ⊂ Su, a

countable collection Fτ =
{
QνSu (xn, rn)

}∞
n=1

of mutually disjoint cubes with rn < τ , and corre-
sponding

tn ∈ (−τrn/4, τrn/4) (4.46)

and txn,rn so that items 1-5 in Proposition 4.9 hold. Extract a finite collection Tτ =
{
QνSu (xn, rn)

}Mτ

n=1
from Fτ with Mτ > 0 large enough such that

HN−1

[
Sτ \

Mτ⋃
n=1

QνSu (xn, rn)

]
< τ,

and we define

Fτ := Sτ ∩

[
Mτ⋃
n=1

QνSu (xn, rn)

]
, (4.47)

which implies that

HN−1 (Su \ Fτ ) ≤ HN−1(Su \ Sτ ) +HN−1(Sτ \ Fτ ) < 2τ. (4.48)

Let Un be the part of QνSu (xn, rn) which lies between Txn,νSu (±τrn), U+
n be the part above

Txn,νSu (τrn) and U−n be the part below Txn,νSu (−τrn). Moreover, let U+
tn be the part of Un which

lies above Txn,νSu (tn), and U−tn be the part below Txn,νSu (tn).

We claim that if x ∈ U±tn ,

x± 2 dist
(
x, Txn,νSu (±τrn)

)
νSu(xn) ∈ U±n ⊂ QνSu (xn, rn) \Rτ/2,νSu (xn, rn). (4.49)

Let x ∈ U+
tn (the case in which x ∈ U−tn can be handled similarly), we need to prove that

τrn < dist
(
x+ 2 dist(x, Txn,νSu (τrn))νSu(xn), Txn,νSu

)
<
rn
2
.

Note that
dist

(
x, Txn,νSu (τrn)

)
= τrn − (x− Pxn,νSu (x))νSu(xn),

and since x ∈ U+
tn , we have that(

x− Pxn,νSu (x)
)
νSu(xn) ∈ (tn, τrn).

Hence, together with (4.46), we observe that

τrn ≤ 2 dist
(
x, Txn,νSu (τrn)

)
+
(
x− Pxn,νSu (x)

)
νSu(xn) (4.50)
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= 2τrn − (x− Pxn,νSu (x))νSu(xn) ≤ 2τrn −
(
−τrn

4

)
=

9

4
τrn <

1

2
rn.

From the definition of projection operator Pxn,νSu we have

Pxn,νSu
[
x+ 2 dist

(
Txn,νSu (τrn)

)
νSu(xn)

]
= Pxn,νSu (x),

and hence

dist
(
x+ 2 dist(x, Txn,νSu (τrn))νSu(xn), Txn,νSu

)
(4.51)

=
([
x+ 2 dist

(
x, Txn,νSu (τrn)

)
νSu(xn)

]
−Pxn,νSu

[
x+ 2 dist

(
Txn,νSu (τrn)

)
νSu(xn)

])
νSu(xn)

=
(
2 dist

(
x, Txn,νSu (τrn)

)
νSu(xn)

)
νSu(xn)

+
(
x− Pxn,νSu

[
x+ 2 dist

(
Txn,νSu (τrn)

)
νSu(xn)

])
νSu(xn)

= 2 dist
(
x, Txn,νSu (τrn)

)
+
(
x− Pxn,νSu (x)

)
νSu(xn),

and by (4.50) we conclude (4.49).

We define ūτ in QνSu (xn, rn) as follows (see Figure 1):

ūτ (x) :=


u(x) if x ∈ U+

n ∪ U−n
u
(
x+ 2 dist(x, Txn,νSu (τrn))νSu(xn)

)
if x ∈ U+

tn ,

u
(
x− 2 dist(x, Txn,νSu (−τrn))νSu(xn)

)
if x ∈ U−tn ,

(4.52)

and

ūτ (x) := u(x) if x ∈ Ω \

(
Mτ⋃
n=1

QνSu (xn, rn)

)
.

We observe that, as τ → 0, and since 0 < rn < τ ,

LN ({x ∈ Ω, u(x) 6= ūτ (x)}) = LN
(
Mτ⋃
n=1

U+
tn ∪ U

−
tn

)

≤
Mτ∑
n=1

LN
(
U+
tn ∪ U

−
tn

)
=

Mτ∑
n=1

(
rN−1
n 2τrn

)
≤ 2τ2

Mτ∑
n=1

rN−1
n ≤ 8τ2HN−1(Su)→ 0,

(4.53)

where the last inequality follows from (4.36). Moreover, using the same computation, we deduce
that

LN
(
Mτ⋃
n=1

QνSu (xn, rn)

)
≤ τ

Mτ∑
n=1

rN−1
n ≤ 4τHN−1(Su) = O(τ)→ 0. (4.54)

Hence, in view of (4.53), we have

ūτ → u and ∇ūτ → ∇u in measure, (4.55)
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Figure 1. Construction of ūτ (x) in (4.52)

and, since in U+
tn ∪ U

−
tn ūτ is the reflection of u from QνSu (xn, rn) \ U+

tn ∪ U
−
tn , we observe thatˆ

Ω

|∇ūτ |2 ω dx ≤
ˆ

Ω\{u(x)6=ūτ (x)}
|∇u|2 ω dx+ ‖ω‖L∞

ˆ
{u(x)6=ūτ (x)}

|∇ūτ |2 dx

≤
ˆ

Ω\{u(x)6=ūτ (x)}
|∇u|2 ω dx+ 2 ‖ω‖L∞

Mτ∑
n=1

ˆ
QνSu

(xn,rn)

|∇u|2 dx

=

ˆ
Ω\{u(x)6=ūτ (x)}

|∇u|2 ω dx+ 2 ‖ω‖L∞
ˆ
⋃Mτ
n=1 QνSu

(xn,rn)

|∇u|2 dx

≤
ˆ

Ω

|∇u|2 ωdx+O(τ)

(4.56)

where the last inequality follows from (4.54) and from the fact that because E1(u) ≤ Eω(u) < +∞,
∇u is L2 integrable. Moreover, in view of (4.55) and by Lebesgue Dominated Convergence Theorem
we conclude that

lim
τ→0

ˆ
Ω

|ūτ − u|ω dx ≤ ‖ω‖L∞ lim
τ→0

ˆ
Ω

|ūτ − u| dx = 0 (4.57)

because ‖ūτ‖L∞ ≤ ‖u‖L∞ < +∞.

For simplicity of notation, in the rest of the proof of this lemma we shall abbreviate QνSu (xn, rn) by
Qn and Txn,νSu by Txn . Note that the jump set of ūτ is contained by (recall item 4 in Proposition
4.9)
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1.
Mτ⋃
n=1

[Txn(tn) ∩Qn] ;

2.
Mτ⋃
n=1

∂Qn ∩ Un;

3. Su \ Fτ , where Fτ is defined in (4.47).

The contributions to Su from 2 and 3 are negligible. To be precise,

HN−1

[
(Su \ Fτ ) ∪

(
Mτ⋃
n=1

∂Qn ∩ Un

)]

≤ HN−1(Su \ Fτ ) +

Mτ∑
n=1

HN−1(∂Qn ∩ Un) ≤ 2τ + Cτ

∞∑
n=1

rN−1
n τ ≤ O(τ).

where we used (4.33), (4.36), (4.48), and the fact that

Mτ∑
n=1

HN−1(∂Qn ∩ Un) ≤ 2τ

Mτ∑
n=1

rN−1
n ≤ 8τHN−1(Su).

Hence, again by (4.36),

HN−1(Sūτ ) ≤
Mτ∑
n=1

HN−1(Txn ∩Qn) +O(τ) ≤
∞∑
n=0

rN−1
n +O(τ) <∞.

By (4.35), let aτ denote a quarter of the minimum distance between all cubes in Tτ . Let ε > 0 be
such that

ε2 +
√
ε <<

1

4
min {τ, aτ , txn,rn for 1 ≤ n ≤Mτ} . (4.58)

Hence, by item 5 in Proposition 4.9 we have

ε2 +
√
ε < txn,rn < |tn| <

1

4
τrn < rn. (4.59)

We set

uτ,ε := (1− ϕε)ūτ ,

where ϕε is such that

ϕε ∈ C∞c (Ω; [0, 1]), ϕε ≡ 1 on (Sūτ )ε2/4, and ϕε ≡ 0 in Ω \ (Sūτ )ε2/2.

Since ūτ ∈ W 1,2(Ω \ Sūτ ), we have {uτ,ε}ε>0 ⊂ W 1,2(Ω) because (1− ϕε)(x) = 0 if x ∈ (Sūτ )ε2/4.

Moreover, {uτ,ε}ε>0 ⊂W
1,2
ω (Ω) and, using Lebesgue Dominated Convergence Theorem and (4.57),

lim
τ→0

lim
ε→0

ˆ
Ω

|uτ,ε − u|ω = 0 (4.60)
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because ω ∈ L∞, u ∈ L∞, and ϕε → 0 a.e.

Consider the sequence {vτ,ε}ε>0 ⊂W
1,2(Ω) given by

vτ,ε(x) := ṽε ◦ dτ (x)

where dτ (x) := dist(x, Sūτ ) and ṽε is defined by

ṽε(t) :=

{
0 if t ≤ ε2,

1− e−
1

2
√
ε if t >

√
ε+ ε2,

(4.61)

and for ε2 ≤ t ≤
√
ε+ ε2 we define ṽε as the solution of the differential equation

ṽ′ε(t) =
1

2ε
(1− ṽε(t)). (4.62)

with initial condition ṽε(ε
2) = 0. An explicit computation shows that

ṽε(t) = −e− 1
2
t−ε2
ε + 1 (4.63)

for ε2 ≤ t ≤
√
ε+ ε2 and ṽε(

√
ε+ ε2) = 1− exp (−1/2

√
ε), and we remark that

lim
ε→0

1

ε
e
− 1

2
√
ε = 0, (4.64)

and

− d

dt

(
1

2
(1− ṽε(t))2

)
= (1− ṽε(t)) ṽ′ε(t) ≥ 0. (4.65)

Next, since |∇dτ | = 1 a.e. (see [30], Section 3.2.34), we have {vτ,ε}ε>0 ⊂ W 1,2(Ω), 0 ≤ vτ,ε ≤
1− exp(−1/2

√
ε), and

vτ,ε → 1 in L1 as ε→ 0 (4.66)

by Lebesgue Dominated Convergence Theorem since vτ,ε → 1 a.e. by (4.63). By (4.56) and since
if ϕε(x) 6= 0 then dτ (x) < ε2/2 and so vτ,ε(x) = 0,ˆ

Ω

|∇uτ,ε|2 v2
τ,ε ω dx ≤

ˆ
Ω

|∇ūτ |2 ω dx ≤
ˆ

Ω

|∇u|2 ω dx+O(τ). (4.67)

Next we prove thatˆ
Ω

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
ω dx ≤

ˆ
Su

ω dHN−1 +O(ε) +O(τ). (4.68)

Define

Ln := Txn ∩Qn, Ln(ε) := (Txn ∩Qn)ε ,

and observe that, using Fubini’s Theorem,ˆ
Ln(ε2+

√
ε)

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
ω dx

=

ˆ ε2+
√
ε

ε2

[
ε |ṽ′ε(l)|

2
+

1

4ε
(1− ṽε(l))2

] ˆ
{dτ (y)=l}∩Ln(ε2+

√
ε)

ω(y) dHN−1(y) dl

+
1

4ε

ˆ
Ln(ε2)

ω(x)dx,
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where the latter term in the right hand side is of the order O(ε). Next, in view of (4.62), using
integration by parts, we have that

ˆ ε2+
√
ε

ε2

[
ε |ṽ′ε(l)|

2
+

1

4ε
(1− ṽε(l))2

]ˆ
{dτ (y)=l}∩Ln(ε2+

√
ε)

ω(y) dHN−1(y) dl

=

ˆ ε2+
√
ε

ε2

1

2ε
(1− ṽε(l))2

ˆ
{dτ (y)=l}∩Ln(ε2+

√
ε)

ω(y) dHN−1(y) dl

=−
ˆ ε2+

√
ε

ε2

1

2ε

d

dt

[
(1− ṽε(l))2

] ˆ
{dτ (y)≤l}∩Ln(ε2+

√
ε)

ω(y) dy dl

+Anω(ε2 +
√
ε)−Anω(ε2),

(4.69)

where

Anω(t) :=
1

2ε
(1− ṽε(t))2

ˆ
{dτ (x)≤t}∩Ln(ε2+

√
ε)

ω(y) dy.

By (4.59) and (4.64) we have

Anω(ε2 +
√
ε) =

1

2ε
e
− 1

2
√
ε

ˆ
{dτ (x)≤ε2+

√
ε}∩Ln(ε2+

√
ε)

ω(x) dx (4.70)

≤ 1

2ε
e
− 1

2
√
ε ‖ω‖L∞ L

N (Ln(ε2 +
√
ε)) =

1

2ε
e
− 1

2
√
ε ‖ω‖L∞ L

N ((Txn ∩Qn)ε2+
√
ε)

≤ 1

2ε
e
− 1

2
√
ε ‖ω‖L∞

[
2(ε2 +

√
ε)[rn + (ε2 +

√
ε)]N−1

]
≤ O(ε)rN−1

n .

We write

−
ˆ ε2+

√
ε

ε2

1

2ε

d

dt

[
(1− ṽε(l))2

] ˆ
{dτ (y)≤l}∩Ln(ε2+

√
ε)

ω(y) dy dl

=

ˆ ε2+
√
ε

ε2
2l

(
− 1

2ε

d

dt

[
(1− ṽε(l))2

])[ 1

2l

ˆ
{dτ (y)≤l}∩Ln(ε2+

√
ε)

ω(x) dx

]
dl.

Recalling the notation from Proposition 4.9 and the fact that ω(xn) ≤ ‖ω‖L∞ , we have

1

2l

ˆ
{dτ (y)≤l}∩Ln(ε2+

√
ε)

ω(x) dx ≤ sup
t≤ε2+

√
ε

(
1

|I(tn, t)|

ˆ
I(tn,t)

ˆ
Q(xn,rn)∩Txn (l)

ω(x)dHN−1dl

)

≤
ˆ
Sτ∩Q(xn,rn)

ω(x) dHN−1 +O(τ)rN−1
n .

where by (4.58) we could use (4.37) in the last inequality. Therefore, by (4.65)

−
ˆ ε2+

√
ε

ε2

1

2ε

d

dt

[
(1− ṽε(l))2

] ˆ
{dτ (y)≤l}∩Ln(ε2+

√
ε)

ω(x) dx dl

≤2

(ˆ ε2+
√
ε

ε2
− 1

2ε

d

dt

[
(1− ṽε(l))2

]
l dl

)(ˆ
Sτ∩Q(xn,rn)

ω(x) dHN−1 +O(τ)rN−1
n

)
.

(4.71)
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A new integration by parts and by using (4.63) yields
ˆ ε2+

√
ε

ε2
− 1

2ε

d

dt

[
(1− ṽε(l))2

]
l dl

=

ˆ ε2+
√
ε

ε2

1

2ε
(1− ṽε(l))2dl − 1

2ε
(ε2 +

√
ε)(1− ṽε(ε2 +

√
ε))2 +

ε2

2ε
(1− ṽε(ε2))2

≤
ˆ ε2+

√
ε

ε2
2ε |ṽ′ε(l)|

2
dl +

ε2

2ε
(1− ṽε(ε2))2 =

1

2

(
1− e−

1√
ε

)
+
ε

2
(1− ṽε(ε2))2

≤ 1

2
+

1

2
ε,

which, together with (4.71) and (4.34), gives

−
ˆ ε2+

√
ε

ε2

1

2ε

d

dt

[
(1− ṽε(l))2

] ˆ
{dτ (y)≤l}∩Ln(ε2+

√
ε)

ω(x) dx dl (4.72)

≤
ˆ
Sτ∩Q(xn,rn)

ω(x) dHN−1 +O(τ)rN−1
n + ε ‖ω‖L∞ H

N−1(Sτ ∩Q(xn, rn)) + εO(τ)rN−1
n

≤
ˆ
Sτ∩Q(xn,rn)

ω(x) dHN−1 +O(τ)rN−1
n +O(ε)O(τ)rN−1

n .

Hence, in view of (4.69), (4.70), (4.72), and since Aω(ε2) ≥ 0, we obtain that
ˆ
Ln(ε2+

√
ε)

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
ω dx

≤
ˆ
Sτ∩Q(xn,rn)

ω(x)dHN−1 +O(τ)rN−1
n +O(ε)O(τ)rN−1

n +O(ε)rN−1
n . (4.73)

Next we define

L0 := (Su \ Fτ ) ∪

(
Mτ⋃
n=1

∂Qn ∩ Un

)
and L0(ε) :=

[
(Su \ Fτ ) ∪

(
Mτ⋃
n=1

∂Qn ∩ Un

)]
ε

.

Since ω ∈ L∞(Ω), we have
ˆ
L0(ε2+

√
ε)

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
ω dx

≤ ‖ω‖L∞
ˆ
L0(ε2+

√
ε)

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
dx,

and we note that the term ˆ
L0(ε2+

√
ε)

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
dx

is the recovery sequence constructed in [8], page 1034, Added in Proof. Therefore, recalling that
by assumption that u ∈ SBVω(Ω) ∩ L∞(Ω) ⊂ SBV (Ω) ∩ L∞(Ω) and invoking Proposition 5.1 and
5.3 in [8] and calculation within, we conclude that

lim sup
ε→0

ˆ
L0(ε2+

√
ε)

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
dx ≤ lim sup

ε→0

HN−1 (x ∈ Ω : dist(x, L0) < ε)

2ε
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≤ HN−1(L0).

Thus, ˆ
L0(ε2+

√
ε)

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
ω dx ≤ ‖ω‖L∞

(
HN−1(L0) +O(ε)

)
≤ O(τ) +O(ε).

(4.74)

Furthermore, by (4.61)ˆ
Ω\(Sūτ )ε2+

√
ε

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
ω dx ≤ 1

4ε
e
− 1√

ε ‖ω‖L∞ L
N (Ω) ≤ O(ε), (4.75)

where in the last inequality we used (4.64).

Since cubes in Tτ are pairwise disjoint, in view of (4.73), (4.74), and (4.75) we have thatˆ
Ω

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
ω dx

=

ˆ
(Sūτ )ε2+

√
ε

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
ω dx

+

ˆ
Ω\(Sūτ )ε2+

√
ε

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
ω dx

≤
ˆ
L0(ε2+

√
ε)

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
ω dx

+

Mτ∑
n=1

ˆ
Ln(ε2+

√
ε)

[
ε |∇vτ,ε|2 +

1

4ε
(1− vτ,ε)2

]
ω dx+O(ε)

≤O(ε) +O(τ) +

Mτ∑
n=1

(ˆ
Sτ∩Q(xn,rn)

ω(x)dHN−1 + [O(ε) +O(τ) +O(ε)O(τ)] rN−1
n

)

≤
ˆ
⋃Mτ
n=1(Sτ∩Q(xn,rn))

ω(x) dHN−1 + [O(ε) +O(τ) +O(ε)O(τ)]

Mτ∑
n=1

rN−1
n +O(τ) +O(ε)

≤
ˆ
Su

ω(x) dHN−1 +O(ε) +O(τ) +O(ε)O(τ),

where in the last inequality we used (4.36), and this concludes the proof of (4.68). Hence, also in
view of (4.67) and (4.68), for each τ > 0, we may choose ε(τ) such thatˆ

Ω

∣∣∇uτ,ε(τ)

∣∣2 v2
τ,ε(τ) ω dx ≤

ˆ
Ω

|∇u|2 ω dx+O(τ),

and ˆ
Ω

[
ε
∣∣∇vτ,ε(τ)

∣∣2 +
1

4ε
(1− vτ,ε(τ))

2

]
ω dx ≤

ˆ
Su

ω(x)dHN−1 +O(τ),

and we thus constructed a recovery sequence {(uτ , vτ )}τ>0 given by

uτ := uτ,ε(τ) and vτ := vτ,ε(τ)
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which satisfies (4.45) and by (4.60) and (4.66) we have∥∥uτ,ε(τ) − u
∥∥
L1
ω
< τ and

∥∥vτ,ε(τ) − v
∥∥
L1 < τ.

Hence, we proved Proposition 4.12. �

Proof of Theorem 4.10. The lim inf inequality follows from Lemma 4.11. On the other hand, for any
given u ∈ GSBVω such that Eω(u) <∞, we have, by Lebesgue Monotone Convergence Theorem,

Eω(u) = lim
K→∞

Eω(K ∧ u ∨ −K),

and a diagonal argument, together with Proposition 4.12, concludes the proof. �

4.3. The Case ω ∈ W(Ω) ∩ SBV (Ω).

Consider the functionals

Eω,ε(u, v) :=

ˆ
Ω

v2 |∇u|2 ω dx+

ˆ
Ω

[
ε |∇v|2 +

1

4ε
(v − 1)2

]
ω dx,

for (u, v) ∈W 1,2
ω (Ω)×W 1,2(Ω), and

Eω(u) :=

ˆ
Ω

|∇u|2 ω dx+

ˆ
Su

ω−(x) dHN−1

defined for u ∈ GSBVω(Ω).

Theorem 4.13. Let ω ∈ W(Ω)∩ SBV (Ω)∩L∞(Ω) be given. Let Eω,ε: L1
ω(Ω)×L1(Ω)→ [0,+∞]

be defined by

Eω,ε(u, v) :=

{
Eω,ε(u, v) if (u, v) ∈W 1,2

ω (Ω)×W 1,2(Ω), 0 ≤ v ≤ 1,

+∞ otherwise.

Then the functionals Eω,ε Γ-converge, with respect to the L1
ω × L1 topology, to the functional

Eω(u, v) :=

{
Eω(u) if u ∈ GSBVω(Ω) and v = 1 a.e.,

+∞ otherwise.

We start by proving the Γ-lim inf.

Proposition 4.14. (Γ-lim inf) For ω ∈ W(Ω) ∩ SBV (Ω) and u ∈ L1
ω(Ω), let

E−ω (u) := inf
{

lim inf
ε→0

Eω,ε(uε, vε) :

(uε, vε) ∈W 1,2
ω (Ω)×W 1,2(Ω), uε → u, vε → 1 in L1

ω × L1, 0 ≤ vε ≤ 1
}
.

We have

E−ω (u) ≥ Eω(u).

Proof. Without lose of generality, we assume that E−ω (u) < +∞. The proof of this lemma uses the
same arguments of the proof of Proposition 4.11 until the beginning of (4.41), and we obtain

lim inf
ε→0

ˆ
Ω

|∇uε|2 v2
εω dx ≥

ˆ
Ω

|∇u|2 ω dx.
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By applying Proposition 3.6 to the last inequality of (4.41), we have

lim inf
ε→0

ˆ
A

(
ε |∇vε|2 +

1

4ε
(1− vε)2

)
ω dx ≥

ˆ
Aν

∑
t∈Sux,ν∩Ax,ν

ω−x,ν(t)dx.

The rest of the proof follows that of Proposition 4.11 with ω−x,ν in place of ωx,ν and taking into

consideration of the fact that ω−x,ν(t) = ω−(x+ tν) (see Remark 3.109 in [4]). �

The next lemma is the SBV version of Lemma 4.7. We recall that I(t0, t) := (t0 − t, t0 + t).

Proposition 4.15. let τ ∈ (0, 1/4) be given, and let ω ∈ SBV (Ω) ∩ L∞(Ω) be nonnegative. Then
for HN−1 a.e. x0 ∈ Sω a point of density one, there exists r0 := r0(x0) > 0 such that for each
0 < r < r0 there exist t0 ∈ (2τr, 4τr) and 0 < t0,r = t0,r(t0, τ, x0, r) < t0 such that

sup
0<t≤t0,r

1

|I(t0, t)|

ˆ
I(t0,t)

ˆ
Q±νSω

(x0,r)∩Tx0,νSω
(±l)

ω(x)dHN−1(x)dl

≤
ˆ
Sω∩Q±νSω (x0,r)

ω±(x) dHN−1 +O(τ)rN−1. (4.76)

Proof. For simplicity of notation, in what follows we abbreviate QνSω (x0, r) as Q(x0, r) and Tx0,νSω
as Tx0

.

Since HN−1(Sω) < ∞, and so µ := HN−1bSω is a nonnegative radon measure, and since ω− ∈
L1(Ω, µ), it follows that for HN−1 a.e. x0 ∈ Sω

lim
r→0

 
Q(x0,r)∩Sω

∣∣ω−(x)− ω−(x0)
∣∣ dHN−1(x) = 0. (4.77)

Choose one such x0 ∈ Sω, also a point of density 1 of Sω, and let τ > 0 be given. Select r1 > 0
such that for all 0 < r < r1,

1

1 + τ2
≤ H

N−1(Sω ∩Q(x0, r))

rN−1
≤ 1 + τ2. (4.78)

Let 0 < r2 < r1 be such that, in view of (4.77),ˆ
Q(x0,r)∩Sω

∣∣ω−(x)− ω−(x0)
∣∣ dHN−1 ≤ τ2rN−1 (4.79)

for all 0 < r < r2, and we observe that

ω−(x0)HN−1 [Q(x0, r) ∩ Tx0(−t0)] = ω−(x0) rN−1

≤ (1 + τ2)ω−(x0)HN−1 [Q(x0, r) ∩ Sω] .
(4.80)

Since by Theorem 2.4

lim
r→0

 
Q−(x0,r)

∣∣ω(x)− ω−(x0)
∣∣ dx = 0,

we may choose 0 < r3 < r2 such that 
Q−(x0,r)

∣∣ω(x)− ω−(x0)
∣∣ dx ≤ τ2,
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for all 0 < r < r3, and so, since 3.5τr < r, we haveˆ 3.5τr

2.5τr

ˆ
Q−(x0,r)∩Tx0 (−t)

∣∣ω(x)− ω−(x0)
∣∣ dHN−1(x)dt ≤

ˆ
Q−(x0,r)

∣∣ω(x)− ω−(x0)
∣∣ dx ≤ τ2rN .

There exists a set A ⊂ (2.5τr, 3.5τr) with positive 1 dimensional Lebesgue measure such that for
every t ∈ A, ˆ

Q−(x0,r)∩Tx0
(−t)

∣∣ω(x)− ω−(x0)
∣∣ dHN−1(x) ≤ τ2rN

τr
= τrN−1. (4.81)

and choose t0 ∈ A a Lebesgue point for

l ∈ (−r/2, r/2) 7−→
ˆ
Q−(x0,r)∩Tx0

(l)

ω dHN−1(x)

so that

lim
t→0

1

|I(t0, t)|

ˆ
I(t0,t)

ˆ
Q−(x0,r)∩Tx0

(−l)
ω(x)dHN−1(x)dl =

ˆ
Q−(x0,r)∩Tx0

(−t0)

ω(x)dHN−1(x).

Hence, there exists t0,r > 0, depending on t0, τ , r, and x0, such that I(t0, t0,r) ⊂ (2.5τr, 3.5τr) and

sup
0<t≤t0,r

1

|I(t0, t)|

ˆ
I(t0,t)

ˆ
Q−(x0,r)∩Tx0 (−l)

ω(x)dHN−1(x)dl

≤
ˆ
Q−(x0,r)∩Tx0

(−t0)

ω(x)dHN−1 + τrN−1. (4.82)

In view of (4.82), (4.81), (4.80), and (4.79), in this order, we have that for every 0 < r < r3 there
exist t0 ∈ (2.5τr, 3.5τr) and 0 < t0,r < t0 such that

sup
0<t≤t0,r

1

|I(t0, t)|

ˆ
I(t0,t)

ˆ
Q−(x0,r)∩Tx0 (−l)

ω(x)dHN−1(x)dl

≤
ˆ
Q−(x0,r)∩Tx0

(−t0)

ω(x)dHN−1 + τrN−1

≤
ˆ
Q−(x0,r)∩Tx0

(−t0)

∣∣ω(x)− ω−(x0)
∣∣ dHN−1

+ ω−(x0)HN−1
[
Q−(x0, r) ∩ Tx0(−t0)

]
+ τrN−1

≤O(τ)rN−1 + (1 + τ2)ω−(x0)HN−1 [Q(x0, r) ∩ Sω]

≤O(τ)rN−1 + (1 + τ2)

ˆ
Q(x0,r)∩Sω

ω−(x)dHN−1.

Since ω ∈ L∞(Ω), we have ω− ∈ L∞(Sω) and thus, invoking (4.78),

τ2

ˆ
Q(x0,r)∩Sω

ω−(x)dHN−1 ≤ O(τ) ‖ω‖L∞ H
N−1 [Q(x0, r) ∩ Sω] ≤ O(τ)rN−1,

and we deduce the ω− version of (4.76).

Similarly, we may refine t0, r0 > 0, and 0 < t0,r < t0 such that

sup
0<t≤t0,r

1

|I(t0, t)|

ˆ
I(t0,t)

ˆ
Q+(x0,r)∩Tx0

(l)

ω(x)dHN−1dl ≤
ˆ
Q(x0,r)∩Sω

ω+(x)dHN−1 +O(τ)rN−1.
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�

Proposition 4.16. Let ω ∈ SBV (Ω)∩L∞(Ω) be nonnegative and let τ ∈ (0, 1/4) be given. Then,

there exist a set S ⊂ Sω and a countable family of disjoint cubes F =
{
QνSω (xn, rn)

}∞
n=1

, with
rn < τ , such that the following hold:

1. HN−1(Sω \ S) < τ and S ⊂
⋃∞
n=1QνSω (xn, rn);

2.

dist(QνSω (xn, rn), QνSω (xm, rm)) > 0

for n 6= m;
3.

∞∑
n=1

rN−1
n ≤ 4HN−1(Sω);

4. S ∩QνSω (xn, rn) ⊂ Rτ/2,νSω (xn, rn);
5. for each n ∈ N, there exists tn ∈ (2.5τrn, 3.5τrn) and 0 < txn,rn < tn, depending on τ , rn, and

xn, such that

Txn,νSω (−tn ± txn,rn) ⊂ Q−νSω (xn, rn) \Rτ/2,νSω (xn, rn)

and

sup
0<t≤txn,rn

1

|I(tn, t)|

ˆ
I(tn,t)

ˆ
QνSω

(xn,rn)∩Txn,νΓ (l)

ω(x)dHN−1dl

≤
ˆ
S∩QνSω (xn,rn)

ω− dHN−1 + CτrN−1
n , (4.83)

where I(tn, t) := (−tn − t,−tn + t).

Proof. The proof of this proposition uses the same arguments of the proof of Proposition 4.8 and
Proposition 4.9 where we apply Lemma 4.15 in place of Lemma 4.7. �

Proposition 4.17. (Γ-lim sup) For ω ∈ W(Ω) ∩ SBV (Ω) ∩ L∞(Ω) and u ∈ L1
ω(Ω) ∩ L∞(Ω), let

E+
ω (u) := inf

{
lim sup
ε→0

Eω,ε(uε, vε) :

(uε, vε) ∈W 1,2
ω (Ω)×W 1,2(Ω), uε → u in L1

ω, vε → 1 in L1, 0 ≤ vε ≤ 1
}
.

We have

E+
ω (u) ≤ Eω(u). (4.84)

Proof. Step 1: Assume HN−1((Sω \ Su) ∪ (Su \ Sω)) = 0, i.e., Sω and Su coincide HN−1 a.e.

If Eω(u) = ∞ then there is nothing to prove. If Eω(u) < +∞ then by Lemma 2.10 we have
that u ∈ GSBVω(Ω) and HN−1(Su) < +∞.

Fix τ ∈ (0, 2/21). Applying Proposition 4.16 to ω we obtain a set Sτ ⊂ Sω, a countable col-

lection of mutually disjoint cubes Fτ =
{
QνSω (xn, rn)

}∞
n=1

, and corresponding

tn ∈ (2.5τrn, 3.5τrn) (4.85)



Page 49 Section 4.3

and txn,rn for which (4.83) holds. Extract a finite collection Tτ =
{
QνSω (xn, rn)

}Mτ

n=1
from Fτ with

Mτ > 0 large enough such that

HN−1

[
Sτ \

Mτ⋃
n=1

QνSω (xn, rn)

]
< τ, (4.86)

and we define

Fτ := Sτ ∩

[
Mτ⋃
n=1

QνSω (xn, rn)

]
. (4.87)

Let Un be the part of QνSω (xn, rn) which lies between Txn,νSω (±tn), U+
n be the part above

Txn,νSω (tn), and U−n be the part below Txn,νSω (−tn).

We claim that if x ∈ Un,

x+ 2 dist(x, Txn,νSω (tn))νSω (xn) ∈ U+
n . (4.88)

Note that

dist
(
x, Txn,νSω (tn)

)
= tn −

(
x− Pxn,νSω (x)

)
νSω (xn),

and since x ∈ Un, we have that(
x− Pxn,νSω (x)

)
νSω (xn) ∈ (−tn, tn)

and

tn ≤ 2 dist
(
x, Txn,νSω (tn)

)
+
(
x− Pxn,νSω (x)

)
νSω (xn) ≤ 3tn ≤ 10.5τrn <

1

2
rn.

Hence, following a similar computation in (4.51), we deduce (4.88).

Moreover, according to (4.85) and the definition of Rτ/2,νSω (xn, rn), we have that(
U+
n ∪ U−n

)
∩Rτ/2,νSω (xn, rn) = ∅.

We define ūτ as follows (see Figure 2):

ūτ (x) :=

{
u(x) if x ∈ U+

n ∪ U−n ,
u
(
x+ 2dist(x, Txn,νSω (tn))νSω (xn)

)
if x ∈ Un,

(4.89)

and

ūτ (x) := u(x) if x ∈ Ω \

(
Mτ⋃
n=1

QνSω (xn, rn)

)
.

Note that the jump set of ūτ is contained by

1.
Mτ⋃
n=1

[
Txn,νSω (−tn) ∩QνSω (xn, rn)

]
;

2.
Mτ⋃
n=1

∂
(
QνSω (xn, rn)

)
∩ Un;

3. Su \ Fτ , where Fτ is defined in (4.87).
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Figure 2. Construction of ūτ (x) in (4.89)

The construction of {uε}ε>0 ⊂W 1,2
ω (Ω) and {vε}ε>0 ⊂W 1,2(Ω) satisfying (4.84) is same as in the

proof of Proposition 4.12, using (4.89) instead of (4.52), and at (4.71) we apply (4.83) instead of
(4.37).

Step 2: Suppose that HN−1((Sω \ Su) ∪ (Su \ Sω)) > 0. Note that we are only interested in
the part Su \ Sω but not Sω \ Su, because we only need to recover Su.

We first apply Proposition 4.9 on Su to obtain a countable family of disjoint cubes F =
{
QνSu (xn, rn)

}∞
n=1

such that (4.33)-(4.36) hold. Furthermore, extract a finite collection Tτ from F such that (4.86)
holds.

We define ūτ inside each QνSu (xn, rn) ∈ Tτ as follows (see Figure 3):

1. if xn ∈ Sω, we apply Proposition 4.15 to obtain item 5 in Proposition 4.16 for this QνSu (xn, rn),
and we define ūτ in this cube in the way of (4.89);

2. if xn ∈ Su \ Sω, we apply Lemma 4.7 to obtain item 5 in Proposition 4.9 for this QνSu (xn, rn),
and we define ūτ in this cube in the way of (4.52).

For points x outside Tτ , we define ūτ (x) := u(x).
Reasoning as in Proposition 4.12 and Proposition 4.17, we conclude (4.84). �

Proof of Theorem 4.13. The lim inf inequality follows from Proposition 4.14. On the other hand,
for any given u ∈ GSBVω such that Eω(u) < ∞, we have, by Lebesgue Monotone Convergence
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Figure 3. Applying (4.89) in dotted line cube and (4.52) in straight line cube.

Theorem,

Eω(u) = lim
K→∞

Eω(K ∧ u ∨ −K),

and a diagonal argument, together with Proposition 4.17, yields the lim sup inequality for u. �

Appendix

Definition A.1 ([7], Definition 4.4.9). Let X be a metric space. We denote by CX the family of
all nonempty closed subsets of X. Then

dH(C,D) := min {1, h(C,D)} , C,D ∈ CX ,

where

h(C,D) := inf {δ ∈ [0,+∞] : C ⊂ Dδ and D ⊂ Cδ} ,
is a metric on CX , and is called the Hausdorff distance between the set C and D (see (2.4) for
definition of Dδ and Cδ).

Consider X to be the interval (0, 1) with the Euclidian distance. We remark that for two intervals
[a1, b1] and [a2, b2] in (0, 1),

dH([a1, b1], [a2, b2]) = min {1, max {|a1 − a2| , |b1 − b2|}} . (A.1)

Indeed, the δ-neighborhood of [a1, b1] is [a1 − δ, b1 + δ], and contains [a2, b2] if and only if

δ ≥ max {a1 − a2, b2 − b1} .
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Similarly, the δ-neighborhood of [a2, b2] contains [a1, b1] if and only if

δ ≥ max {a2 − a1, b1 − b2} ,

and we conclude (A.1).

Lemma A.2. Let In := [an, bn] ⊂ (−1, 1). Then, up to the extraction of a subsequence,

In
H→ I∞ ⊂ (−1, 1),

where I∞ is connected and closed in (−1, 1), and

L1(I∞) = lim
n→∞

L1(In).

Moreover, for arbitrary K ⊂⊂ I∞, K must be contained in In for n large enough.

Proof. Because In ⊂ (−1, 1), we have that {an}∞n=1 and {bn}∞n=1 are bounded and so, up to the
extraction of a subsequence, there exist

a∞ := lim
n→∞

an and b∞ := lim
n→∞

bn, (A.2)

where −1 ≤ a∞ ≤ b∞ ≤ 1. We define I∞ := [a∞, b∞] if −1 < a∞ ≤ b∞ < 1, I∞ := (−1, b∞] if
a∞ = −1, and I∞ := [a∞, 1) if b∞ = 1. Hence I∞ is connected and closed in (−1, 1) (in the case
in which a∞ = b∞ = −1, or a∞ = b∞ = 1, we have I∞ = ∅ and it is still closed in (−1, 1)).

Hence

lim
n→∞

dH(In, I∞) = lim
n→∞

max {|an − a∞| , |bn − b∞|} = 0,

and we have for I∞ 6= ∅,

L1(I∞) = b∞ − a∞ = lim
n→∞

(bn − an) = lim
n→∞

L1(In),

as desired.

Next, if K ⊂⊂ I∞ then K ⊂ (α, β) for some α, β such that a∞ < α < β < b∞. By (A.2)
choose N large enough such that for all n ≥ N ,

an < α < β < bn,

so that K ⊂ In for all n ≥ N . �

Lemma A.3. Let {vε}ε>0 ⊂W 1,2(I) be such that 0 ≤ vε ≤ 1, vε → 1 in L1(I) and pointwise a.e.,
and

lim sup
ε→0

ˆ
I

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
dx <∞. (A.3)

Then for arbitrary 0 < η < 1 there exists an open set Hη ⊂ I satisfying:

1. the set I \Hη is a collection of finitely many points in I;
2. for every set K compactly contained in Hη, we have K ⊂ Bηε for ε > 0 small enough, where

Bηε :=
{
x ∈ I : v2

ε(x) ≥ η
}
.
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Proof. Choose a constant M > 0 such that

M ≥ lim sup
ε→0

ˆ
I

[
ε

2
|v′ε|

2
+

1

2ε
(vε − 1)2

]
dx ≥ lim sup

ε→0

ˆ
I

|v′ε| |1− vε| dx = lim sup
ε→0

1

2

ˆ
I

|c′ε| dx,

where cε(x) := (1− vε(x))2. Note that by (A.3), cε → 0 in L1(I). Fix σ, δ with

0 < σ < δ < 1.

By the co-area formula we have, for 0 < ε < ε0 with ε0 sufficiently small,

2M + 1 ≥
ˆ
I

|c′ε(x)| dx =

ˆ ∞
−∞
H0({x : cε(x) = t}) dt ≥

ˆ δ

σ

H0({x : cε(x) = t}) dt.

Hence, for each ε > 0 there exist δε ∈ (σ, δ) such that

2M + 1

δ − σ
≥ H0({x : cε(x) = δε}). (A.4)

Define, for a fixed r > 0,
Arε := {x ∈ I : cε(x) ≤ r} .

Since vε ∈ W 1,2(I), vε is continuous and so is cε, therefore Aδεε is closed and has at most
(2M + 1)/(δ − σ) + 1 connected components because of (A.4) and in view of the continuity of
cε. Note that the number (2M + 1)/(δ − σ) does not depend on ε > 0.

For ε ∈ (0, ε0) and k ∈ N depending only on δ − σ and M , we have

1. Aδεε =
⋃k
i=1 I

i
ε, where each Iiε is a closed interval or ∅;

2. for all i < j, max
{
x : x ∈ Iiε

}
< min

{
x : x ∈ Ijε

}
.

By Lemma A.2, up to the extraction of a subsequence, for each i ∈ {1, 2, . . . , k} let Ii0 be the

Hausdorff limit of the Iiε as ε → 0, i.e., Iiε
H→ Ii0, with Ii0 is connected and closed in I, and for all

i < j, max Ii0 ≤ min Ij0 .

Set

Tδ :=

k⋃
i=1

(Ii0)◦ and Tδ,ε :=

k⋃
i=1

(Iiε)
◦, (A.5)

where by (·)◦ we denote the interior of a set. Since

I \Aδεε ⊂ {x ∈ I : cε(x) ≥ σ}
and cε → 0 in L1(I), by Chebyshev’s inequality we have

lim
ε→0
L1(Tδ,ε) = lim

ε→0
L1(Aε) = 2.

Moreover, since Tδ,ε
H→ Tδ, by Lemma A.2 we have

L1(Tδ) =

k∑
i=1

L1(Ii0)◦ =

k∑
i=1

lim
ε→0
L1(Iiε)

◦ = lim
ε→0

k∑
i=1

L1(Iiε)
◦ = lim

ε→0
L1(Tδ,ε) = 2.

Thus |I \ Tδ| = 0. Moreover, since Tδ has at most k connected components, I \ Tδ is a finite collec-
tion of points in I.

Next, let K ⊂⊂ Tδ be a compact subset. We claim that K must be contained in Aδεε for ε > 0 small



Page 54 Section .0

enough. Recall Ii0 and Iiε from (A.5). Define Ki := K ∩ (Ii0)◦ for i = 1, . . . , k. Then Ki ⊂⊂ (Iio)
◦

for each i, and so by Lemma A.2 there exists εi > 0 such that for all 0 < ε < εi, Ki ⊂ Iiε. Define

ε′ := min
i∈{1,...,k}

{εi} .

For 0 < ε < ε′ we have Ki ⊂ Iiε, and so

K =

k⋃
i=1

Ki ⊂
k⋃
i=1

Iiε = Aδεε .

Finally, given η ∈ (0, 1), set δ :=
(
1−√η

)2
with Hη := T(1−√η)2 and Bηε := A

(1−√η)2

ε , and
properties 1 and 2 are satisfied. �
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