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Abstract

We consider the Cauchy problem for the Vlasov-Maxwell system in a low dimensional
setting. It is not known if solutions that start smooth remain smooth. To gain some insight into
this question, the problem is solved with both a finite difference method and a particle method.
An attempt is made to choose conditions which will result in a solution that is likely to blow
up. However, when both methods are used, it is found that the spatial derivatives of the fields
do not grow rapidly.

1 Introduction

Consider the one and one half dimensional Vlasov-Maxwell system:

∂t f + v1∂x f + (E1 + v2B)∂v1 f + (E2 − v1B)∂v2 f = 0

∂xE1 = ρ =

∫
f dv − b(x)

∂tE1 = − j1 = −

∫
f v1dv

∂tE2 = −∂xB − j2
∂tB = −∂xE2

(1.1)

Here t is time, x ∈ R is position, v = (v1, v2) ∈ R2 is velocity, and f (t, x, v) is the number density in
phase space of particles of charge one and mass one. A fixed background of neutralizing charge is
given by b(x) so ρ(t, x) is the charge density and
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j(t, x) =

∫
Rs

f (t, x, v)v dv

is the current density. The induced electromagnetic field is given by

⇀
E = (E1,E2, 0)

⇀
B = (0, 0,B).

The speed of light has been taken to be one.
Let f (0) : R3

→ [0,∞), E(0)
2 : R→ R, B(0) : R→ R, and b : R→ R be continuously differentiable

and compactly supported with "
f (0)dv dx =

∫
b dx (1.2)

Define

E(0)
1 (x) =

∫ x

−∞

(∫
f 0dv − b

)
dx̃.

We take

( f ,E1,E2,B)
∣∣∣
t=0 = ( f (0),E(0)

1 .E
(0)
2 ,B

(0)) (1.3)

as the initial condition for (1.1).
This paper is motivated by the following question: does the solution ( f ,E1,E2,B) of (1.1) with

(1.3) remain smooth for all t ≥ 0? This question has attracted some interest but has remained
open. Hence, we will try to gain some insight by use of numerical experimentation. (1.1) can be
compared with the relativistic Vlasov-Maxwell system:

∂t f + v̂1∂x f + (E1 + v̂2B)∂v1 f + (E2 − v̂1B)∂v2 f = 0

∂xE1 = ρ =

∫
f dv − b

∂tE1 = − j1 = −

∫
f v̂1 dv

∂tE2 = −∂xB − j2 = −∂xB −
∫

f v̂2 dv

∂tB = −∂xE2.

(1.4)

Here v is momentum and

v̂ =
v√

1 + |v|2

is velocity. A crucial difference between (1.1) and (1.4) is that for (1.4)

|v̂| < 1 = speed of light
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for all v. In contrast, for (1.1) transport speed equal the speed of light may occur and may even be
present in the initial conditions. For (1.4) it is known [8] that solutions remain smooth for all time.
A crucial aspect of this result comes from [11] where it is shown for the three dimensional version
of (1.4) that solutions remain smooth as long as the v support of f remains bounded. These bounds
are not known in three dimensions but have been obtained in two dimensions [9], [10].

In contrast, for (1.1) bounds on v support are known [7], but bounds on derivatives of f have
not been obtained. This is because the decomposition of derivatives technique used in [8] and [11]
becomes singular at v1 = ±1 for (1.1). It is shown in [7] that if a solution of (1.1) breaks down then
the first singularity must appear at v1 equal to one or minus one.

We mention that in [2, 5, 14, 15, 16, 20, 22] the issue described above is avoided by considering
a model which includes diffusion in v. We also mention that global weak solutions of (1.1) in
three dimensions are constructed in [4]. For the Vlasov-Poisson system, global existence of smooth
solutions is known in three dimensions [12, 13, 17, 19]. For general references on related problems
see [6] and [18].

The problem (1.1) possesses an invariant which we will use. Define

A =

∫ x

−∞

B(t, x̃)dx̃

and

G(t, x, v1,w) = f (t, x, v1,w − A(t, x)).

Then

∂tG + v1∂xG + (E1 + (w − A)∂xA)∂v1G = 0

and

j2 =

"
G(t, x, v1,w)(w − A)dw dv1. (1.5)

In order to reduce the computational size of the problem we consider solutions of the form

G(t, x, v1,w) = g(t, x, v1)δ(w − w0)

for some w0 ∈ R. Now the problem becomes
∂tg + v1∂xg + (E1 + (w0 − A)∂xA)∂v1 g = 0

E1 =

∫ x

−∞

(∫
g dv1 − b

)
dx̃

∂2
t A − ∂2

xA = j2 = (w0 − A)
∫

g dv1.

(1.6)

We wish to choose initial conditions which lead to a solution which breaks down. Let us
examine the conditions that are likely to occur in a solution that breaks down and then build these
into the initial conditions. Define
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K = E1 + (w0 − A)B

and (X(s, t, x, v), V1(s, t, x, v)) by

dX
ds

= V1 X(t, t, x, v1) = x

dV1

ds
= K(s,X) V1(t, t, x, v1) = v1.

Then

d
ds

[
∂xg(s,X,V1)

]
= −∂xK(s,X)∂v1 g(s,X,V1)

and

d
ds

[
∂v1 g(s,X,V1)

]
= −∂xg(s,X,V1). (1.7)

Suppose that for some x, v1, as s→ T−∣∣∣∂xg(s,X,V1)
∣∣∣→ +∞,

∣∣∣∂v1 g(s,X,V1)
∣∣∣→ +∞. (1.8)

In fact, |∂xg| and |∂v1 g| must be unbounded for blowup to occur, but this does not immediately
imply (1.8). In light of (1.7) we expect that

∂xg(s,X,V1) ∂v1 g(s,X,V1) < 0

on some interval s ∈ [t1,T). Then

−

∫ t

t1

∂xg(s,X,V1)
∂v1 g(s,X,V1)

ds

= ln
∣∣∣∂v1 g(s,X,V1)

∣∣∣∣∣∣t
t1
→ +∞

as t→ T− so we expect

−∂xg(s,X,V1)
∂v1 g(s,X,V1)

→ +∞

as s→ T−. Furthermore, as t→ T−∫ t

t1

∂xK(s,X) −
(
∂xg(s,X,V)
∂v1 g(s,X,V)

)2 ds

=
−∂xg(s,X,V)
∂v1 g(s,X,V)

∣∣∣∣∣t
t1

→ +∞
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so we also expect

∂xK(s,X) −
(
∂xg(s,X,V)
∂v1 g(s,X,V)

)2

→ +∞

as s→ T−.
It is known from [7] that the first singularity must occur at v1 = ±1. Thus, we will choose initial

conditions g(0),B(0),E(0)
2 so that

∣∣∣∂xg(0)(0, 1)
∣∣∣ , ∣∣∣∂v1 g(0)(0, 1)

∣∣∣ , −∂xg(0)(0, 1)
∂v1 g(0)(0, 1)

,

∂xK(0, 0) −
(
∂xg(0)(0, 1)
∂v1 g(0)(0, 1)

)2 (1.9)

are significantly larger than one. We’ll take

E(0)
2 = B(0)

so that, at least initially, the steep gradient in the field propogates with speed one. Also, note that
by Maxwell’s equations

d
dt

∫ (
(∂xE2)2 + (∂xB)2

)
dx

∣∣∣∣∣
t=0

= −2
∫
∂xE(0)

2 ∂x j2(0, x)dx

so will also require

−∂xE(0)
2 (0) j2(0, 0) (1.10)

to be significantly greater than one. Finally, we also require

K(0, 0) (1.11)

to be near zero so that V1(s, 0, 0, 1) moves away from one slowly.
Define

R(u) =


1 if u ≤ 0

(1 + 2u)(u − 1)2 if 0 < u < 1
0 if 1 ≤ u

and

H(w) = R(2|u| − 1).
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Then for

0 < ε <
1
2

(1.12)

define

g(0)(x, v1) = H(x)H(2(v1 − 1))R
( x
ε2 +

1
2
−

v1 − 1
ε

)
and

B(0)(x) = E(0)
2 (x) = H(x)R

(1
2

+ 1.5
x
ε2

)
.
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The condition (1.12) ensures that

x
ε2 +

1
2
−

v1 − 1
ε

= 1 and v1 =
3
2
⇒ x <

1
2

and

x
ε2 +

1
2
−

v1 − 1
ε

= 0 and x = 0⇒ v1 <
5
4
,

as is depicted in Figure 2. For |x| <
1
2

and |v1 − 1| <
1
4

we have

g(0)(x, v1) = R
( x
ε2 +

1
2
−

v1 − 1
ε

)
so

∂xg(0)(0, 1) = ε−2R′
(1
2

)
= −1.5ε−2,

∂v1 g(0)(0, 1) = −ε−1R′
(1
2

)
= 1.5ε−1,

and

−∂xg(0)(0, 1)
∂v1 g(0)(0, 1)

= ε−1.

We’ll take
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w0 = 0

and

b(x) =
3
4

H(2x −
1
4
.)

This choice of b satisfies (1.2).
Now, omitting some elementary calculations,

∂xK(0, 0) =

∫
g(0)(0, v1)dv1 − b(0)

−(B(0)(0))2
−

∫ 0

−∞

B(0)(x̃)dx̃
dB(0)

dx
(0)

=
3
8
−

3
4
−

(1
2

)2

−

(3
4
−

3
32

(1.5ε−2)−1
) (

1.5ε−2
(
−

3
2

))
=

27
16
ε−2
−

49
64
.

Also, approximating we have,

K(0, 0) =

∫ 0

−∞

(∫
g(0)dv1 − b

)
dx −

∫ 0

−∞

B(0)dx B(0)(0)

≈

"
g(0)dv1 dx −

∫ 0

−∞

b dx −
∫ 0

−∞

B(0)dx B(0)(0)

=
9
16
−

3
16
−

(3
4
−

3
32

(1.5ε−2)−1
) 1

2

=
ε2

32
.

K(0, x) is graphed in Figure 3 for ε =
1
4

.
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K(0,x)

Also

−∂xE(0)
2 (0)∂x j2(0, 0)

= −∂xB(0)(0)
(
−B(0)(0)

∫
g(0)(0, v1)dv1 −

∫ 0

−∞

B(0)(x)dx
∫
∂xg(0)(0, v1)dv1

)

=
(
−

3
2
ε−2

(
−

3
2

)) [
−

1
2

(3
8

)
−

(
3
4
−

3
32

(3
2
ε−2

)−1)
(−ε−1)

]

=
108ε−3

− 27ε−2
− 9ε−1

64
.

E(0)
2 = B(0) and j2(0, x) are graphed in Figure 4 for ε =

1
4

.

9



−1.5 −1 −0.5 0 0.5 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Figure 4

 

 

B

j2

Thus, the conditions (1.9), (1.10), and (1.11) are satisfied.

2 Numerical Methods

The problem (1.6) was solved using two different methods, a particle method and a finite difference
approach introduced in [3] (see also [21]). For a complete discussion of particle methods see [1].
Let us outline the particle method used. Let ∆t = ∆x > 0 and ∆v > 0 and denote

tn = n∆t, xk = k∆x, vl = l∆v.

If

Xn
k,l ≈ X(tn, 0, xk, vl)

Vn
k,l ≈ V1(tn, 0, xk, vl)

then the basic approximation of the particle method is

g(tn, x, v1) ≈
∑
k,l

qk,l δ∆x(x − Xn
k,l)δ(v1 − Vn

k,l)

where

qk,l = g(0)(xk, vl)∆x ∆v

and

δ∆x(x) =


(∆x)−1

(
1 −
|x|
∆x

)
if |x| < ∆x

0 otherwise.
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If

An
i ≈ A(tn, xi)

then we use

j2(tn, xi) ≈ jni

=
∑
k,l

qk,lδ∆x(xi − Xn
k,l)(w

0
− An

i ).

A is computed using (with ∆t = ∆x)

An+1
k − 2An

k + An−1
k

(∆t)2 =
An

k+1 − 2An
k + An

k−1

(∆x)2 + jnk .

Then we take

Bn
k+ 1

2
=

An
k+1 − An

k

∆x
and

En+ 1
2

2,k = −
An+1

k − An
k

∆t
.

Linear interpolation is performed on these values as needed. En
1k is obtained by similar approxi-

mations of

∂xE1 = ρ.

Then Xn
k,l and Vn

k,l are advanced by

Xn+1
k,l − Xn

k,l

∆t
= Vn+ 1

2
k,l

and

Vn+ 1
2

k,l − Vn− 1
2

k,l

∆t
=

(
En

1 + (w0 − An)Bn
)∣∣∣∣∣∣∣∣∣

Xn
k,l

(2.1)

where the right hand side of (2.1) is computed using linear interpolation.
The other method solves the Vlasov equation by making a half time step in x, a whole time

step in v, and then another half time step in x. To advance x from tn to tn+ 1
2 let

X = xk −
1
2

∆t(l∆v)
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and write

X = xk + θ∆x

with k ∈ Z and θ ∈ [0, 1). Then define

g̃k,l = (1 − θ)gn
k,l

+ θgn
k+1,l

.

Then the fields are computed at time level tn+ 1
2 from g̃. The time step in v is obtained by letting

V1 = (l∆v) − ∆t
(
En+ 1

2
1k + (w0 − An+ 1

2
k )Bn+ 1

2
k

)
and

V1 = (l∆v) + θ∆v

with l ∈ Z and θ ∈ [0, 1) and then taking

≈

gk,l = (1 − θ)g̃k,l + θg̃k,l+1.

Then gn+1 is obtained from
≈

g as g̃ was obtained from from gn.
As we will see, the implementations of both methods produce results which converge to the

same limits. Also, solutions of (1.6) conserve the energy:"
g(v2

1 + (w0 − A)2)dv1 dx +

∫
(E2

1 + E2
2 + B2)dx.

The results of both implementations produce only small variations in energy, smaller as ∆x →
0, ∆v→ 0.

Also, the particle method was applied to the exact solution:

E1 = −U′

U(x) =


−(1 − x2)3 if |x| < 1

0 otherwise

g = G

(1
2

v2
1 + U(x)

)

G(e) =


e2 if e < 0

0 if 0 ≤ e
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b(x) =


16
√

2
15

(1 − x2)
15
2 + (6 − 36x2 + 30x4) if |x| < 1

0 if 1 ≤ |x|

A = E2 = B = w0 = 0.

The numerical results agreed well with the exact solution.
To exhibit the results stated above, consider solving (1.6) with the initial conditions described

in Section 1 (with ε = 1
4 ) to a final time of 0.48. Figure 5 displays the graphs of B, j2, and E1 at t = .48

computed with the difference scheme with ∆x = ∆t = ∆v = 0.08 and ∆x = ∆t = ∆v = 0.04. Figure 6
displays the corresponding results from the particle method. The relatively coarse mesh values of
0.08 and 0.04 were used so that the graphs from the two mesh values were visibly different. Figure
7 displays the graphs of B, j2,E1 at t = 0.48 computed with both the difference and particle methods
with ∆x = ∆t = ∆v = 0.01. The results of the two methods are hard to distinguish; as the mesh is
refined further they cannot be distinguished. Table 1 gives the relative change ((final value-initial
value)/initial value) of the computed energy over the interval [0, 0.48] for both methods.
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Table 1
Relative Change in Energy

∆x = ∆v = ∆t Difference Method Particle Method

.08

.04

.02

.01

.005

.0025

.00125

1.13 10−1

1.09 10−1

1.71 10−2

3.69 10−3

1.58 10−3

7.79 10−4

3.91 10−4

1.80 10−3

7.60 10−4

8.78 10−4

1.65 10−4

6.33 10−5

2.92 10−5

1.42 10−5

3 Computational Results

Now we present computational results for the initial conditions described before with ε =
1
4

.
Figure 8 contains a plot of the level curves of g at time zero (on the left) and of g at time 0.4 (on
the right). Figure 9 shows the graphs of B, j2,E1 as functions of x at times 0, 0.2 and 0.4. For B and
j2, later time produces a graph that is further to the right. For E1 the maximal value decreases as t
increases. In Figure 10

max
x
|∂xE2| and max

x
|∂xB|

are graphed as functions of t both for ∆x = ∆v = ∆t = 0.001 and ∆x = ∆v = ∆t = 0.0005. It
should be noted that both differentiation of the fields and taking the maximal value are poorly
behaved numerically and hence we do not expect the values from ∆x = ∆v = ∆t = 0.001 and
∆x = ∆v = ∆t = 0.0005 to match that closely. Still Figure 10 seems to indicate that the derivatives
of E2 and B are growing with t only modestly. We see from Figure 11 that∣∣∣∂xg

∣∣∣ and
∣∣∣∂v1 g

∣∣∣
are growing much more rapidly. Figure 11 contains the graphs of

∂xg(t,X(t, 0, 0, 1), V1(t, 0, 0, 1))

and

∂v1 g(t,X(t, 0, 0, 1), V1(t, 0, 0, 1))

for both ∆x = ∆v = ∆t = 0.001 and 0.0005.
In conclusion, we find that despite going to lengths to choose initial conditions which generate

a rapidly growing solution, the spatial derivatives of the fields do not grow rapidly. This is
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significant as these derivatives must be unbounded for the solution to blow up. Exponential
growth of

∣∣∣∂xg
∣∣∣ and

∣∣∣∂v1 g
∣∣∣ does not imply blow up, for example, if g satisfies the linear PDE

∂tg + v1∂xg + ∂v1 g = 0,

then g is as smooth as g(0, ·, ·) but
∣∣∣∂xg

∣∣∣ and
∣∣∣∂v1 g

∣∣∣ grow exponentially.

Figure 8
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