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Abstract
For Q ¢ RY open (and possibly unbounded), we consider integral functionals of the
form
F(u) == [ f(x,u) dz,

defined on the subspace of LP consisting of those vector fields u which satisfy Au = 0
on () in the sense of distributions. Here, A may be any linear differential operator
of first order with constant coefficients satisfying Murat’s condition of constant rank.
The main results provide sharp conditions for the compactness of minimizing sequences
with respect to the strong topology in LP.

1 Introduction

We consider integral functionals of the form

Flu) = / flou)de, uelly, (1.1)
Q
with the class of admissible functions given by
Ua = {ue LP(GRY) [Au=0in Q}, (1.2)

Here, 1 < p < oo, Q C R¥ is open, A is a linear first order differential operator as in
Section 3, formally mapping v : Q — R™ onto Au : Q — R, and the equation Au = 0 is
understood in the sense of distributions!. Throughout, we assume that

A satisfies the condition of constant rank

Yie, [qu-A*pdr =0 for all ¢ € C2°(Q,RY), with A* as in Section 3



introduced by Murat [14], as specified in (3.1) in the next section. Such differential con-
straints arise naturally in a variety of physical models. In particular, both curl and divergence
are admissible. Further examples are provided in |7, 4]. As to f, we assume that

f:QxRM - R is a Carathéodory function?, (f:0)
|f (@, )| < C(lul + |h(z)]), :
[f(@, 1) = fz.n)] < Clul+ Inl + [h@))"~ | =l (f:2)

for a.e. z € Q and every u,n € RM, where C' > 0 is a constant and h € LP(1).

The main purpose of this paper is the study of the so-called weak-strong convergence property
of F, that is, we ask under which additional conditions on f and 2 we have that

F(u,) — F(u) and u, — u weakly in L = w, — u strongly in L?

for any given sequence (u,) C Uy. In the case of gradients on bounded domains, where U4 is
replaced by U’ := {u € LP(;RN*?) | 4 = Vo for a v € WLP(Q; R?)}, this question has been
investigated by Visintin [18], Evans and Gariepy [5], Zhang [19] and later by Sychev [16, 17].
Results for more general® A-free vector fields instead of gradients have not been obtained
so far. Sychev’s results provide optimal conditions for ruling out possible oscillations of
u, = Vu,, but neither of the aforementioned articles attempts a comprehensive study of
concentration effects. In fact, while in [5] and [19] at least sufficient conditions for ruling
out concentrations are given (in the case of [5] only partially, since concentrations near the
boundary are not discussed), Sychev uses a slightly different definition for the weak-strong
convergence property, namely

F(u,) — F(u) and u, — u weakly in L» = u, — u strongly in L'

for (u,) C U'. On a bounded domain, this variant allows one to ignore concentrations of u,, in
L? altogether. An alternative approach, still on bounded domains but taking concentrations
into account, is possible with the methods developed in 8] and [9] for gradients, which were
extended to the A-free case in [6]. Our main results stated in the next section in particular
provide optimal conditions for ruling out concentrations and similar effects occurring only
on unbounded domains. Their proofs are collected in Section 5.

A second goal of this article and its main technical challenge is the extension of the decom-
position result of [7] to unbounded domains. We employ this as an essential tool for studying
the weak-strong convergence property, but it also is of independent interest. The decompo-
sition lemma of [7]| states that, up to a subsequence, any A-free, bounded sequence in L?
on a bounded domain can be decomposed into the sum of two A-free, bounded sequences,
the first p-equiintegrable (“purely oscillating”) and the second converging to zero in measure
(“purely concentrating”). On general domains, we need to split into more parts, taking into
account the additional obstacles for compactness other than oscillations and concentrations
which may occur if the domain has infinite measure. This is carried out in Section 4, based
on some preliminary observations collected in Section 3. As in |7], we heavily rely on a pro-
jection onto A-free fields defined via the Fourier transform, now on the whole space instead
of in the framework of periodic functions, whose main properties are derived with the help
of suitable Fourier multiplier theorems.

%ie., f = f(x,p) is measurable in x € € for every p and continuous in € RM for a.e. x
3note that U’ = Ugun on a bounded, simply connected domain



2 Main results

Just as Morrey’s by now classical notion of quasiconvexity is important for functionals de-
pending on gradients, A-quasiconvexity is relevant in our setting.

Definition 2.1. Let x5 € Q. Following [7], we say that f(xg,-) is A-quasiconver at £ € RM
if

| [0 &) = Fro. O] dy 2 0 for every o < 6
Here, Q := (0,1)Y c RY and
b= {g& € C,fo(RN;RM) ‘A(,D =0 on RY and ngp = 0},

where Cp°(RY; RM) denotes the set of all functions f € C*°(R"; RM) which are Q-periodic
in the sense that f(y) = f(y + 2) for every z € Z" and every y € RY. Moreover, for p > 1
we say that f(xg,-) is strictly p-A-quasiconver at & € RM if

léLﬂ%f+¢@ﬂ—f@mONMZgQQWMbMW)fMeWW¢E¢A

with a function g : [0, 00)® — [0, 0o] which is increasing in its first variable,
decreasing in the second, and satisfies g(¢,7") > 0 for all ¢t > 0, T' > 0.

(The monotonicity of g need not be strict, and g may depend on zy and &£.) Finally, we
say that f is (strictly p-) A-quasiconver, if f(x,-) is (strictly p-) A-quasi-convex at every
£ €RM for a.e. v € Q.

Strict p-A-quasiconvexity can be characterized in the following way.

Proposition 2.2. Let N > 2, let 1 < p < oo, let Q C RY be open and suppose that f satisfies
(f:0)~(f:2). Then for a.e. x € Q and every £ € RM | f(x,-) is strictly p-A-quasiconvez at & if
and only if

f(x,-) is A-quasiconvez at & and for every sequence (p,) € Py,

2.1
/ flx, 6+ on(y))dy — f(x,8) = @, — 0 locally in measure®, (21)
Q n—oo

where

0= { () € s

©n — 0 weakly in LP(Q; RM) and
©n 18 equiintegrable in LP(Q; RM)

Here, “equiintegrable in LP” is meant in the sense of Definition 2.7 below.

Yie., |[KN{|py| >3} — 0as n — oo, for every § > 0 and every compact K C RY.



Remark 2.3. Strict p-A-quasiconvexity can be also rephrased in terms of Young measures as
follows: f(x,-) is strictly p-A-quasiconvex at & € RM if and only if

f(z,-) is A-quasiconvex at £ and

flz, &4+ p)dv(p) = f(z,§) = v is a Dirac mass at 0, (2.2)
RM

for every homogeneous Young measure v generated by a sequence in P.

The equivalence of (2.1) and (2.2) essentially is a consequence of the results concerning Young
measures collected in Section 5. In particular, strict p-A-quasiconvexity is the analogue of
strict closed p-quasiconvexity as defined in [17]. Also note that if the sequence generating v is
not required to be equiintegrable in L, this still gives an equivalent definition, c¢f. Remark 5.6.

Remark 2.4. If in addition to (f:0) and (f:1), f is A-quasiconvex, then the p-Lipschitz con-
dition (f:2) automatically holds for certain examples of A. In particular, this is the case
for the curl and the divergence (of matrix-valued fields, applied row by row) since Curl-
quasiconvexity and Div-quasiconvexity both imply rank-1-convexity. For more details see

14].

As observed is |7], A-quasiconvexity is vital to ensure weak lower semicontinuity of I along
A-free sequences and, consequently, the existence of minimizers.

Theorem 2.5 (existence of minimizers for general domains). Let N > 2, let 1 < p < oo, let
Q C RY be open, and suppose that f is A-quasiconver and satisfies (£:0)—(f:2). Moreover,
suppose that I := inf{F(v) | v € Us} > —o0 and that there exists a sequence (u,) C U,
bounded in LP, such that F(u,) — I. Then there exists a u* € Uy such that F(u*) = I.

Remark 2.6. Essentially, Theorem 2.5 is a standard application of the direct methods of the
calculus of variations. In particular, it suffices to show that I’ is lower semicontinuous along
sequences in U4 which weakly converge in LP. If Q C R" is open and bounded and f > 0,
this is due to Theorem 3.7 in [7], and the result easily extends to unbounded domains as
F = supyey Iy with Fy(u) = [ f(z,u)dz defined on the bounded sets Q2 := Bx(0) N Q.
This works even if (f:2) does not hold, and instead of f > 0, it actually suffices to have
that f~(z,u,) (the negative part of f) is weakly relatively compact in L' for a minimizing
sequence u,, which is bounded in LP. If, on the other hand, (f:2) holds, then we can use the
fact that F' is bounded from below to prove weak lower semicontinuity of F' without any
additional assumptions on the negative part of f as shown in Section 5.

In analogy to the case of functionals depending on gradients on bounded domains [5, 16, 17],
strict A-quasiconvexity turns out to be the right condition to rule out possible oscillations
of minimizing sequences. Of course, oscillations are not the only obstacle for compactness,
and we want to investigate others as well. We employ the following terms to describe some
of them, in LP and related spaces.

Definition 2.7. Let Q C RY be an open set and let X be a normed space of measurable
functions mapping € into R™ such that for every u € X and every E C ) measurable, the



product ygu also belongs to X.5 Furthermore, let (u,) be a sequence in X. We say that

uy, does not concentrate in X if  sup,enSUPpcq, p<s IXEUllx — 0,

0—0t
Uy, 18 ]RN—tz'ght in X if  sup,ey ||XQ\BR O)UHHX :2 0,
Uy 18 Q-tight in X if  for every € > 0, there is a compact set
K C Q such that sup,,¢y HXQ\KUHHX <e,

uy, does not spread out in X  if  sup,cy ||X{|un‘<5}unHX o 0,
< 0

Uy 18 equitntegrable in X if  wu, does not concentrate in X
and u,, is R¥-tight X.

Next, we list conditions on f to rule out possible concentrations of minimizing sequences or
a lack of tightness. They all amount to requiring that

for every sequence (¢,) € U,

[swoanie — [ fe.0de = oo (23)
Q

n—oo 0

for certain classes of sequences

vCo:.= {(Sﬁn) C Uy v, — 0 locally in measure

(¢n) is bounded in LP and }

with suitable additional properties, each of which is stronger than the convergence to zero

locally in measure required so far. In particular, we are interested in the following subsets
of ®:

Q. ={(pn) € P |y, — 0in LP + L7 for every q € (1,p) },

D1 ={(pn) € D | p, is Q-tight in LP},
Do XBYn 18 (-tight in L? and xpp, — 0 in L?
2T e for every bounded, measurable B C ’
XBYn — 0in LP for all bounded sets B C €2,
b3 =1 (¢n) € P | ¢, does not concentrate in L” and ,
¢n does not spread out in L?,
Oy :={(pn) €D |p, — 0in LP + L" for every r € (p,0) },
O5 :={(vn) € . | xXEpn — 0in LP for every closed E C Q},
Depri={(on) € P |n — 0in Lf }.

Here, (LP + L9)(;RM) .= {u=v+w € LL (O RM) | v € LP, w € L7}, which is a Banach
space with respect to the norm

Nl oy pe := inf{|lv]|, + ||w|| L, | v € L and w € L? such that v = v 4 w}.

5Throughout, xg :  — {0,1} denotes the characteristic function of E, i.e., xg = 1 on E and xyg = 0
elsewhere.



Remark 2.8. For a bounded sequence in L”, u, — 0 in LP 4+ L9 for a ¢ < p if and only if
X{Jun|<T}Un — 0 in LP for every T' > 0 (“purely concentrating”), while u,, — 0in L 4 L" for
ar > pif and only if Xy, />0, — 0 in LP for every t > 0 (“purely spreading”).

Remark 2.9. The validity of (2.3) on ®., &3, &, and P4, respectively, not only depends on
f but in general also on Q. In particular, (2.3) automatically holds for ¥ = &5 U &3 U ®,
if 2 is bounded, and ®.,; = ®5 in this case, consisting of sequences purely concentrating at
the boundary of €.

Remark 2.10. As opposed to the definition of strict p-A-quasiconvexity, (2.3) is not a point-
wise property in the first variable of f. It remains an open question whether it is equivalent
to a pointwise condition, at least for ¥ = ®; under additional assumptions on f, in particular
continuity in z.

Remark 2.11. It is not difficult to give sufficient conditions for (2.3) on the classes listed
above. For instance, suppose that f satisfies

flx,u) > V() — |h(z)]” with an h € LP and a V satisfying (2.5), (2.4)
for every p € R™ and a.e. x € Q, where

V :RM — R is continuous, V(0) =0, |[V(u)| <Clul’+C, and

2.5
JoV(u)de > cf, |ul” de for all u € Uy, with a constant ¢ > 0. (2:5)

Then (2.3) holds for ¥ = @ (and thus also for all of the subsets of ®). In addition, any
sequence (u,) C U, such that F'(u,) is bounded in R is bounded in LP. Note that depending
on A, (2.4) can be significantly weaker than a coercivity condition on f given in a purely
pointwise form such as f(z,p) > c|ul” — |h(x)[".

Our main results are the following.

Theorem 2.12 (domains with compact boundary). Let N > 2, let 1 < p < oo, let @ C RN
be open with compact boundary and let w € Uy. Moreover, suppose that f satisfies (f:0)-
(f:2), that f(z,-) is A-quasiconver at u(x) for a.e. x € Q and that inf{F(v) | v € Uy} >
—o0. Then any bounded sequence (u,) C Uy such that u, — u weakly in LP(;RM) and
limsup F(u,) < F(u) has the following properties:

(1) If f(z,-) is strictly p-A-quasiconvex at u(z) for a.e. x € Q, then u, — u locally in
measure.

(11) If (2.3) holds for ¥ = @, then u, does not concentrate in LP.

i) If (2.3) holds for U = ®3, then Xis-1<iu, |<stUn 15 RY -tight in LP for every fized s > 1.
{ lun|<s}

(iv) If (2.3) holds for ¥ = &y, then u, does not spread out in LP.

In particular, if f and Q0 are such that the assumptions of (i)-(iv) are satisfied, then u, — u
strongly in LP.

Using the classes ®;, &5 and ®5 instead of ®., possible concentrations of u, can be studied
in even greater detail, distinguishing whether they occur within €2, at infinity or at the
boundary of €.



Corollary 2.13. Under the assumptions of Theorem 2.12, the following is true.

(11.1) If (2.3) holds for ¥ = ®q, then xgu, does not concentrate in LP, for every compact
K cqQ.

(i4.2) If (2.3) holds for ¥ = ®,, then xq; \Bg, Un does not concentrate in LP, for every pair
of sequences R,, — oo and 6, — 07.

(i4.3) If (2.3) holds for U = ®s, then xo\q; un does not concentrate in LP, for every sequence
I

Here, Bp := {z € RY | |z| < R} and Q5 := {z € Q| dist (x;0Q) > 6}. In particular, ®. can
be replaced by ®1 U $y U Oy in Theorem 2.12 (ii).

If Q is an exterior domain and f(z, ) has a limit as |z| — oo which is uniform in g in
a suitable sense, Theorem 2.12 can be partially simplified by using a more tangible char-
acterization of (2.3) for ¥ = &y U &3 U &, (all the cases related to the behavior of f as
|z — o0):

Proposition 2.14. Let N > 2, let 1 < p < oo and let Q C RN be the complement of a
compact set. Moreover, suppose that f satisfies (£:0)—(f:2) and that there exists a function
fso : RM — R such that

oy () = flz, )|

a(x) := sup — 0 for a suitable h € LP RM). 2.6
( ) HERM |ﬂ|p + |h(x)|p |x|—o00 ( ) ( )

Then (2.3) holds for U = &y U ®3 U Dy if and only if

/ Fol)dz = gllloll,,) for every A-free o € LP(RY;RM),
RN

with a suitable g : [0,00) — R continuous such that g > 0 on (0, c0).

(2.7)

If the boundary of {2 is not compact, we can still say the following.

Theorem 2.15 (general domains). Let N > 2, let 1 < p < oo, let Q C RY be open and let
u € Uy. Moreover, suppose that f satisfies (£:0)—(f:2), that f(x,-) is A-quasiconver at u(x)
for a.e. x € Q and that inf{F(v) | v € Ua} > —o0. Then any bounded sequence (u,) C Uy
satisfying u, — u weakly in LP(; RM) and limsup F(u,) < F(u) has following properties.

(i) If f(x,-) is strictly p-A-quasiconvex at u(z) for a.e. x € Q, then u, — u locally in
measure.

(i1) If (2.3) holds for W = ®y, then yxu, does not concentrate in LP, for every compact
K cQ.

(111) If (2.3) holds for ¥ = ®.,y, then u, is Q-tight in LP.

In particular, if f and Q are such that the assumptions of (i)—(iii) are satisfied, then u, — u
strongly in LP.

By Remark 2.11, this immediately entails the following.
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Corollary 2.16. Let N > 2, let 1 < p < oo and let Q C RN be open. Moreover, suppose
that f satisfies (£:0)—(f:2) as well as (2.4) and that f is strictly p-A-quasiconver. Then any
minimizing sequence (u,) C Uy has a subsequence which strongly converges in LP.

Remark 2.17. In fact, all results stated above as well as those of Section 4 are also true for
N = 1. However, this case requires some minor technical changes in the proofs which we
omit for the sake of brevity. For more details see Remark 3.3 below.

3 Preliminaries

Throughout this article, A denotes a homogeneous linear differential operator of first order,
formally mapping u = (u!,...,u™) : @ — RM onto Au = ((Au),..., (Au)*) : Q — RF
defined by

(A ) Zz 1ZM Alma Ju

with A™ € R fixed. Its formal adjoint is denoted by A*, which maps v = (vy,...,v7) : Q —
RY to A*v : Q — RM | where

(A*v)™ = —ZZ 1Zl LAY, vy

In particular, we have [,(Au)-@dr = [ju- (A*p)dx for all u € C'(Q;RM) and all ¢ €
CH;RE) by integration by parts. Related to A via the Fourier transform is the linear
matrix-valued function

A:RY — RPM D (A())™ = 20, A

Throughout, we assume that A4 (and hence also A4*) satisfies the condition of constant rank,
that is,

the rank of A(¢) € RYM is constant as a function of &€ € R \ {0}. (3.1)

As a consequence, the orthogonal projection P(¢) € RM*M onto the kernel of A(£) in R
is continuous as a function of £ € RY \ {0}. We define P(0) to be the identity matrix. The
Fourier multiplier P : SM — (SM)" associated to P is given by

Py :=F (BFp), for e SY, with (BFp)(£) :=P(&)[Fe(f)],

where F is the Fourier transform®, S denotes the Schwartz space of rapidly decaying func-
tions of class C* and &’ is its dual. By definition, P is a projection onto the kernel of A.
Moreover, by the classical Hormander-Mikhlin multiplier theorem, it extends to a continuous
operator P : LP(RY;RM) — LP(RY;RM) projecting LP(RY; RM) onto the kernel of A. We
also need this property in a broader class of weighted spaces of the form

L2 (Q;RM) = {u - Q) — RM measurable ’ Jwll e (Q~]RM) < oo},
x)dx

where ||u|]Lp QRM) fQ lu(x

8(Fu)(€) == [pn €™ Cu(z) dx for u € L'(RY) and £ € RY, and the definition is extended to u € S’ as
usual, cf. [15]. In the vector-valued case, F operates component-wise.

8



and the weight w : Q — (0,00) is a measurable function. Due to a result of [12], P extends
to a continuous projection operator on L2 (Q; RM) for various classes of weights. We only
reproduce a special case which suffices for our purposes:

Lemma 3.1. Let 1 < p < oo, let w(x) := min{1, |z|°} with a constant —N < 3 < N(p—1),
and let m : RY — R be a bounded function which is 0-homogeneous and of class CN on
RN \ {0}. Then the associated Fourier multiplier T given by T(u) := F~Y(mFu) is a
bounded linear operator mapping LP (RN into itself.

Proof. Since m(z) = m(z/ |z|), we have that | D*m(z)| < Cy 2| for every z € RN \ {0}
and every k = 0,..., N, with a constant C; > 0 only depending on m and N. As a
consequence, for every s € (1,2] such that sk # N for k=0,..., N,

RS”“_N/ ‘ka(x)‘s dr < Cy for every R >0 and every Kk =0,..., N,
R<|z|<2R

with a constant Cy only depending on N, s and (. This means that m € M (s, N) in the

notation of [12], and with this property established, Theorem 2 in [12] yields the assertion.
O

In particular, this applies to the space LP which corresponds to the case w = 1 (5 = 0).
Lemma 3.1 can be extended to L? + L? as follows.

Lemma 3.2. Let 1 < ¢ < p < oo and let m : RV — R be a bounded function which is
0-homogeneous and of class CN on RN\ {0}. Then the associated Fourier multiplier T' given
by T(u) := Fm(Fu)] is a bounded linear operator mapping LY(RY;R) + LP(RY;R) into
itself.

Proof. For every ¢ > 0, there exists v € L? and w € LP with v + w = w such that
vl e + lwll» < Jull oy rr + € Lemma 3.1 with 3 = 0 thus implies that

ITull oy ro < NIT0] o + [[Tw]], < C((J0

o+ llwllzy) < € (Il posrs +2)

for arbitrary € with a constant C independent of u and «. [

In the following, norms involving certain inverse derivatives will play a role, which we express
1
by means of the operator (—A)~2, defined by

1

(=A)"2u = F7L20¢]| 7! Fu, (3.2)

for any tempered distribution u € S’ such that the “pointwise” product of |27 | with
(Fu)(€) is well defined in S'. If u € L', a more explicit definition of (—A)~2 can be given
in terms of the corresponding Riesz potentlal, namely,

o

1 1 _
(-8 ) = [ o= ol uty) dy 33)
R
with a normalizing constant o = o(N) > 0, cf. [15].

9



Remark 3.3. To be precise, (3.3) only holds if NV > 2, which is the reason for this assumption
in our main results as well as in any other statement of this note directly or indirectly
exploiting (3.3) in form of Lemma 3.5 below. Of course, this is just a minor technical issue.
The case N = 1 could easily be treated separately, for instance using the antiderivative
instead of (—A)2.

Extending Lemma 2.14 in [7], which in turn is largely based on ideas of [14], the properties
of the projection P in LP 4+ L? and in L? can be summarized as follows.

Lemma 3.4. Let 1 < ¢ < p < oo and suppose that (3.1) holds. Then we have the following.
(i) P: (L9 + LP)(RY;RM) — (L9 + LP)(RY; RM) is a linear, bounded operator.
(ii) Pv = v for every A-free v € (LY + LP)(RY;RM), and Ao P = 0.

(iii) Let u, be a bounded sequence in (L9 + LP)(RY;RM). If u, does not concentrate in

LP + L9, neither does Pu,,. Similarly, if u, is RN -tight in LP + L? then so is Pu,,, and
if u, does not spread out in LP + L7, then neither does Pu,,.

(iv) |l (=A)"2 Aullrire < [T =Pl gy e < Cl(=A) 2 Aul| oy ra for every u € (L7 +
LP)(RN; RM) with constants ¢, C' > 0 independent of u.

Moreover, all of the above stays true if LP + L% s replaced with LP, where w may be any
positive weight function such that Lemma 3.1 holds.

Proof. We essentially proceed as in [7]. As a consequence of (3.1), the projection P(§) is a
0-homogeneous function of £ of class C*° on RV \ {0}, whence Lemma 3.2 yields (i). The
definition of P immediately implies (ii).

For the proof of (iii) consider a bounded sequence u,, in L? + L4. If u,, does not concentrate

in LP + L9, we have that sup,cy HX{\unlgh}Un — unHLquLp — 0 as h — oo, and since P is
continuous in L? 4 LP  we also get that
D [|P((unt <hyttn) = Pin o, 1 =2 0. (3.4)

On the other hand, for fixed h, X{ju,|<n}tn is bounded in L* and thus also in L*® for any
s > p. By continuity of P in L?, this implies that P(x{ju.|<n}Un) is bounded in L°. By
Holder’s inequality we infer that P(X{ju,|<n}tn) does not concentrate in L? since s > g,
which also means that P(x{ju.|<n}tn) does not concentrate in L? 4 L7 for fixed h, since
p > q. Together with (3.4), this implies that Pu, does not concentrate in LP + L%, If u,
does not spread out in LP + L9, an analogous argument gives that

ilég HP(X{Iun\Zh}Un) - Pu”HLQ+LP h—>—0‘>F 0
and that P(X{ju.|>r}Un) does not spread out in LP 4 L9 for fixed h > 0 (since it is bounded
in L® with 1 < s < g), which implies that Pu,, does not spread out in L? + L?. Last but not
least, if u,, is R¥-tight in LP + L9, we get that

sup || P (X, (0)un) — 7DunHLquLP — 0

neN h—oo
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and that P(xa,0)un) is RN-tight in LP + L9 for fixed h (since it is bounded in L% with
w(z) == min{1, |z|°}, for any 0 < 3 < N(qg — 1)), whence Pu,, is RV-tight in L? + LA.
To get (iv), first observe that

(1 =)&) Ful®) = QOAOFu(E) = Qi) gAOFu(e)
¢

(3.5)
) F(=2) 2 Au(e),

= 27TQ<

where Q : RN \ {0} — RE*L is defined by

QA =1 for any n € (ker A(§))" C RY,
Q(&)p =0 for any (range A(g))l- c RE

Note that QQ is homogeneous of degree —1 as a function of £ since A is homogeneous of degree
1, which justifies the second equality in (3.5). Moreover, as a consequence of (3.1), both
range A(€) and (range A(€))* have constant dimension and vary smoothly with ¢ € RV \ {0},
and A(¢) : (ker A(€))t — range A(¢) is invertible with inverse smoothly depending on &,
whence Q is of class C*°. In particular, Q( | £|> gives rise to a Fourier multiplier in LP + L7 by
Lemma 3.2, whence (3.5) implies the second 1nequality in (iv). The first inequality follows
in the same way, since A(|§\)@<|§_\)A(%) = A(E) and A<|€\) also gives rise to a continuous
Fourier multiplier in L? +

Finally, note that all of the arguments above also work for L? instead of L? + L9 if we use
Lemma 3.1 instead of Lemma 3.2 and suitably adapt the auxiliary spaces employed in the

proof of (iii) and (iv). O

We will use Lemma 3.4 (iv) to handle domains other than the whole space, and for this
purpose, the following compactness result is also crucial.

Lemma 3.5. Let v, be a bounded sequence in LP(RY) with some 1 < p < co. Moreover,
suppose that there is a fizred compact set K C RY containing the support of v, for every n
and that [y v, =0 for every n. Then w, = (—A)_%vn is bounded in LP(RY), and it has a
subsequence which converges strongly in LP(RY).

Proof. Let B, denote a ball with radius r centered at 0, containing K. Observe that for
fixed R > 0, (3.3) yields

_1
/B |(=8)2va (@) [dz = |5 % vl ) < IKI1Gs 5, 100l s, - (3.6)
R

where * denotes the convolution and x(z) := |z|'™". Moreover, for every R > 2r, there is a
constant C' = C'(N,r) > 0 such that

sup ||z —y|" " — \x!l_N’ < Clz|™ for every z with |z| > R. (3.7)

yeB,
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Since [; v, =0, (3.7) implies that

/ }(—A)_%vn‘pdx :/
RN\Bp RN\Bp

<Ml [ CPlal ™ do
RN\Bpr

[ = = el dy| do
Br (3.8)

for R > 2r. Note that |z|~"” is integrable on RN \ By, for every p > 1. In particular,
(=A)~2v, is bounded in LP(RY) by (3.6) and (3.8) combined. In addition, (3.8) implies
that

/ ‘(—A) 21)“‘ dx — 0 uniformly in n. (3.9)
RM\Bp

R—o0

Moreover, as in (3.6) we get

[ 18) o) - (a) L+ s

< [(6() = K+ P sa, 10all70 (s, ) 0 uniformly in n,

(3.10)

for any fixed R > 0, since & is integrable on bounded sets and the shift is continuous in L.
Together, (3.9) and (3.10) imply that {(=A)~2v, | n € N} is contained in a compact subset
of LP(RY), by a standard criterion for relative compactness in L? (e.g., [2]). O

4 Decomposition of A-free sequences

We now derive a decomposition lemma in the tradition of [1], [8], [7] and [11], here for a
sequence of A-free fields on the whole space. This result and suitable extensions to other
unbounded domains will be our main tool for obtaining compactness of minimizing sequences.

Lemma 4.1. Let 1 < p < oo and let A be a linear differential operator of first order
satisfying (3.1). Moreover, suppose that u, is a bounded, A-free sequence in LP(RN;RM)
with u, — u weakly i LP. Then there exist a subsequence uyy) of u, and five bounded,
A-free sequences wl, ... wi in LP(RN;RM) such that

Uk(n) =u+w) +w) +w?+w+w for everyn €N
and the following properties hold:
(a) wd — 0 weakly in LP, and w? is equiintegrable in LP.

(b) w! is RN-tight in L?, and w} — 0 in LP + L9 for every q € (1,p).

(¢) xpw2 — 0 in LP for any bounded, measurable set B C RY and
w2 — 0w LP + L7 for every q € (1,p).

(d) xpw? — 0 in LP for any bounded, measurable set B C RY.

12



(e) wt — 0 in L" + LP for every r € (p, o0).

Remark 4.2. Using (a)—(e) to check Vitali’s criteria for compactness in L?, it is not difficult
to see that if up@) = u + WS + ...+ w! is another decomposition with the same properties,
then w! — w) — 0 strongly in LP. In this sense, the component sequences are uniquely
determined.

For the proof of Lemma 4.1, we first need an auxiliary result which represents a decomposi-
tion lemma in LP, summarizing Chacon’s biting lemma and suitable variants for unbounded
domains. It is based on four different kinds of truncations of LP-functions.

Lemma 4.3. Let Q C RY be open and let 1 < p < oo. Then every bounded sequence
(vs) C LP(Q;RM) has a subsequence (vy(n)) such that
X{Jongm|<n}Vk(n) does mot concentrate in LP(Q; RM),
X{Jvm|> 1} Vk(n) does not spread out in LP(Q;RM),
X B (0)Vk(n) RN -tight in LP(;RM) and
X I, Uk(n) 08 S2-tight in LP(Q;RM),

(4.1)

where K, := {z € Q ||z| < n and dist (z;00) > 1 }.

Proof. This is essentially well known. For instance, the first three lines of (4.1) immediately
follow from Lemma 3.3-Lemma 3.5 in [11], and the fourth line can be obtained analogously
to the third. We omit the details. O

Proof of Lemma 4.1. W.l.o.g. we may assume that u = 0 (otherwise, since u is A-free,
we can decompose i, := u, — u instead). For j = 0,...,4, let wl := PWJ € LP(RY;RM)
with

WY .= 1 COXB(0) Xflukl<n}  Uk(n)
W= 1 © XBa (1= X{Juggyl<n)  Uk(n)s
W2 = 1 (1= XBa(0) " (1 = X{jupnyl<n}) * Uk(n)s
We = w22t 1= XBa©) " Xlugeml<n}  * Uk(n):

4.

where the subsequence uy,,) is chosen according to Lemma 4.3 with v, := u,. By definition,
Uk(n) = PUgy = wh + ...+ wp, each wl is A-free, and the sequences w! are bounded in
LP by continuity of P in LP. Moreover, due to the choice of uy,) and the definition of W7,
the sequences W7 (in place of w!) have the properties (a)-(e) listed in the assertion. The
projected sequences w? inherit these: R¥-tightness, absence of concentration, absence of
spreading and equiintegrability in L all survive the application of P due to Lemma 3.4 (iv).
Convergence in ILP + L? or in L" + LP with 1 < g < p and p < r < oo is also preserved, as
a consequence of Lemma 3.4 (i), as is weak convergence to zero in LP. Finally, note that
for a bounded sequence v,, in LP(RY;RM), xgv, — 0 in L? for every bounded, open B C
if and only if v, — 0 in L2 with the weight w(z) := min{l, \x]_%} (or any other bounded
weight which is locally bounded away from zero and converges to zero as |x| — oc). Hence,
the continuity of P in LP also yields that xpw??® — 0 in LP just as W23, O

13



As it turns out, Lemma 4.1 can be extended to any domain but only with a somewhat
coarser decomposition.

Lemma 4.4, Let N > 2, let 1 < p < oo, let Q@ C RN be open and let A be a linear
differential operator of first order satisfying (3.1). Moreover, suppose that u, is a bounded,
A-free sequence in LP(Q;RM) with u,, — u weakly in LP. Then there exist a subsequence
U(ny Of u, and bounded, A-free sequences (vy,), (w,) C LP(RY;RM) and (z,) C LP(Q;RM)
such that

Uk(n) = U + Uy + Wy + 2, @0 §) for everyn € N
and the following properties hold:
(a) v, — 0 weakly in LP(RY;RM) and v, is equiintegrable in LP(RYN;RM).

(b) w, — 0 in (LP + L9)(RY; RM) for every 1 < q < p, and
wy, is Q-tight in LP(Q;RM).
(c) z, — 0 in LY

loc

(Q; RM).

Proof. Observe that Au = 0 in 2. We choose a sequence of cut-off functions (v;) C
CH(RY;[0,1]) such that

{3 >0bc {w e ||| < jand dist(5;00) > 1} and
(4.2)
{O<7j<1}c{$69‘|$|>j—10r dist(m;89)<%}

For every fixed j, we have

M N
Ay —w))' = 373" A (B,7,) (uf — ™) = 0 weakly in LP(RY).
m=1 i=1

Since supp A(7y;(u, — u)) C suppVy; C {0 < 7; < 1}, whose closure is a compact set,
and since [y A(7;(u, —u)) dz = 0 due to integration by parts, Lemma 3.5 is applicable to
A(v;(u, —u)) and it yields that

(=2) 72 A(; (tn — )| Lo ey — 0 (4.3)

n—oo

for fixed j. As a consequence of (4.3), we can select a subsequence k(n) of n (fast enough)
such that

for every m > k(n). (4.4)

S|

H(_A)_%A(%Wm - u>>HLP(RN;RL) =

Moreover, by Lemma 4.3 we can pass to another subsequence of k(n) (not relabeled) such
that

Vo () — w) is Q-tight in LP(Q; RM). (4.5)

14



Now define i, := P(v,(u, — u)), which is a bounded sequence in LP(RY; RM) satisfying
Aii,, = 0 on RN and decompose i, = @0 + ...+ w? according to Lemma 4.1 (again passing
to a subsequence if necessary). We claim that the decomposition w,, = u+ v, + w,, + z, with

0
Up, = W,

Wy, 1= 'LD}L,
2 = (1= P) [yt = )] + (1 = 7o) (un — ) + @2 + @2 + 0,

then has the asserted properties. First note that v, and w, are bounded sequences in LP
and A-free on ) by definition, whence the same holds for z, = u,, — v — v,, — w,. Since v,
satisfies (a) by construction, it remains to show that (b) and (c¢) hold.

(¢) Since Y, (ug@y — u) is supported in ©Q and Q-tight in LP(Q;RM), it is RV-tight in
LP(RY; RM). Hence, @, is RY-tight in LP(RY; RM) by Lemma 3.4 (iii). Consequently,

R, —w —l—w +w —un—wo—wl

is RV-tight in LP(RY;RM), and by the properties of w/, j = 2,3,4, we also have
R, — 0 in LP(B;RM) for every open, bounded B C RY. Combined, this implies that

R, — 0 in LP(RY;RM). (4.6)
Moreover, by Lemma 3.4 (iv), (4.4) yields that
(I = P)[ya(upm) — u)] — 0 strongly in LP(RY, RM). (4.7)

As a consequence (4.6), (4.7) and the second line of (4.2), we now get that z, — 0 in
LP(K;RM) for any compact K C §.

(b) Combined, (4.7) and (4.5) 1mp1y that @, = Py, (urm) — u)] is Q-tight in LP(Q; RM).
Hence, w, = W} = a4, — @° — R, is Q-tight in LP(Q;RM) as well, where we also
used that w? and R, are Q- tlght in LP(;RM), the former since it is equintegrable

in [P and the latter because of (4.6). In addition, we clearly have w, = w} — 0 in
(LP + L9)(RY;RM) for any ¢ € (1,p) by definition of .. =

The result of Lemma 4.4 could be improved if the domain admits a continuous extension
operator for A-free vector fields in L? from Q) to RY. However, to my knowledge, extension of
A-free fields has not yet been investigated even on bounded domains except in a few special
cases such as gradient fields (e.g. [2]) and divergence-free fields [10]. In any case, for domains
with compact boundary, the ideas already used in Lemma 4.4 suffice to obtain a refined
decomposition without relying on general extension results. In comparison with Lemma 4.1,
the decomposition now has an additional component w? which carries concentrations at the
boundary.

Lemma 4.5. Let N > 2, let 1 < p < oo, let Q C RN be open with compact boundary and let
A be a linear differential operator of first order satisfying (3.1). Moreover, suppose that u,,
is a bounded, A-free sequence in LP(RY;RM) with u,, — u weakly in LP. Then there exist
a subsequence Uy of u, and siz bounded, A-free sequences wl, .. wd in LP(Q;RM) such
that

Uk(n) =u 4w +w! +w? +wd w4 w for everyn € N
and the following properties hold:
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(a) w® — 0 weakly in LP, and w? is equiintegrable in LP.
(b) w? is Q-tight in LP and wl — 0 in LP + L7 for every q € (1, p).

(¢) xpw2 — 0 in LP for any bounded, measurable set B C RY and
w2 — 0 LP + LY for every q € (1,p).

(d) xpw? — 0 in LP for any bounded, measurable set B C RY,
w? does not spread out in LP and w3 does not concentrate in LP.

(e) w — 0 in L™+ LP for every r € (p,00).
(f) xgw3 — 0 in LP for any closed set E C Q.

Moreover, the component sequences w0, ..., wt € LP(Q;RM) can be extended to bounded,

n’

A-free sequences in LP(RY;RM) satisfying (a)—(e) even on RY.

Proof. Using Lemma 3.5 as in the proof of Lemma 4.4, we can find a sequence of cut-off
functions v, € C*'(RY;[0,1]) and an associated subsequence k(n) of n such that

{vn >0} C {z € |dist(2;00) > 1} and

48
{0 <7 <1} € {weq|dist (1;00) < 2} (4.8)
and
1 1
I(=2)"2 A0 st = ) | v ey < 7 =2, 0 (4.9)

Once again employing Lemma 4.3 to extract another subsequence of k(n) (if necessary; not
relabeled), we may also assume that

X iV (k) — ) is Q-tight in LP(Q; RM), (4.10)

where K is a fixed compact set containing 0f2 in its interior. (Thus (4.10) essentially means
that ~, (ugm) — u) does not develop concentrations “at the boundary” of Q.) Decomposing

Plyn(us(ny — u)] =: @y, = D9 + ... + D
according to Lemma 4.1, we define
w! = w! for j=0,1,2,3,4,
wy = (I = P) [ (urmy — w)] + (1= ) () — 0)-

o, wy,...,w) are bounded, A-free sequences in
LP(RY;RM), and the properties (a), (c), (d) and (e) are satisfied. It remains to show (b)
and (f).

(f) By Lemma 3.4 (iv), (4.9) yields that

By construction, uym) = u+ wh + ...+ wd, wy >

(I = P)[yu(tupm) — u)] — 0 strongly in LP(RY RM). (4.11)

Moreover, if E is a closed subset of €2, the compact set 0€) has positive distance to F,
whence xg(1 — 7,)(Ukm) — u) = 0 for every n large enough by (4.8). Together with
(4.11), this implies that ypw? — 0 in LP,
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(b) By construction, w, is R"-tight and satisfies w,, — 0 in L? + L? for any ¢ < p. Hence
it suffices to show that

XKWy = XK [ln — Wy — @y — Wy, — @, ] is Q-tight in LP(Q;RY)

with a compact set K C RY containing 99 in its interior. Combined, (4.11) and
(4.10) imply that x @, = XkP[Vn(ukm) — w)] is Q-tight in LP(Q; RM). Moreover, for
j € {0,3,4}, @) does not concentrate in LP whence ygw? is Q-tight in LP. Finally,

XrW2 — 0 in LP and thus also is Q-tight in L”. -

5 Proof of the main results

The proofs are grouped into four subsections. The first subsumes various results for Young
measures which are needed later. The second contains the proofs of Theorem 2.12 and
Corollary 2.13 while the third is dedicated to showing Theorem 2.5 and Theorem 2.15. In
the final subsection, we discuss some of the assumptions of the aforementioned theorems by
proving Proposition 2.2 and Proposition 2.14.

5.1 Auxiliary results

Possible oscillations of minimizing sequences will be discussed with Young measures as the
main tool.

Theorem 5.1 (fundamental theorem for Young measures |3, 13|). Let Q C RY be measurable
and let v, : @ — RM be a sequence of measurable functions. Then there exists a subsequence
(urny) and a family v = (v;)zeq of nonnegative Radon measures on RM, weak*-measurable’
wn x, such that the following holds:

(i) vz(RM) <1 for a.e. x € Q.

(i) If limy, .o sUp,ey [{|vkm)| = R} N QN Br(0)| =0 for every R > 0,
then v,(RM) =1 for a.e. x € .

(1i1) For every Carathéodory function f QO x RM — R such that
is equiintegrable® in L*(QY), we have that

/fa;uk dx—»// f(z, p) dvg(p)de.

As a consequence of (iii), v is uniquely determined by (ug(,)) and it is called the Young
measure generated by wuy,). Moreover, if v, = v, for a.e. x € Q with a fixed a € €, then it is
called a homogeneous Young measure. Another useful consequence of (iii) is the following.

ie, & — [ou f()dvy(p) is measurable for every f € Co(RM)

8Note that equiintegrablility in L' in the sense of Definition 2.7 is equivalent to weak relative compactness
in L' by the de la Vallé-Poussin criterion.
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Corollary 5.2. Let 1 < p < oo and let (u,) C LP(Q;RM) be a bounded sequence which
generates a Young measure v = (v;). Then u, — u weakly in LP with u(z) = (v,,id) =
S pdvg (i) for ae. v € Q, and u, — u locally in measure if and only if v, = by for
a.e. x € Q). Here, 8, denotes the Dirac mass at the point yu € RM.

Young measures generated by A-free sequences on bounded domains have been characterized
in |7|. Here, we only employ a version of an approximation result of |7| used to “localize”
the Young measure, adapted to the whole space instead of bounded domains.

Proposition 5.3 (c¢f. Proposition 3.8 in [7]°). Let 1 < p < oo and let v = (v,) be a Young
measure generated by a bounded sequence (u,) C LP(RY;RM) which does not concentrate

in L? and satisfies ||(—A) "2 Auy||» — 0. Then for a.e. a € RN, there exists a sequence
(wy,) C Lg(RN; RM), which is bounded in LP(Q;RM), does not concentrate in LP and satisfies
Aw, =0 in RY, such that w, generates the homogeneous Young measure v, and fQ w, dr =

<Va>id> = fR]\/I ,Udyx(lu) Jor every n.

Proof. Let By, be a sequence of concentric open balls in RY with radius ¥ € N. For any k

and p’ ;= p%l, we have

H'Au” HW*LP(BHURM)

= sup {/ Uy, - A'ndx
RN

< sup {/ U, - A*ndx
RN

0 € C=(Besri R with [l < 1}

€ CX(RYRY) with [Vl < 1

— 0.
n—oo

| oo enr
Hence, we may apply Proposition 3.8 in [7] to u, restricted to By(0) (which generates v
restricted to By(0)) for every k € N, which yields the assertion. H
As an immediate consequence, we have the following.

Proposition 5.4. Let Q C RY be open, let 1 < p < oo and let v = (v,) be a Young measure
generated a bounded sequence (v,) C LP(RN;RM) Nker A such that (v,) is equiintegrable
in LP and v, — 0 weakly in LP, and suppose that f satisfies (£:0) and (f:1). Then, for
a.e. a € Q such that f(a,-) is A-quasiconver at £ € RM, we have

fla, &+ p) dva(p) = f(a,§) (5.1)

RM

Moreover, for a.e. a € Q such that f(a,-) is strictly p-A-quasiconvex at &,

equality in (5.1) implies that v, = dy, (5.2)

9Beware that the notion of equiintegrability used in [7] is equivalent to what we term “does not concen-
trate” and hence coincides with our definition only on domains with finite measure.
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where &, denotes the Dirac mass concentrated at the point 0 € RM. In particular, given
u € LP(Q;RM) such that f(z,-) is A-quasiconver at u(x) for a.e. v € , we have that

liminf [ f(z,u(z) + v,(2)) dz > /Qf(x,u(x)) dx (5.3)

n—oo Q
and if f(x,-) is strictly p-A-quasiconvex at u(z) for a.e. v € Q, then

equality in (5.3) implies that v, — 0 in LP. (5.4)

Proof. The first assertion (5.1) is a simple consequence of Proposition 5.3, Theorem 5.1 and
the definition of A-quasiconvexity. Here, note that we may assume that the sequence w,
of Proposition 5.3 actually belongs to C’;O(]RN;]RM), because if not, we can replace it with
a mollified sequence w,, (mollified as usual by convolution with a smooth kernel with small
support) such that @, —w, — 0 strongly in LY, whence w,, inherits all properties of w,. To
show (5.2), we again employ Proposition 5.3 to choose a sequence w,, of smooth functions
which is equiintegrable in LP. and generates v,. If (5.1) holds with equality, Theorem 5.1
and the strict p-A-quasiconvexity of f imply that ¢(¢,,7) — 0 with ¢, = fQ |w,| and
T := sup, fQ |w,|” (recall that g is decreasing in its second variable). This is possible only
if , — 0, whence w,, — 0 in Lj and v, = &y due to Corollary 5.2. Finally, (5.1) and (5.2)
imply (5.3) and (5.4), respectively, by Theorem 5.1. As to (5.4), we first get that v, — 0
locally in measure, which in turn implies that v, — 0 in LP by Vitali’s theorem, since v, is
equiintegrable in LP. O]

Remark 5.5. In fact, the converse of Proposition 5.4 is also true. More precisely, if f satisfies
(f:0) and (f:1) then the following holds for a.e. a € Q and every £ € RM: If (5.1) is valid
for every homogeneous A-free Lé’—Young measure'® v, such that (v,,id) = 0, then f is
A-quasiconvex at &, and if (5.1) and (5.2) hold for every such v,, then f is strictly p-.A-
quasiconvex at . Corresponding converse statements of (5.3) and (5.4) also hold, at least
if f is bounded from below by a constant: If (5.3) is satisfied for every (v,) C LP(Q;RM)
which is A-free, equiintegrable in L? and satisfies v, — 0 weakly in LP, then f(z,-) is A-
quasiconvex at u(z) for a.e. x, and if (5.3) and (5.4) hold for every such (v,), then f(z,-) is
strictly p-A-quasiconvex at u(z) for a.e. . The proof is omitted. It is not entirely trivial as
it involves a problem of measurable selection on the level of the associated Young measures
(cf. the concluding remark in [17]).

Remark 5.6. Given Q C RY open, any Young measure generated by a bounded, A-free se-
quence (u,) C LP(£2; RM) is also generated by a bounded, A-free sequence (i,) C LP(Q; RM)
which is equiintegrable in LP. For instance, one may take u,, := u+ v, with u and v, defined
in Lemma 4.4.

Below, (f:2) is used exclusively in form of the following simple observation.

Proposition 5.7. Let 1 < p < oo, let Q C RY be open and suppose that f satisfies (£:0) and
(f:2). Then the map u — f(-,u), LP(Q;RM) — LY(Q), is uniformly continuous on bounded
subsets of LP(Q; RM).

10

i.e., a homogeneous Young measure generated by an A-free, bounded sequence (wy) € L (RN; RM)

19



Proof. By (f:2) and Hélder’s inequality, we have

—1

/|fmu xv)|dx<0(||u|\2§

for any u,v € LP(Q;RM). O

p—1 p=1
Tl +WM£)Hu—wm

5.2 Domains with compact boundary

As we shall see, the proof of Theorem 2.12 heavily relies on the corresponding decomposi-
tion lemma of Section 4, Lemma 4.5. In a sense made precise below, it exploits that the
component sequences do not interact with each other in f, essentially due to Proposition 5.7.

Proposition 5.8. Let 1 < p < 0o, let Q C RN be open with compact boundary and suppose
that f satisfies (£:0)—(f:2). Moreover, let u, be an A-free, bounded sequence which weakly
converges to a function u in LP(Q;RM), and let

0 5
Up =UF+ W, +...+w,

be a decomposition as in Lemma 4.5. Then for any jo € {1,...,5}, we have
Flun) = fCoun = wl) = [f(w]?) = £(-,0)] — 0 in LY(Q). (5.5)
In particular,
Floun) = fCoutwn) = 320 [fCwh) = f(,0)] — 0 in L}(€). (5.6)

This kind of result is fairly standard in the context of bounded domains, where only two
component sequences appear in the decomposition lemma besides the weak limit (i.e., os-
cillations and concentrations); in particular, it is implicitely used in [8]. For a sequence of
gradients on an unbounded domain, a corresponding result was obtained in [11|. In our
present context, it would still be possible to give a proof relying on the abstract frame-
work developed in [11], which provides a way to handle the numerous different properties
of the component sequences w,{; in a more systematic way. However, the case of function-
als is somewhat simpler than that of operators mapping into a Banach space which allows
a reasonably-sized self-contained proof “by hand”, although our proof of (5.5) below only
discusses the case j, = 5 in full detail, the other cases being more or less analogous.

Proof of Proposition 5.8. For § > 0 let
Qs = {zx € Q| dist (z;00) > §}.
We first show (5.5) for jo = 5. Fix ¢ > 0 and define
E = E(5) = 0\ O,
and choose § = d(¢) € (0, 1) small enough such that

4
sup ||XE(5)(un — wi)HLP < ||XE(5)u||Lp + Zsup HXE((;)U)ZLHLP <e. (5.7)
neN =0 neN
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Note that such a choice of § is possible because the constant sequence u, as well as XQ\Qlw}L,
X\, W, are Q-tight in LP, the latter as a consequence of their properties (a)—(e) listed
in Lemma 4.5. In addition, we have

XQ\E((S)UJEL = Xo,w? — 0 in L” for any fixed § € (0, 1), (5.8)
by definition of w>. Together with the uniform continuity of v +— f(-,v), L’ — L', on
bounded subsets of LP as derived in Proposition 5.7, (5.7) and (5.8) imply that

n—o0

limsup/g ‘f(xvun) - f(ZL“,un - wi) - [f(wi?z) - f(I,O)} ‘dl‘

< limsup sup/ ’f(x, (uy — wi) + wi) — f(x, wZ)‘ dx
e—=0 neNJE

—|—limsupsup/ |f(I,0)—f(l’,Un—w2)|dI
E

e—0 neN

(5.9)
+ lim sup lim sup/ | f(@,un) — flz,uy — w))|do
O\E

e—0 n—00

+ lim sup lim sup/ | f(z,w)) = f(z,0)] da
O\E

e—0 n—00

=0,

with ' = E((¢)). This concludes the proof of (5.5) for jo = 5. Essentially, we exploited that
w? — 0in LP(Q\ E; RM) while at the same time the remaining components u and w?, ... w?
are uniformly close to zero in LP(E;RM) by their properties obtained in Lemma 4.5. The
same kind of argument also yields (5.5) for jo = 1,...,4, employing different choices for
E which now also depend on n, adapted to the properties of the component sequence w7

which is separated from the rest. More precisely, we use

E,=E,(0) =Qsn{|w}| <d}n{|wi| <1} \ B1(0) if jo =4,
By = E,(6) := Qs N { Jwn| >0} N {|wi| <13\ B1(0) if jo =3,
E, = E,(6) := Qs N { |wp| > 5} \ B1(0) if jo = 2,
E, = E,(0) = Qs N { |w,| >§}HB%(O) if jo =1,

where in each case § = §(¢, jo) is chosen small enough such that

sup ||XEn(U” - w{;LO)HLp <e and HXQ\EnszOHLp — 0 for fixed §.
neN

n—oo

As before, it is not difficult to see that the choice is possible due to the properties (a)—(e) of
w?’, obtained in Lemma 4.5, and these also yield that xqo\p,w?® — 0 in L in each case; we
omit the (lengthy) details. Repeating (5.9) in each case then gives (5.5) for jo = 1,...,4.
Finally, note that (5.6) can be obtained by applying (5.5) successively to the sequences

aSO)::u+w9L+Z5 L wy, for jo=1,...,5. -

J=Jjo

Remark 5.9. In the preceding proof, we exploited that u — f(-,u), L? — L', is uniformly
continuous on bounded subsets of L?, and not just on bounded subsets on U, (as a closed
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subspace of L?). In view of the fact that we are only interested in F' defined on U4, this is a
somewhat artificial assumption on the functional. It remains unclear if this is just a technical
deficiency. If Q = R¥, we can apply the projector P of Section 4 to any sequences in the
proof without having to face the problem of A-free extension. In this case, it is possible to
work under the assumption that Fg(u) := [, f(x,u) dz is uniformly continuous on bounded
subsets of Uy for any £ C RY measurable, with a modulus of continuity which is also
uniform in E. There is still no obvious way to do the proof just using uniform continuity of
F on bounded subsets of U, though.

If f is A-quasiconvex and F' is bounded from below, the assertion of Proposition 5.8 can be
enhanced. As a byproduct, we get weak lower semicontinuity of F' on Uy.

Proposition 5.10. Let 1 < p < oo, let Q C RN be open with compact boundary, let u,, be
an A-free, bounded sequence which weakly converges to a function u in LP(;RM), and let

0 5
Up =UF+ W, +...+w,

be a decomposition as in Lemma 4.5. Moreover, suppose that f satisfies (£:0)—(f:2), that
f(z,-) is A-quasiconvezr at u(z) for a.e. v € Q and that inf{F(v) | v € Us} > —00. Then

liminf [F(u+ w)) — F(u)] >0,

e , 5.10
liminf [F(w)) — F(0)] >0 forj=1,...,5, (5.10)

and
liminf F(u,) > F(u). (5.11)

If, in addition, limsup F'(u,) < F(u), then even have that

Flu+uw?) — F(u) and F(w!) — F(0) forj=1,...,5. (5.12)

n—oo n—oo

Proof. The first inequality in (5.21) is an immediate consequence of Proposition 5.4, since
w? is equiintegrable and f(-,u(z)) is A-quasiconvex at u(x), for a.e. x € Q. To check the
remaining inequalities, fix an € > 0 and choose u} € U, such that inf{F(v) | v € Uy} +¢ >
F(u}). In particular,

liminf [F(u} +w)) — F(ul)] > —¢. (5.13)
Moreover, by applying Proposition 5.8 to the sequences i, = t,(c,j) := u’ + w’ (which is
also an admissible decomposition of @,,) for fixed € and j, we get that

[F(uf +w)) — F(ul)] — [F(w)) — F(0)] — 0 for j =1,...,5.

Using this to replace F'(uf +w?) > F(u?) in (5.13), we infer that
liminf [F(w)) — F(0)] > —¢ forj=1,...,5.

n—oo
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Since this is true for any ¢ > 0, this concludes the proof of (5.21). As to the remaining
assertions, first note that by (5.6) in Proposition 5.8,
liminf F(u,) — F(u)

> lim inf [F(u + wg) — F(u)] + Z?:l lim inf [F(w%) . F(O)], (5.14)

whence liminf F'(u,) > F(u) due to (5.21). Finally, assume that limsup F'(u,) < F(u).
Proposition 5.8 then allows us to replace (5.14) by

0 > limsup [F(u+w)) — F(u)] + 37 liminf [F(w)) — F(0)], (5.15)
where each of the six summands is nonnegative due to (5.21). Hence
0> limsup [F(u+ w)) — F(u)] > liminf [F(u+ w)) — F(u)] >0,

which implies the first line of (5.23). The other lines can be obtained analogously, with
suitable variants of (5.15). O

Proof of Theorem 2.12. From any given subsequence of u,, (not relabeled, specified later),
we can extract another subsequence uy,) such that

Uy = U+ Wy + ... +w,

according to Lemma 4.5. Since lim sup F'(u,,) < F'(u) by assumption, Proposition 5.10 yields
that

Fu+w?) — F(u) and F(w)) — F(0) forj=1,...,5. (5.16)

With (5.16) as a starting point, we are now ready to prove (i)—(iv). Throughout, we argue
by contradiction.

(i) Suppose that wu, does not converge to u locally in measure. Hence it has a subsequence
(not relabeled) such that

liminf Q' N {|u, —u| >0} > ¢ (5.17)

for an € > 0, a 0 > 0 and a bounded, open set Q' C . The properties of w? obtained in the
decomposition lemma entail that for j = 1,...,5, w) — 0 locally in measure. In particular,
we can replace u, by v+ w? in (5.17). But by (5.16) for w® and Proposition 5.4, w® — 0 in
LP and thus also locally in measure, contradicting (5.17).

(ii) Suppose that u,, does concentrate in LP. Then it has a subsequence (not relabeled) such
that liminf, . ||xg,un||» > 0 for suitable measurable sets E,, C € with |E,| — 0. In
particular,

>0 (5.18)

lim inf “XEk(n)Uk(n) I,

n—oo

Recall that by the properties of the component sequences in Lemma 4.5, w? and w? do not

concentrate in LP, while (w}!), (w?) and (w?) are elements of ®.. Hence, by assumption,
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(5.16) for j = 1,2, 5 implies that w?, w? and w? converge to zero strongly in L?. In particular,
Up(ny = u+ w + ...+ w) does not concentrate in LP, which contradicts (5.18).

(iii) Suppose that x(s-1<ju,|<sptin is not RN-tight in L? for an s > 1. Then wu, has a sub-
sequence (not relabeled) such that liminf, . HX{S*1<IunI<s}\BRnunHLp > 0 for a suitable
sequence of balls By, centered at zero with radius R,, — oo. In particular,

hﬂgolf HX{S’1<|uk(n)|<5}\BRk(n) uk(”)HLP > 0. (5.19)
By the properties of the component sequences in Lemma 4.5, this is only possible if (5.19)
also holds for w? instead of . However, (w}) € ®3, whence by assumption, (5.16) for
j = 3 implies that w? — 0 in LP.

(iv) Suppose that u,, does spread out in LP. Then it has a subsequence (not relabeled) such
that liminf, .o ||Xju,|<s,1Un|l» > 0 for a suitable sequence 6, — 0*. In particular,

lim inf HX|uk(n)

n—oo

<5k(n)}uk(”) HLP > 0. (5.20)

As before, by Lemma 4.5, u and w} for j # 4 cannot contribute to (5.20), while (wl) € ®,.
Hence by assumption, (5.16) for j = 4 implies that w? — 0 in LP, contradicting (5.20).

Last but not least, observe that if the conclusions of (i)—(iv) all hold, then w,, is equiintegrable
in L? and u,, — wu locally in measure. By Vitali’s theorem, this entails that u,, — wu strongly
in LP. O]

Proof of Corollary 2.13. Essentially, (ii.1)-(ii.3) can be obtained by arguing as in (ii) in
the proof of Theorem 2.15. We omit the details. O

5.3 General domains

In complete analogy to Proposition 5.8 and Proposition 5.10, using Lemma 4.4 instead of
Lemma 4.5, we have the following.

Proposition 5.11. Let 1 < p < oo, let © C RY be open and suppose that f satisfies (£:0)—

(f:2). Moreover, let u,, be an A-free, bounded sequence which weakly converges to a function
w in LP(Q;RM), and let

Up = U+ Uy + Wy + 2
be a decomposition as in Lemma 4.4. Then for q, = w, as well as for q, = z,, we have that

f(?un) - f(vun - qn) - [f(?%L) - f(,O)} — 0in L1<Q)

n—oo

In particular,

f('vun) - f("u—‘f_vn) - [f(?wn) - f(,O)] - [f(?zn) - f(,O)] — 0 in LI(Q)

n—oo
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Proposition 5.12. Let 1 < p < oo, let Q C RY be open, let u, be an A-free, bounded
sequence which weakly converges to a function u in LP(;RM), and let

Up, = U + Uy + Wy, + 25,

be a decomposition as in Lemma 4.4. Moreover, suppose that f satisfies (f:0)—(f:2), that
f(z,-) is A-quasiconver at u(x) for a.e. x € Q and that inf{F(v) | v € Us} > —oc0. Then
we have that

liminf [F(u+ v,) — F(u)] >0,

1ig££1f [F(w,) = F(0)] >0, liminf [F(z,) — F(0)] >0, (5.21)
and
liminf F'(u,) > F(u). (5.22)

If, in addition, limsup F'(u,) < F(u), then even have that

Fu+wv,) — F(u), F(w,) — F(0) and F(z,) — F(0). (5.23)

n—oo n—oo n—oo

Proof of Theorem 2.5. As already observed in Remark 2.6, it suffices to show that F is
lower semicontinuous along sequences in U 4 which weakly converge in L”, and this is due to
Proposition 5.12. O

Proof of Theorem 2.15. The proof is analogous to the one of Theorem 2.12, substituting
Lemma 4.4 for Lemma 4.5 and and Proposition 5.12 for Proposition 5.10. O

5.4 Proof of Proposition 2.2 and Proposition 2.14

To prove the characterization of strict p-A-quasiconvexity of Proposition 2.2, we need a
decomposition lemma for A-free sequences of periodic functions on R¥,

Lemma 5.13 (cf. Lemma 2.15 in [7]). Let Q := (0, 1)V, let 1 < p < oo, let (u,) C LP(Q; RM)
be a bounded sequence with fQ u, = 0, and suppose that Au, = 0 on RY. Here, functions
in LP(Q;RM) are identified with their Q-periodic extension to R™. Then there exists a
subsequence Uy of u, and a bounded sequence (vn) C LP(Q;RM) such that Av, = 0 on
RV, fQ v, =0, vn is equiintegrable in LP and ugmy — v, — 0 locally in measure.

Proof. To be precise, Lemma 2.15 in [7] is stated for functions u, defined on a bounded
domain ©Q C RY instead of periodic functions on RY, but the construction in the proof
actually yields a sequence v, € LP (Q RM), bounded and equiintegrable in LP with yo(u, —

v,) — 0 locally in measure, which is defined on a given open cube QeRY containing 2. In
addition, v, is A-free on RN if extended Q- periodically. Since any open cube Q containing
Q is admissible in [7], we may use Q := Q := Q in our context. (In fact, some of the steps
in the proof could be simplified as well, as in our case there is no need to extend from (2 to
Q-periodic functions.) ]
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Proposition 5.14. Let Q := (0,1)V, let 1 < p < oo, and suppose that f : R® — R is a
continuous function which satisfies (f:1) and (f:2) where h(x) is replaced by a constant. If
Uy and vy, denote the sequences of Lemma 5.13, then we have

Fury) = f(0n) = [f(wren) = va) = F(0)] — 0 in LY(Q)

n—oo

Proof. This is analogous to the proof of Proposition 5.8. m

Proof of Proposition 2.2. We want to show that f(z,-) is strictly p-.A-quasi-convex at
¢ € RM™ if and only if (2.1) holds. For simplicity, omit x in the following, and we assume
that £ = 0 (otherwise use f(u) := f(z, pu — &)).

“only if”: Obviously, strict p-A-quasiconvexity at 0 implies A-quasiconvexity at 0. Now
suppose that

/Q Fon(w) — F(0)] dy — 0

for a sequence (¢,) € @, i.e., (¢n) € C3°(Q; RM) is A-free and bounded and equiintegrable
in LP(Q; RM) with weak limit zero. By the definition of strict p-.A-quasiconvexity at 0, we
infer that

g(fQ |nl, T) — 0 with T := SUDPpeN fQ |90n|p (5.24)

Since g(t,T) is increasing in ¢ and nonzero whenever ¢ > 0, this is possible only if fQ lon| — 0,
which in turn implies that ¢,, — 0 locally in measure.

“if”: For ¢, T > 0 define

o(1,T) = inf{ | et - o) dy\ ceon [I=n [ ISOI”ST},

with the convention that g(¢,7") = +oo if no admissible ¢ exists. Here, recall that ¢4 =
{p € C*(RY;RM) | Ap = 0 on RY and fQ ¢ = 0}. By construction, the inequality required
in the definition of strict p-.A-quasiconvexity at 0 is satisfied. Moreover, g is increasing in ¢
and decreasing in 7', and since f(z,-) is A-quasiconvex at £, we have g > 0. It remains to
show that g(t,7) > 0 for all t > 0, T" > 0. Assume by contradiction that there is a ¢y > 0
and a Ty > 0 such that g(tg,7p) = 0. In particular, Ty > 0 as g(to,0) = 400, and there is a
sequence (9,) C ¢4 such that [, 5] > to, [, [Pnl” < Tp and

/Q Lf(@a(y)) = f(0)] dy — 0. (5.25)

n—oo

For y € RY define ¢,(y) := @,(ny), which inherits all the properties of (%, stated above. In
particular, (5.25) turns into

/Q [f(@n(y)) — f(0)] dy — 0. (5.26)

n—oo
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In addition, ¢, — 0 weakly in LP(Q; RM), as fQ on = 0. By Lemma 5.13 applied to u,, := ¢,,
we get an A-free sequence ¢,, which is bounded and equiintegrable in LP(Q; R™) and which
still satisfies fQ ©n, = 0 and ¢,, — 0 weakly in LP. Moreover, lim fQ || = lim fQ !g&k(n)| =
to > 0 since Ppn) — pn — 0 locally in measure and thus in L' as Pk(n) — ©n 1s bounded in
LP and p > 1. Hence (p,) € g and ¢,, does not converge to zero locally in measure. Due
to Proposition 5.14, (5.26) gives

/ [F(on) — F(0)] + / [F (60— 0n) — F(O)] — 0, (5.27)
Q

Q n—oo

Since f is A-quasiconvex at 0, both terms on the left hand side of (5.27) are nonnegative
for every n, whence (5.27) implies that

contradicting (2.1) O

Proof of Proposition 2.14. We want to show that (2.7) is equivalent to (2.3) with ¥ =
Py U D3 U Dy, First assume that Q = RY. Due to (2.6),

XeM\By, | foo(w) = f(-,u)] = 0 in L'(RY), uniformly in u € U, (5.28)

R—o0

where U may be any subset of U4 which is bounded in L?. In the following, let

» 18 bounded in L? and satisfies n — 0in LP
oo = f e oo )

for every bounded, open set B C RV

Note that & UP3U D, C .. Since f., satisfies the same growth conditions as f (i.e., (f:1),
with h(x) replaced by 0 = liminfj o h(z)), we have that f.(0) = 0, and (5.28) implies
that

f('7 9071) - f(a O) - foo(%on) 730 0 in Ll(RN)7 for every (@n) € (I)oo- (529)
As a consequence of (5.29), f can be replaced by f. in (2.3) for any ¥ C &, whence (2.7)
implies (2.3) for ¥ = &y U 5 U &,4. It remains to show that the converse is also true. First
suppose that there exists a to > 0 such that {uinfls | ||ull;,, = to} = 0. In this case,
{uinflUa | ||ull;, = t} = 0 for all ¢ > 0 since U, is invariant under multiplication with
scalars. Hence U4 = {0} and there is nothing to show. Otherwise, for t € [0, 00) define

g(t) == inf{ » foolp) dx

¢ € LP(RYV;RM), Ap =0, ||ull,, = t} -

Since fo also inherits the p-Lipschitz property (f:2) (with A replaced by liminf|, . h(z) =
0), Fos(u) := [pn foo(u) dz is uniformly continuous on bounded subsets of L? by Proposition
5.7, which implies that g is continuous. It remains to show that ¢ > 0 on (0, 00). Suppose
by contradiction that g(ty) = 0 for a {; > 0. Then there exists a sequence (1,) C Uy
with |[n,||,, = to such that [oy foo(n)dz — 0. Since 7, is bounded in LP, there exists a
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subsequence k(n) of n and a sequence of points (x,) C RY such that x g, (z,)kxn) — 0 in LP.
For x € RY let

() = Nigny (T — )

By construction, (¢,) € ®oo, [[@nllr =10 > 0 and [oy foo(@n) dz — 0. By (5.29), the latter
entails that

flz,on)dx — f(z,0)dx. (5.30)
RN

RN

This already contradicts (2.3) for ¥ = ®,. To get the contradiction also with the smaller
set U = &y U &3 U Dy, decompose p,, = Z?zo @) according to Lemma 4.1 (or a suitable
subsequence, not relabeled; note that ¢, weakly converges to zero). We have that % +¢! —
0 in LP, since ©° + o} = ¢, — Z?ZQ @l is RY-tight and converges to zero in L¥ .. Since
llonllze = to > 0, this means that at least one of the three sequences ¢’ , j = 2, 3,4, does
not converge to zero strongly in LP. Moreover, Proposition 5.8 and (5.30) imply that

- fz, o) do — - f(x,0)dz for j =2,3,4. (5.31)

As (¢)) € @, this contradicts (2.3) for U = &y U P3 U Py.

The general case where 0 C RY is the complement of some compact set is essentially
analogous. The only additional difficulty occurs while showing that (2.7) implies (2.3) for
U = &, because (2.7) just applies to functions defined on the whole space while the
sequences in &, U &3 U &, and ®,, now are defined only on ). However, any sequence
(pn) € Po converges to zero strongly in LP on any bounded set, in particular on any
bounded vicinity of 0€2. Using smooth cut-off functions as in the proof of Lemma 4.5 to
extend before projecting back onto A-free fields allows us to replace ¢, with an A-free
sequence @, such that ¢, — @, — 0 in LP(Q;RM) and ¢, — 0 in LP(RN \ Q; RM). O

6 Concluding remarks

Remark 6.1. While the main results of this paper and the decomposition lemmas of Section 4
are stated for the space LP, the method presented here can actually handle more general
spaces without significant additional difficulties. In fact, the results of Section 3 are already
stated in a form more general than needed if we only study LP. In particular, it is easy to
adapt the decompositions lemmas and the main results to L” + L? and L” N L9, respectively,
with 1 < ¢ < p < oco. This generalization is particularly useful for functionals on domains
with infinite measure whose integrand does not have the same behavior near zero and near
infinity, which is actually quite natural (e.g., f(x, 1) ~ |p|” as [u| — 0 and f(z, ) = |u|” as
p — o0). In addition, the results can be extended to weighted Lebesgue spaces, as long as
the suitable results for the continuity of Fourier multipliers in these spaces are still available.
Beware though that even if one is interested in one specific space only, Fourier multiplier
results are still needed for a suitable family of related spaces to use the arguments employed
in the proof of Lemma 3.4 (iii) and Lemma 4.1.
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Remark 6.2. If Q = RY, all of the results of this paper involving a given bounded, A-
free sequence (u,) C LP(RY;RM) stay true if instead of Au, = 0, we only require the
weaker condition [|(—A)~2Auy,|» — 0. To see this, simply replace u, with the A-free
sequence 1, := Pu,, where P is the projection on A-free fields defined in Section 3. Since
Uy, — Up, = (I — P)u, — 0 strongly in L” by Lemma 3.4 (iv), the uniform continuity of F' on
bounded sets shown in Proposition 5.7 implies that F'(u,) — F'(@,) — 0, which means that
any assumption on F'(u,) used in our results will not be affected. Unfortunately, it is not
clear if this also works on domains with unbounded boundary if

| Aw, ||-10 := Sup{fgun-A*SO| Y e Cgo(QvRL) with fQ |V90|p}%1 < 1}

is used to replace ||(—A) "2 Auy||».

Remark 6.3. The sufficient conditions listed in Theorem 2.12 (i)—(iv), Corollary 2.12 (ii.1)-
(ii.3) and Theorem 2.15 (i)-(iii), respectively, are also necessary. For instance, if in the
situation of Theorem 2.12, the assumption of (ii) does not hold, i.e., (2.3) is violated for
U = &, then there exists a sequence @, € ®; with F(p,) — F(0) and ¢, /4 0in L? (a
bounded, Q-tight, A-free, purely concentrating sequence). In particular, for any u € Uy,
Uy = U + p, is a bounded, A-free sequence in L” which does concentrate, and lim F'(u,) —
F(u) =1lim F(¢,) — F(0) = 0 as a consequence of Proposition 5.10, whence w,, is admissible
for the theorem. Similar arguments also show that the conditions of Theorem 2.12 (iii),(iv),
Corollary 2.12 (ii.1)—(ii.3) and and Theorem 2.15 (ii), (iii) are sharp. The necessity of strict A-
quasiconvexity for the local convergence in measure in part (i) of both theorems is equivalent
to the converse of the second part of Proposition 5.4 discussed in Remark 5.5.
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