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Abstract

For Ω ⊂ RN open (and possibly unbounded), we consider integral functionals of the

form
F (u) :=

∫
Ω f(x, u) dx,

de�ned on the subspace of Lp consisting of those vector �elds u which satisfy Au = 0
on Ω in the sense of distributions. Here, A may be any linear di�erential operator

of �rst order with constant coe�cients satisfying Murat's condition of constant rank.

The main results provide sharp conditions for the compactness of minimizing sequences

with respect to the strong topology in Lp.

1 Introduction

We consider integral functionals of the form

F (u) :=

∫
Ω

f(x, u) dx, u ∈ UA, (1.1)

with the class of admissible functions given by

UA :=
{
u ∈ Lp(Ω; RM) | Au = 0 in Ω

}
, (1.2)

Here, 1 < p < ∞, Ω ⊂ RN is open, A is a linear �rst order di�erential operator as in
Section 3, formally mapping u : Ω → RM onto Au : Ω → RL, and the equation Au = 0 is
understood in the sense of distributions1. Throughout, we assume that

A satis�es the condition of constant rank

1i.e.,
∫

Ω
u · A∗ϕdx = 0 for all ϕ ∈ C∞c (Ω,RL), with A∗ as in Section 3
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introduced by Murat [14], as speci�ed in (3.1) in the next section. Such di�erential con-
straints arise naturally in a variety of physical models. In particular, both curl and divergence
are admissible. Further examples are provided in [7, 4]. As to f , we assume that

f : Ω× RM → R is a Carathéodory function2, (f:0)

|f(x, µ)| ≤ C(|µ|+ |h(x)|)p, (f:1)

|f(x, µ)− f(x, η)| ≤ C(|µ|+ |η|+ |h(x)|)p−1 |µ− η| , (f:2)

for a.e. x ∈ Ω and every µ, η ∈ RM , where C > 0 is a constant and h ∈ Lp(Ω).

The main purpose of this paper is the study of the so-called weak-strong convergence property
of F , that is, we ask under which additional conditions on f and Ω we have that

F (un)→ F (u) and un ⇀ u weakly in Lp =⇒ un → u strongly in Lp

for any given sequence (un) ⊂ UA. In the case of gradients on bounded domains, where UA is
replaced by U ′ := {u ∈ Lp(Ω; RN×d) | u = ∇v for a v ∈ W 1,p(Ω; Rd)}, this question has been
investigated by Visintin [18], Evans and Gariepy [5], Zhang [19] and later by Sychev [16, 17].
Results for more general3 A-free vector �elds instead of gradients have not been obtained
so far. Sychev's results provide optimal conditions for ruling out possible oscillations of
un = ∇vn, but neither of the aforementioned articles attempts a comprehensive study of
concentration e�ects. In fact, while in [5] and [19] at least su�cient conditions for ruling
out concentrations are given (in the case of [5] only partially, since concentrations near the
boundary are not discussed), Sychev uses a slightly di�erent de�nition for the weak-strong
convergence property, namely

F (un)→ F (u) and un ⇀ u weakly in Lp =⇒ un → u strongly in L1

for (un) ⊂ U ′. On a bounded domain, this variant allows one to ignore concentrations of un in
Lp altogether. An alternative approach, still on bounded domains but taking concentrations
into account, is possible with the methods developed in [8] and [9] for gradients, which were
extended to the A-free case in [6]. Our main results stated in the next section in particular
provide optimal conditions for ruling out concentrations and similar e�ects occurring only
on unbounded domains. Their proofs are collected in Section 5.

A second goal of this article and its main technical challenge is the extension of the decom-
position result of [7] to unbounded domains. We employ this as an essential tool for studying
the weak-strong convergence property, but it also is of independent interest. The decompo-
sition lemma of [7] states that, up to a subsequence, any A-free, bounded sequence in Lp

on a bounded domain can be decomposed into the sum of two A-free, bounded sequences,
the �rst p-equiintegrable (�purely oscillating�) and the second converging to zero in measure
(�purely concentrating�). On general domains, we need to split into more parts, taking into
account the additional obstacles for compactness other than oscillations and concentrations
which may occur if the domain has in�nite measure. This is carried out in Section 4, based
on some preliminary observations collected in Section 3. As in [7], we heavily rely on a pro-
jection onto A-free �elds de�ned via the Fourier transform, now on the whole space instead
of in the framework of periodic functions, whose main properties are derived with the help
of suitable Fourier multiplier theorems.

2i.e., f = f(x, µ) is measurable in x ∈ Ω for every µ and continuous in µ ∈ RM for a.e. x
3note that U ′ = UCurl on a bounded, simply connected domain
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2 Main results

Just as Morrey's by now classical notion of quasiconvexity is important for functionals de-
pending on gradients, A-quasiconvexity is relevant in our setting.

De�nition 2.1. Let x0 ∈ Ω. Following [7], we say that f(x0, ·) is A-quasiconvex at ξ ∈ RM

if ∫
Q

[
f(x0, ξ + ϕ(y))− f(x0, ξ)

]
dy ≥ 0 for every ϕ ∈ φA,

Here, Q := (0, 1)N ⊂ RN and

φA :=
{
ϕ ∈ C∞] (RN ; RM)

∣∣∣Aϕ = 0 on RN and
∫
Q
ϕ = 0

}
,

where C∞] (RN ; RM) denotes the set of all functions f ∈ C∞(RN ; RM) which are Q-periodic
in the sense that f(y) = f(y + z) for every z ∈ ZN and every y ∈ RN . Moreover, for p > 1
we say that f(x0, ·) is strictly p-A-quasiconvex at ξ ∈ RM if∫

Q

[
f(x0, ξ + ϕ(y))− f(x0, ξ)

]
dy ≥ g

(∫
Q
|ϕ| ,

∫
Q
|ϕ|p

)
for every ϕ ∈ φA,

with a function g : [0,∞)2 → [0,∞] which is increasing in its �rst variable,

decreasing in the second, and satis�es g(t, T ) > 0 for all t > 0, T ≥ 0.

(The monotonicity of g need not be strict, and g may depend on x0 and ξ.) Finally, we
say that f is (strictly p-) A-quasiconvex, if f(x, ·) is (strictly p-) A-quasi-convex at every
ξ ∈ RM , for a.e. x ∈ Ω.

Strict p-A-quasiconvexity can be characterized in the following way.

Proposition 2.2. Let N ≥ 2, let 1 < p <∞, let Ω ⊂ RN be open and suppose that f satis�es
(f:0)�(f:2). Then for a.e. x ∈ Ω and every ξ ∈ RM , f(x, ·) is strictly p-A-quasiconvex at ξ if
and only if

f(x, ·) is A-quasiconvex at ξ and for every sequence (ϕn) ∈ Φ0,∫
Q

f(x, ξ + ϕn(y)) dy −→
n→∞

f(x, ξ) =⇒ ϕn → 0 locally in measure4,
(2.1)

where

Φ0 :=

{
(ϕn) ⊂ ΦA

∣∣∣∣ ϕn ⇀ 0 weakly in Lp(Q; RM) and
ϕn is equiintegrable in Lp(Q; RM)

}
.

Here, �equiintegrable in Lp� is meant in the sense of De�nition 2.7 below.

4i.e., |K ∩ {|ϕn| ≥ δ}| → 0 as n→∞, for every δ > 0 and every compact K ⊂ RN .
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Remark 2.3. Strict p-A-quasiconvexity can be also rephrased in terms of Young measures as
follows: f(x, ·) is strictly p-A-quasiconvex at ξ ∈ RM if and only if

f(x, ·) is A-quasiconvex at ξ and∫
RM

f(x, ξ + µ) dν(µ) = f(x, ξ) =⇒ ν is a Dirac mass at 0,

for every homogeneous Young measure ν generated by a sequence in Φ0.

(2.2)

The equivalence of (2.1) and (2.2) essentially is a consequence of the results concerning Young
measures collected in Section 5. In particular, strict p-A-quasiconvexity is the analogue of
strict closed p-quasiconvexity as de�ned in [17]. Also note that if the sequence generating ν is
not required to be equiintegrable in Lp, this still gives an equivalent de�nition, cf. Remark 5.6.

Remark 2.4. If in addition to (f:0) and (f:1), f is A-quasiconvex, then the p-Lipschitz con-
dition (f:2) automatically holds for certain examples of A. In particular, this is the case
for the curl and the divergence (of matrix-valued �elds, applied row by row) since Curl-
quasiconvexity and Div-quasiconvexity both imply rank-1-convexity. For more details see
[4].

As observed is [7], A-quasiconvexity is vital to ensure weak lower semicontinuity of F along
A-free sequences and, consequently, the existence of minimizers.

Theorem 2.5 (existence of minimizers for general domains). Let N ≥ 2, let 1 < p <∞, let
Ω ⊂ RN be open, and suppose that f is A-quasiconvex and satis�es (f:0)�(f:2). Moreover,
suppose that I := inf{F (v) | v ∈ UA} > −∞ and that there exists a sequence (un) ⊂ UA,
bounded in Lp, such that F (un)→ I. Then there exists a u∗ ∈ UA such that F (u∗) = I.

Remark 2.6. Essentially, Theorem 2.5 is a standard application of the direct methods of the
calculus of variations. In particular, it su�ces to show that F is lower semicontinuous along
sequences in UA which weakly converge in Lp. If Ω ⊂ RN is open and bounded and f ≥ 0,
this is due to Theorem 3.7 in [7], and the result easily extends to unbounded domains as
F = supk∈N Fk with Fk(u) :=

∫
Ωk
f(x, u) dx de�ned on the bounded sets Ωk := Bk(0) ∩ Ω.

This works even if (f:2) does not hold, and instead of f ≥ 0, it actually su�ces to have
that f−(x, un) (the negative part of f) is weakly relatively compact in L1 for a minimizing
sequence un which is bounded in Lp. If, on the other hand, (f:2) holds, then we can use the
fact that F is bounded from below to prove weak lower semicontinuity of F without any
additional assumptions on the negative part of f as shown in Section 5.

In analogy to the case of functionals depending on gradients on bounded domains [5, 16, 17],
strict A-quasiconvexity turns out to be the right condition to rule out possible oscillations
of minimizing sequences. Of course, oscillations are not the only obstacle for compactness,
and we want to investigate others as well. We employ the following terms to describe some
of them, in Lp and related spaces.

De�nition 2.7. Let Ω ⊂ RN be an open set and let X be a normed space of measurable
functions mapping Ω into RM such that for every u ∈ X and every E ⊂ Ω measurable, the
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product χEu also belongs to X.5 Furthermore, let (un) be a sequence in X. We say that

un does not concentrate in X if supn∈N supE⊂Ω, |E|≤δ ‖χEun‖X −→
δ→0+

0,

un is RN -tight in X if supn∈N
∥∥χΩ\BR(0)un

∥∥
X
−→
R→∞

0,

un is Ω-tight in X if for every ε > 0, there is a compact set
K ⊂ Ω such that supn∈N

∥∥χΩ\Kvn
∥∥
X
≤ ε,

un does not spread out in X if supn∈N
∥∥χ{|un|≤δ}un∥∥X −→δ→0+

0,

un is equiintegrable in X if un does not concentrate in X
and un is RN -tight X.

Next, we list conditions on f to rule out possible concentrations of minimizing sequences or
a lack of tightness. They all amount to requiring that

for every sequence (ϕn) ∈ Ψ,∫
Ω

f(x, ϕn(x)) dx −→
n→∞

∫
Ω

f(x, 0) dx =⇒ ϕn → 0 in Lp,
(2.3)

for certain classes of sequences

Ψ ⊂ Φ :=

{
(ϕn) ⊂ UA

∣∣∣∣ (ϕn) is bounded in Lp and
ϕn → 0 locally in measure

}
with suitable additional properties, each of which is stronger than the convergence to zero
locally in measure required so far. In particular, we are interested in the following subsets
of Φ:

Φc := {(ϕn) ∈ Φ |ϕn → 0 in Lp + Lq for every q ∈ (1, p)} ,
Φ1 := {(ϕn) ∈ Φc |ϕn is Ω-tight in Lp} ,

Φ2 :=

{
(ϕn) ∈ Φc

∣∣∣∣ χBϕn is Ω-tight in Lp and χBϕn → 0 in Lp

for every bounded, measurable B ⊂ Ω

}
,

Φ3 :=

(ϕn) ∈ Φ

∣∣∣∣∣∣
χBϕn → 0 in Lp for all bounded sets B ⊂ Ω,
ϕn does not concentrate in Lp and
ϕn does not spread out in Lp,

 ,

Φ4 := {(ϕn) ∈ Φ |ϕn → 0 in Lp + Lr for every r ∈ (p,∞)} ,
Φ5 := {(ϕn) ∈ Φc |χEϕn → 0 in Lp for every closed E ⊂ Ω} ,
Φext:= {(ϕn) ∈ Φ |ϕn → 0 in Lploc} .

Here, (Lp + Lq)(Ω; RM) := {u = v + w ∈ L1
loc(Ω; RM) | v ∈ Lp, w ∈ Lq}, which is a Banach

space with respect to the norm

‖u‖Lp+Lq := inf{‖v‖Lp + ‖w‖Lq | v ∈ L
p and w ∈ Lq such that u = v + w}.

5Throughout, χE : Ω → {0, 1} denotes the characteristic function of E, i.e., χE = 1 on E and χE = 0
elsewhere.
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Remark 2.8. For a bounded sequence in Lp, un → 0 in Lp + Lq for a q < p if and only if
χ{|un|≤T}un → 0 in Lp for every T > 0 (�purely concentrating�), while un → 0 in Lp +Lr for
a r > p if and only if χ{|un|≥t}un → 0 in Lp for every t > 0 (�purely spreading�).

Remark 2.9. The validity of (2.3) on Φc, Φ3, Φ4 and Φext, respectively, not only depends on
f but in general also on Ω. In particular, (2.3) automatically holds for Ψ = Φ2 ∪ Φ3 ∪ Φ4

if Ω is bounded, and Φext = Φ5 in this case, consisting of sequences purely concentrating at
the boundary of Ω.

Remark 2.10. As opposed to the de�nition of strict p-A-quasiconvexity, (2.3) is not a point-
wise property in the �rst variable of f . It remains an open question whether it is equivalent
to a pointwise condition, at least for Ψ = Φ1 under additional assumptions on f , in particular
continuity in x.

Remark 2.11. It is not di�cult to give su�cient conditions for (2.3) on the classes listed
above. For instance, suppose that f satis�es

f(x, µ) ≥ V (µ)− |h(x)|p with an h ∈ Lp and a V satisfying (2.5), (2.4)

for every µ ∈ RM and a.e. x ∈ Ω, where

V : RM → R is continuous, V (0) = 0, |V (µ)| ≤ C |µ|p + C, and∫
Ω
V (u) dx ≥ c

∫
Ω
|u|p dx for all u ∈ UA, with a constant c > 0.

(2.5)

Then (2.3) holds for Ψ = Φ (and thus also for all of the subsets of Φ). In addition, any
sequence (un) ⊂ UA such that F (un) is bounded in R is bounded in Lp. Note that depending
on A, (2.4) can be signi�cantly weaker than a coercivity condition on f given in a purely
pointwise form such as f(x, µ) ≥ c |µ|p − |h(x)|p.

Our main results are the following.

Theorem 2.12 (domains with compact boundary). Let N ≥ 2, let 1 < p <∞, let Ω ⊂ RN

be open with compact boundary and let u ∈ UA. Moreover, suppose that f satis�es (f:0)�
(f:2), that f(x, ·) is A-quasiconvex at u(x) for a.e. x ∈ Ω and that inf{F (v) | v ∈ UA} >
−∞. Then any bounded sequence (un) ⊂ UA such that un ⇀ u weakly in Lp(Ω; RM) and
lim supF (un) ≤ F (u) has the following properties:

(i) If f(x, ·) is strictly p-A-quasiconvex at u(x) for a.e. x ∈ Ω, then un → u locally in
measure.

(ii) If (2.3) holds for Ψ = Φc, then un does not concentrate in Lp.

(iii) If (2.3) holds for Ψ = Φ3, then χ{s−1<|un|<s}un is RN -tight in Lp for every �xed s ≥ 1.

(iv) If (2.3) holds for Ψ = Φ4, then un does not spread out in Lp.

In particular, if f and Ω are such that the assumptions of (i)�(iv) are satis�ed, then un → u
strongly in Lp.

Using the classes Φ1, Φ2 and Φ5 instead of Φc, possible concentrations of un can be studied
in even greater detail, distinguishing whether they occur within Ω, at in�nity or at the
boundary of Ω.
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Corollary 2.13. Under the assumptions of Theorem 2.12, the following is true.

(ii.1) If (2.3) holds for Ψ = Φ1, then χKun does not concentrate in Lp, for every compact
K ⊂ Ω.

(ii.2) If (2.3) holds for Ψ = Φ2, then χΩδn\BRnun does not concentrate in Lp, for every pair
of sequences Rn →∞ and δn → 0+.

(ii.3) If (2.3) holds for Ψ = Φ5, then χΩ\Ωδnun does not concentrate in L
p, for every sequence

δn → 0+.

Here, BR := {x ∈ RN | |x| < R} and Ωδ := {x ∈ Ω | dist (x; ∂Ω) > δ}. In particular, Φc can
be replaced by Φ1 ∪ Φ2 ∪ Φ5 in Theorem 2.12 (ii).

If Ω is an exterior domain and f(x, µ) has a limit as |x| → ∞ which is uniform in µ in
a suitable sense, Theorem 2.12 can be partially simpli�ed by using a more tangible char-
acterization of (2.3) for Ψ = Φ2 ∪ Φ3 ∪ Φ4 (all the cases related to the behavior of f as
|x| → ∞):

Proposition 2.14. Let N ≥ 2, let 1 < p < ∞ and let Ω ⊂ RN be the complement of a
compact set. Moreover, suppose that f satis�es (f:0)�(f:2) and that there exists a function
f∞ : RM → R such that

α(x) := sup
µ∈RM

|f∞(µ)− f(x, µ)|
|µ|p + |h(x)|p

−→
|x|→∞

0 for a suitable h ∈ Lp(RN). (2.6)

Then (2.3) holds for Ψ = Φ2 ∪ Φ3 ∪ Φ4 if and only if∫
RN
f∞(ϕ) dx ≥ g(‖ϕ‖Lp) for every A-free ϕ ∈ Lp(RN ; RM),

with a suitable g : [0,∞)→ R continuous such that g > 0 on (0,∞).

(2.7)

If the boundary of Ω is not compact, we can still say the following.

Theorem 2.15 (general domains). Let N ≥ 2, let 1 < p <∞, let Ω ⊂ RN be open and let
u ∈ UA. Moreover, suppose that f satis�es (f:0)�(f:2), that f(x, ·) is A-quasiconvex at u(x)
for a.e. x ∈ Ω and that inf{F (v) | v ∈ UA} > −∞. Then any bounded sequence (un) ⊂ UA
satisfying un ⇀ u weakly in Lp(Ω; RM) and lim supF (un) ≤ F (u) has following properties.

(i) If f(x, ·) is strictly p-A-quasiconvex at u(x) for a.e. x ∈ Ω, then un → u locally in
measure.

(ii) If (2.3) holds for Ψ = Φ1, then χKun does not concentrate in Lp, for every compact
K ⊂ Ω.

(iii) If (2.3) holds for Ψ = Φext, then un is Ω-tight in Lp.

In particular, if f and Ω are such that the assumptions of (i)�(iii) are satis�ed, then un → u
strongly in Lp.

By Remark 2.11, this immediately entails the following.
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Corollary 2.16. Let N ≥ 2, let 1 < p < ∞ and let Ω ⊂ RN be open. Moreover, suppose
that f satis�es (f:0)�(f:2) as well as (2.4) and that f is strictly p-A-quasiconvex. Then any
minimizing sequence (un) ⊂ UA has a subsequence which strongly converges in Lp.

Remark 2.17. In fact, all results stated above as well as those of Section 4 are also true for
N = 1. However, this case requires some minor technical changes in the proofs which we
omit for the sake of brevity. For more details see Remark 3.3 below.

3 Preliminaries

Throughout this article, A denotes a homogeneous linear di�erential operator of �rst order,
formally mapping u = (u1, . . . , uM) : Ω → RM onto Au = ((Au)1, . . . , (Au)L) : Ω → RL

de�ned by

(Au)l :=
∑N

i=1

∑M
m=1A

lm
i ∂xiu

m,

with Almi ∈ R �xed. Its formal adjoint is denoted by A∗, which maps v = (v1, . . . , vL) : Ω→
RL to A∗v : Ω→ RM , where

(A∗v)m = −
∑N

i=1

∑L
l=1 A

lm
i ∂xivl.

In particular, we have
∫

Ω
(Au) · ϕdx =

∫
Ω
u · (A∗ϕ) dx for all u ∈ C1(Ω; RM) and all ϕ ∈

C1
c (Ω; RL) by integration by parts. Related to A via the Fourier transform is the linear

matrix-valued function

A : RN → RL×M , (A(ξ))lm :=
∑N

i=1 A
lm
i ξi.

Throughout, we assume that A (and hence also A∗) satis�es the condition of constant rank,
that is,

the rank of A(ξ) ∈ RL×M is constant as a function of ξ ∈ RN \ {0}. (3.1)

As a consequence, the orthogonal projection P(ξ) ∈ RM×M onto the kernel of A(ξ) in RM

is continuous as a function of ξ ∈ RN \ {0}. We de�ne P(0) to be the identity matrix. The
Fourier multiplier P : SM → (SM)′ associated to P is given by

Pϕ := F−1(PFϕ), for ϕ ∈ SM , with (PFϕ)(ξ) := P(ξ)[Fϕ(ξ)],

where F is the Fourier transform6, S denotes the Schwartz space of rapidly decaying func-
tions of class C∞ and S ′ is its dual. By de�nition, P is a projection onto the kernel of A.
Moreover, by the classical Hörmander-Mikhlin multiplier theorem, it extends to a continuous
operator P : Lp(RN ; RM) → Lp(RN ; RM) projecting Lp(RN ; RM) onto the kernel of A. We
also need this property in a broader class of weighted spaces of the form

Lpw(Ω; RM) :=
{
u : Ω→ RM measurable

∣∣∣ ‖u‖Lpw(Ω;RM ) <∞
}
,

where ‖u‖p
Lpw(Ω;RM )

:=
∫

Ω
|u(x)|pw(x) dx

6(Fu)(ξ) :=
∫

RN e2πix·ξu(x) dx for u ∈ L1(RN ) and ξ ∈ RN , and the de�nition is extended to u ∈ S ′ as
usual, cf. [15]. In the vector-valued case, F operates component-wise.
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and the weight w : Ω→ (0,∞) is a measurable function. Due to a result of [12], P extends
to a continuous projection operator on Lpw(Ω; RM) for various classes of weights. We only
reproduce a special case which su�ces for our purposes:

Lemma 3.1. Let 1 < p <∞, let w(x) := min{1, |x|β} with a constant −N < β < N(p−1),
and let m : RN → R be a bounded function which is 0-homogeneous and of class CN on
RN \ {0}. Then the associated Fourier multiplier T given by T (u) := F−1(mFu) is a
bounded linear operator mapping Lpw(RN) into itself.

Proof. Since m(x) = m(x/ |x|), we have that
∣∣Dkm(x)

∣∣ ≤ C1 |x|−k for every x ∈ RN \ {0}
and every k = 0, . . . , N , with a constant C1 > 0 only depending on m and N . As a
consequence, for every s ∈ (1, 2] such that sk 6= N for k = 0, . . . , N ,

Rsk−N
∫
R<|x|<2R

∣∣Dkm(x)
∣∣s dx ≤ C2 for every R > 0 and every k = 0, . . . , N,

with a constant C2 only depending on N , s and C1. This means that m ∈ M(s,N) in the
notation of [12], and with this property established, Theorem 2 in [12] yields the assertion.

In particular, this applies to the space Lp which corresponds to the case w ≡ 1 (β = 0).
Lemma 3.1 can be extended to Lp + Lq as follows.

Lemma 3.2. Let 1 < q < p < ∞ and let m : RN → R be a bounded function which is
0-homogeneous and of class CN on RN \{0}. Then the associated Fourier multiplier T given
by T (u) := F−1[m(Fu)] is a bounded linear operator mapping Lq(RN ; R) + Lp(RN ; R) into
itself.

Proof. For every ε > 0, there exists v ∈ Lq and w ∈ Lp with v + w = u such that
‖v‖Lq + ‖w‖Lp ≤ ‖u‖Lq+Lp + ε. Lemma 3.1 with β = 0 thus implies that

‖Tu‖Lq+Lp ≤ ‖Tv‖Lq + ‖Tw‖Lp ≤ C (‖v‖Lq + ‖w‖Lp) ≤ C
(
‖u‖Lq+Lp + ε

)
for arbitrary ε with a constant C independent of u and ε.

In the following, norms involving certain inverse derivatives will play a role, which we express
by means of the operator (−∆)−

1
2 , de�ned by

(−∆)−
1
2u := F−1 |2πξ|−1Fu, (3.2)

for any tempered distribution u ∈ S ′ such that the �pointwise� product of |2πξ|−1 with

(Fu)(ξ) is well de�ned in S ′. If u ∈ L1, a more explicit de�nition of (−∆)−
1
2 can be given

in terms of the corresponding Riesz potential, namely,

((−∆)−
1
2u)(x) =

1

σ

∫
RN
|x− y|1−N u(y) dy, (3.3)

with a normalizing constant σ = σ(N) > 0, cf. [15].
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Remark 3.3. To be precise, (3.3) only holds if N ≥ 2, which is the reason for this assumption
in our main results as well as in any other statement of this note directly or indirectly
exploiting (3.3) in form of Lemma 3.5 below. Of course, this is just a minor technical issue.
The case N = 1 could easily be treated separately, for instance using the antiderivative
instead of (−∆)−

1
2 .

Extending Lemma 2.14 in [7], which in turn is largely based on ideas of [14], the properties
of the projection P in Lp + Lq and in Lpw can be summarized as follows.

Lemma 3.4. Let 1 < q ≤ p <∞ and suppose that (3.1) holds. Then we have the following.

(i) P : (Lq + Lp)(RN ; RM)→ (Lq + Lp)(RN ; RM) is a linear, bounded operator.

(ii) Pv = v for every A-free v ∈ (Lq + Lp)(RN ; RM), and A ◦ P = 0.

(iii) Let un be a bounded sequence in (Lq + Lp)(RN ; RM). If un does not concentrate in
Lp +Lq, neither does Pun. Similarly, if un is RN -tight in Lp +Lq then so is Pun, and
if un does not spread out in Lp + Lq, then neither does Pun.

(iv) c‖(−∆)−
1
2Au‖Lp+Lq ≤ ‖(I − P)u‖Lp+Lq ≤ C‖(−∆)−

1
2Au‖Lp+Lq for every u ∈ (Lq +

Lp)(RN ; RM), with constants c, C > 0 independent of u.

Moreover, all of the above stays true if Lp + Lq is replaced with Lpw, where w may be any
positive weight function such that Lemma 3.1 holds.

Proof. We essentially proceed as in [7]. As a consequence of (3.1), the projection P(ξ) is a
0-homogeneous function of ξ of class C∞ on RN \ {0}, whence Lemma 3.2 yields (i). The
de�nition of P immediately implies (ii).

For the proof of (iii) consider a bounded sequence un in Lp +Lq. If un does not concentrate
in Lp + Lq, we have that supn∈N

∥∥χ{|un|≤h}un − un∥∥Lq+Lp → 0 as h → ∞, and since P is
continuous in Lq + Lp, we also get that

sup
n∈N

∥∥P(χ{|un|≤h}un)− Pun
∥∥
Lq+Lp

−→
h→∞

0. (3.4)

On the other hand, for �xed h, χ{|un|≤h}un is bounded in L∞ and thus also in Ls for any
s > p. By continuity of P in Ls, this implies that P(χ{|un|≤h}un) is bounded in Ls. By
Hölder's inequality we infer that P(χ{|un|≤h}un) does not concentrate in Lq since s > q,
which also means that P(χ{|un|≤h}un) does not concentrate in Lp + Lq for �xed h, since
p ≥ q. Together with (3.4), this implies that Pun does not concentrate in Lp + Lq. If un
does not spread out in Lp + Lq, an analogous argument gives that

sup
n∈N

∥∥P(χ{|un|≥h}un)− Pun
∥∥
Lq+Lp

−→
h→0+

0

and that P(χ{|un|≥h}un) does not spread out in Lp + Lq for �xed h > 0 (since it is bounded
in Ls with 1 < s < q), which implies that Pun does not spread out in Lp +Lq. Last but not
least, if un is RN -tight in Lp + Lq, we get that

sup
n∈N

∥∥P(χBh(0)un)− Pun
∥∥
Lq+Lp

−→
h→∞

0

10



and that P(χBh(0)un) is RN -tight in Lp + Lq for �xed h (since it is bounded in Lqw̃ with

w̃(x) := min{1, |x|β̃}, for any 0 < β̃ < N(q − 1)), whence Pun is RN -tight in Lp + Lq.

To get (iv), �rst observe that

(I − P)(ξ)Fu(ξ) = Q(ξ)A(ξ)Fu(ξ) = Q
( ξ
|ξ|

) 1

|ξ|
A(ξ)Fu(ξ)

= 2πQ
( ξ
|ξ|

)
F((−∆)−

1
2Au)(ξ),

(3.5)

where Q : RN \ {0} → RL×L is de�ned by

Q(ξ)A(ξ)η := η for any η ∈ (ker A(ξ))⊥ ⊂ RM ,

Q(ξ)µ := 0 for any (range A(ξ))⊥ ⊂ RL.

Note that Q is homogeneous of degree −1 as a function of ξ since A is homogeneous of degree
1, which justi�es the second equality in (3.5). Moreover, as a consequence of (3.1), both
range A(ξ) and (range A(ξ))⊥ have constant dimension and vary smoothly with ξ ∈ RN \{0},
and A(ξ) : (ker A(ξ))⊥ → range A(ξ) is invertible with inverse smoothly depending on ξ,
whence Q is of class C∞. In particular, Q( ξ

|ξ|) gives rise to a Fourier multiplier in Lp +Lq by

Lemma 3.2, whence (3.5) implies the second inequality in (iv). The �rst inequality follows
in the same way, since A( ξ

|ξ|)Q( ξ
|ξ|)A( ξ

|ξ|) = A( ξ
|ξ|) and A( ξ

|ξ|) also gives rise to a continuous
Fourier multiplier in Lp + Lq.

Finally, note that all of the arguments above also work for Lpw instead of Lp + Lq if we use
Lemma 3.1 instead of Lemma 3.2 and suitably adapt the auxiliary spaces employed in the
proof of (iii) and (iv).

We will use Lemma 3.4 (iv) to handle domains other than the whole space, and for this
purpose, the following compactness result is also crucial.

Lemma 3.5. Let vn be a bounded sequence in Lp(RN) with some 1 < p < ∞. Moreover,
suppose that there is a �xed compact set K ⊂ RN containing the support of vn for every n
and that

∫
RN vn = 0 for every n. Then wn := (−∆)−

1
2vn is bounded in Lp(RN), and it has a

subsequence which converges strongly in Lp(RN).

Proof. Let Br denote a ball with radius r centered at 0, containing K. Observe that for
�xed R > 0, (3.3) yields∫

BR

∣∣(−∆)−
1
2vn(x)

∣∣pdx = ‖κ ∗ vn‖pLp(BR) ≤ ‖κ‖
p
L1(BR+r)

‖vn‖pLp(Br)
, (3.6)

where * denotes the convolution and κ(z) := |z|1−N . Moreover, for every R ≥ 2r, there is a
constant C = C(N, r) > 0 such that

sup
y∈Br

∣∣∣|x− y|1−N − |x|1−N ∣∣∣ ≤ C |x|−N for every x with |x| > R. (3.7)
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Since
∫
Br
vn = 0, (3.7) implies that∫

RN\BR

∣∣(−∆)−
1
2vn
∣∣pdx =

∫
RN\BR

∣∣∣∣∫
Br

(|x− y|1−N − |x|1−N)vn(y) dy

∣∣∣∣p dx
≤ ‖vn‖pLp

∫
RN\BR

Cp |x|−pN dx

(3.8)

for R ≥ 2r. Note that |x|−Np is integrable on RN \ B2r for every p > 1. In particular,

(−∆)−
1
2vn is bounded in Lp(RN) by (3.6) and (3.8) combined. In addition, (3.8) implies

that ∫
RN\BR

∣∣(−∆)−
1
2vn
∣∣pdx −→

R→∞
0 uniformly in n. (3.9)

Moreover, as in (3.6) we get∫
BR

∣∣(−∆)−
1
2vn(x)− (−∆)−

1
2vn(x+ h)

∣∣pdx
≤ ‖(κ(·)− κ(·+ h))‖pL1(BR+r)

‖vn‖pLp(Br)
−→
|h|→0

0 uniformly in n,
(3.10)

for any �xed R > 0, since κ is integrable on bounded sets and the shift is continuous in L1.
Together, (3.9) and (3.10) imply that {(−∆)−

1
2vn | n ∈ N} is contained in a compact subset

of Lp(RN), by a standard criterion for relative compactness in Lp (e.g., [2]).

4 Decomposition of A-free sequences

We now derive a decomposition lemma in the tradition of [1], [8], [7] and [11], here for a
sequence of A-free �elds on the whole space. This result and suitable extensions to other
unbounded domains will be our main tool for obtaining compactness of minimizing sequences.

Lemma 4.1. Let 1 < p < ∞ and let A be a linear di�erential operator of �rst order
satisfying (3.1). Moreover, suppose that un is a bounded, A-free sequence in Lp(RN ; RM)
with un ⇀ u weakly in Lp. Then there exist a subsequence uk(n) of un and �ve bounded,
A-free sequences w0

n, . . . , w
4
n in Lp(RN ; RM) such that

uk(n) = u+ w0
n + w1

n + w2
n + w3

n + w4
n for every n ∈ N

and the following properties hold:

(a) w0
n ⇀ 0 weakly in Lp, and w0

n is equiintegrable in Lp.

(b) w1
n is RN -tight in Lp, and w1

n → 0 in Lp + Lq for every q ∈ (1, p).

(c) χBw
2
n → 0 in Lp for any bounded, measurable set B ⊂ RN and

w2
n → 0 in Lp + Lq for every q ∈ (1, p).

(d) χBw
3
n → 0 in Lp for any bounded, measurable set B ⊂ RN .
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(e) w4
n → 0 in Lr + Lp for every r ∈ (p,∞).

Remark 4.2. Using (a)�(e) to check Vitali's criteria for compactness in Lp, it is not di�cult
to see that if uk(n) = u+ w̃0

n + . . .+ w̃4
n is another decomposition with the same properties,

then wjn − w̃jn → 0 strongly in Lp. In this sense, the component sequences are uniquely
determined.

For the proof of Lemma 4.1, we �rst need an auxiliary result which represents a decomposi-
tion lemma in Lp, summarizing Chacon's biting lemma and suitable variants for unbounded
domains. It is based on four di�erent kinds of truncations of Lp-functions.

Lemma 4.3. Let Ω ⊂ RN be open and let 1 ≤ p < ∞. Then every bounded sequence
(vn) ⊂ Lp(Ω; RM) has a subsequence (vk(n)) such that

χ{|vk(n)|≤n}vk(n) does not concentrate in Lp(Ω; RM),

χ{|vk(n)|≥ 1
n
}vk(n) does not spread out in Lp(Ω; RM),

χBn(0)vk(n) is RN -tight in Lp(Ω; RM) and

χKnvk(n) is Ω-tight in Lp(Ω; RM),

(4.1)

where Kn :=
{
x ∈ Ω

∣∣ |x| ≤ n and dist (x; ∂Ω) ≥ 1
n

}
.

Proof. This is essentially well known. For instance, the �rst three lines of (4.1) immediately
follow from Lemma 3.3�Lemma 3.5 in [11], and the fourth line can be obtained analogously
to the third. We omit the details.

Proof of Lemma 4.1. W.l.o.g. we may assume that u = 0 (otherwise, since u is A-free,
we can decompose ũn := un − u instead). For j = 0, . . . , 4, let wjn := PW j

n ∈ Lp(RN ; RM)
with

W 0
n := 1 · χBn(0) · χ{|uk(n)|≤n} · uk(n),

W 1
n := 1 · χBn(0) · (1− χ{|uk(n)|≤n}) · uk(n),

W 2
n := 1 · (1− χBn(0)) · (1− χ{|uk(n)|≤n}) · uk(n),

W 3
n := χ{|uk(n)|≥ 1

n
} · (1− χBn(0)) · χ{|uk(n)|≤n} · uk(n),

W 4
n := (1− χ{|uk(n)|≥ 1

n
}) · (1− χBn(0)) · χ{|uk(n)|≤n} · uk(n),

where the subsequence uk(n) is chosen according to Lemma 4.3 with vn := un. By de�nition,
uk(n) = Puk(n) = w0

n + . . . + w4
n, each wjn is A-free, and the sequences wjn are bounded in

Lp by continuity of P in Lp. Moreover, due to the choice of uk(n) and the de�nition of W j
n,

the sequences W j
n (in place of wjn) have the properties (a)�(e) listed in the assertion. The

projected sequences wjn inherit these: RN -tightness, absence of concentration, absence of
spreading and equiintegrability in Lp all survive the application of P due to Lemma 3.4 (iv).
Convergence in Lp + Lq or in Lr + Lp with 1 ≤ q < p and p < r < ∞ is also preserved, as
a consequence of Lemma 3.4 (i), as is weak convergence to zero in Lp. Finally, note that
for a bounded sequence vn in Lp(RN ; RM), χBvn → 0 in Lp for every bounded, open B ⊂ Ω

if and only if vn → 0 in Lpw with the weight w(x) := min{1, |x|−
1
2} (or any other bounded

weight which is locally bounded away from zero and converges to zero as |x| → ∞). Hence,
the continuity of P in Lpw also yields that χBw

2,3
n → 0 in Lp just as W 2,3

n .

13



As it turns out, Lemma 4.1 can be extended to any domain but only with a somewhat
coarser decomposition.

Lemma 4.4. Let N ≥ 2, let 1 < p < ∞, let Ω ⊂ RN be open and let A be a linear
di�erential operator of �rst order satisfying (3.1). Moreover, suppose that un is a bounded,
A-free sequence in Lp(Ω; RM) with un ⇀ u weakly in Lp. Then there exist a subsequence
uk(n) of un and bounded, A-free sequences (vn), (wn) ⊂ Lp(RN ; RM) and (zn) ⊂ Lp(Ω; RM)
such that

uk(n) = u+ vn + wn + zn in Ω for every n ∈ N

and the following properties hold:

(a) vn ⇀ 0 weakly in Lp(RN ; RM) and vn is equiintegrable in Lp(RN ; RM).

(b) wn → 0 in (Lp + Lq)(RN ; RM) for every 1 ≤ q < p, and
wn is Ω-tight in Lp(Ω; RM).

(c) zn → 0 in Lp
loc

(Ω; RM).

Proof. Observe that Au = 0 in Ω. We choose a sequence of cut-o� functions (γj) ⊂
C1(RN ; [0, 1]) such that

{γj > 0} ⊂
{
x ∈ Ω

∣∣∣ |x| < j and dist (x; ∂Ω) > 1
j

}
and

{0 < γj < 1} ⊂
{
x ∈ Ω

∣∣∣ |x| > j − 1 or dist (x; ∂Ω) < 2
j

} (4.2)

For every �xed j, we have

A(γj(un − u))l =
M∑
m=1

N∑
i=1

Almi (∂xiγj) (umn − um) ⇀
n→∞

0 weakly in Lp(RN).

Since suppA(γj(un − u)) ⊂ supp∇γj ⊂ {0 < γj < 1}, whose closure is a compact set,
and since

∫
RN A(γj(un − u)) dx = 0 due to integration by parts, Lemma 3.5 is applicable to

A(γj(un − u)) and it yields that∥∥(−∆)−
1
2A(γj(un − u))

∥∥
Lp(RN ;RL)

−→
n→∞

0 (4.3)

for �xed j. As a consequence of (4.3), we can select a subsequence k(n) of n (fast enough)
such that ∥∥(−∆)−

1
2A(γn(um − u))

∥∥
Lp(RN ;RL)

≤ 1

n
for every m ≥ k(n). (4.4)

Moreover, by Lemma 4.3 we can pass to another subsequence of k(n) (not relabeled) such
that

γn(uk(n) − u) is Ω-tight in Lp(Ω; RM). (4.5)
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Now de�ne ũn := P(γn(un − u)), which is a bounded sequence in Lp(RN ; RM) satisfying
Aũn = 0 on RN , and decompose ũn = w̃0

n + . . .+ w̃4
n according to Lemma 4.1 (again passing

to a subsequence if necessary). We claim that the decomposition un = u+ vn +wn + zn with

vn := w̃0
n,

wn := w̃1
n,

zn := (I − P)[γn(un − u)] + (1− γn)(un − u) + w̃2
n + w̃3

n + w̃4
n,

then has the asserted properties. First note that vn and wn are bounded sequences in Lp

and A-free on Ω by de�nition, whence the same holds for zn = un − u− vn − wn. Since vn
satis�es (a) by construction, it remains to show that (b) and (c) hold.

(c) Since γn(uk(n) − u) is supported in Ω and Ω-tight in Lp(Ω; RM), it is RN -tight in
Lp(RN ; RM). Hence, ũn is RN -tight in Lp(RN ; RM) by Lemma 3.4 (iii). Consequently,

Rn := w̃2
n + w̃3

n + w̃4
n = ũn − w̃0

n − w̃1
n

is RN -tight in Lp(RN ; RM), and by the properties of w̃jn, j = 2, 3, 4, we also have
Rn → 0 in Lp(B; RM) for every open, bounded B ⊂ RN . Combined, this implies that

Rn → 0 in Lp(RN ; RM). (4.6)

Moreover, by Lemma 3.4 (iv), (4.4) yields that

(I − P)[γn(uk(n) − u)]→ 0 strongly in Lp(RN ,RM). (4.7)

As a consequence (4.6), (4.7) and the second line of (4.2), we now get that zn → 0 in
Lp(K; RM) for any compact K ⊂ Ω.

(b) Combined, (4.7) and (4.5) imply that ũn = P [γn(uk(n) − u)] is Ω-tight in Lp(Ω; RM).
Hence, wn = w̃1

n = ũn − w̃0
n − Rn is Ω-tight in Lp(Ω; RM) as well, where we also

used that w̃0
n and Rn are Ω-tight in Lp(Ω; RM), the former since it is equintegrable

in Lp and the latter because of (4.6). In addition, we clearly have wn = w̃1
n → 0 in

(Lp + Lq)(RN ; RM) for any q ∈ (1, p) by de�nition of w̃1
n.

The result of Lemma 4.4 could be improved if the domain admits a continuous extension
operator for A-free vector �elds in Lp from Ω to RN . However, to my knowledge, extension of
A-free �elds has not yet been investigated even on bounded domains except in a few special
cases such as gradient �elds (e.g. [2]) and divergence-free �elds [10]. In any case, for domains
with compact boundary, the ideas already used in Lemma 4.4 su�ce to obtain a re�ned
decomposition without relying on general extension results. In comparison with Lemma 4.1,
the decomposition now has an additional component w5

n which carries concentrations at the
boundary.

Lemma 4.5. Let N ≥ 2, let 1 < p <∞, let Ω ⊂ RN be open with compact boundary and let
A be a linear di�erential operator of �rst order satisfying (3.1). Moreover, suppose that un
is a bounded, A-free sequence in Lp(RN ; RM) with un ⇀ u weakly in Lp. Then there exist
a subsequence uk(n) of un and six bounded, A-free sequences w0

n, . . . , w
5
n in Lp(Ω; RM) such

that

uk(n) = u+ w0
n + w1

n + w2
n + w3

n + w4
n + w5

n for every n ∈ N

and the following properties hold:
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(a) w0
n ⇀ 0 weakly in Lp, and w0

n is equiintegrable in Lp.

(b) w1
n is Ω-tight in Lp and w1

n → 0 in Lp + Lq for every q ∈ (1, p).

(c) χBw
2
n → 0 in Lp for any bounded, measurable set B ⊂ RN and

w2
n → 0 in Lp + Lq for every q ∈ (1, p).

(d) χBw
3
n → 0 in Lp for any bounded, measurable set B ⊂ RN ,

w3
n does not spread out in Lp and w3

n does not concentrate in Lp.

(e) w4
n → 0 in Lr + Lp for every r ∈ (p,∞).

(f) χEw
5
n → 0 in Lp for any closed set E ⊂ Ω.

Moreover, the component sequences w0
n, . . . , w

4
n ∈ Lp(Ω; RM) can be extended to bounded,

A-free sequences in Lp(RN ; RM) satisfying (a)�(e) even on RN .

Proof. Using Lemma 3.5 as in the proof of Lemma 4.4, we can �nd a sequence of cut-o�
functions γn ∈ C1(RN ; [0, 1]) and an associated subsequence k(n) of n such that

{γn > 0} ⊂
{
x ∈ Ω

∣∣ dist (x; ∂Ω) ≥ 1
n

}
and

{0 < γn < 1} ⊂
{
x ∈ Ω

∣∣ dist (x; ∂Ω) ≤ 2
n

} (4.8)

and ∥∥(−∆)−
1
2A(γn(uk(n) − u))

∥∥
Lp(RN ;RL)

≤ 1

n
−→
n→∞

0. (4.9)

Once again employing Lemma 4.3 to extract another subsequence of k(n) (if necessary; not
relabeled), we may also assume that

χKγn(uk(n) − u) is Ω-tight in Lp(Ω; RM), (4.10)

where K is a �xed compact set containing ∂Ω in its interior. (Thus (4.10) essentially means
that γn(uk(n) − u) does not develop concentrations �at the boundary� of Ω.) Decomposing

P [γn(uk(n) − u)] =: ũn = w̃0
n + . . .+ w̃4

n

according to Lemma 4.1, we de�ne

wjn := w̃jn for j = 0, 1, 2, 3, 4,

w5
n := (I − P)[γn(uk(n) − u)] + (1− γn)(uk(n) − u).

By construction, uk(n) = u + w0
n + . . . + w5

n, w
0
n, . . . , w

5
n are bounded, A-free sequences in

Lp(RN ; RM), and the properties (a), (c), (d) and (e) are satis�ed. It remains to show (b)
and (f).

(f) By Lemma 3.4 (iv), (4.9) yields that

(I − P)[γn(uk(n) − u)]→ 0 strongly in Lp(RN ,RM). (4.11)

Moreover, if E is a closed subset of Ω, the compact set ∂Ω has positive distance to E,
whence χE(1 − γn)(uk(n) − u) = 0 for every n large enough by (4.8). Together with
(4.11), this implies that χEw

5
n → 0 in Lp.
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(b) By construction, w1
n is RN -tight and satis�es w1

n → 0 in Lp +Lq for any q < p. Hence,
it su�ces to show that

χKw
1
n = χK

[
ũn − w̃0

n − w̃2
n − w̃3

n − w̃4
n

]
is Ω-tight in Lp(Ω; RM)

with a compact set K ⊂ RN containing ∂Ω in its interior. Combined, (4.11) and
(4.10) imply that χK ũn = χKP [γn(uk(n) − u)] is Ω-tight in Lp(Ω; RM). Moreover, for
j ∈ {0, 3, 4}, w̃jn does not concentrate in Lp whence χKw̃

j
n is Ω-tight in Lp. Finally,

χKw̃
2
n → 0 in Lp and thus also is Ω-tight in Lp.

5 Proof of the main results

The proofs are grouped into four subsections. The �rst subsumes various results for Young
measures which are needed later. The second contains the proofs of Theorem 2.12 and
Corollary 2.13 while the third is dedicated to showing Theorem 2.5 and Theorem 2.15. In
the �nal subsection, we discuss some of the assumptions of the aforementioned theorems by
proving Proposition 2.2 and Proposition 2.14.

5.1 Auxiliary results

Possible oscillations of minimizing sequences will be discussed with Young measures as the
main tool.

Theorem 5.1 (fundamental theorem for Young measures [3, 13]). Let Ω ⊂ RN be measurable
and let vn : Ω→ RM be a sequence of measurable functions. Then there exists a subsequence
(uk(n)) and a family ν = (νx)x∈Ω of nonnegative Radon measures on RM , weak∗-measurable7

in x, such that the following holds:

(i) νx(RM) ≤ 1 for a.e. x ∈ Ω.

(ii) If limh→∞ supn∈N
∣∣{|vk(n)| ≥ h} ∩ Ω ∩BR(0)

∣∣ = 0 for every R > 0,
then νx(RM) = 1 for a.e. x ∈ Ω.

(iii) For every Carathéodory function f : Ω× RM → R such that
f(·, uk(n)) is equiintegrable8 in L1(Ω), we have that∫

Ω

f(x, uk(n)(x)) dx −→
k→∞

∫
Ω

∫
RM

f(x, µ) dνx(µ)dx.

As a consequence of (iii), ν is uniquely determined by (uk(n)) and it is called the Young
measure generated by uk(n). Moreover, if νx = νa for a.e. x ∈ Ω with a �xed a ∈ Ω, then it is
called a homogeneous Young measure. Another useful consequence of (iii) is the following.

7i.e., x 7→
∫

RM f(µ)dνx(µ) is measurable for every f ∈ C0(RM )
8Note that equiintegrablility in L1 in the sense of De�nition 2.7 is equivalent to weak relative compactness

in L1 by the de la Vallé-Poussin criterion.
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Corollary 5.2. Let 1 ≤ p < ∞ and let (un) ⊂ Lp(Ω; RM) be a bounded sequence which
generates a Young measure ν = (νx). Then un ⇀ u weakly in Lp with u(x) = 〈νx, id〉 :=∫

RM µ dνx(µ) for a.e. x ∈ Ω, and un → u locally in measure if and only if νx = δu(x) for
a.e. x ∈ Ω. Here, δµ denotes the Dirac mass at the point µ ∈ RM .

Young measures generated by A-free sequences on bounded domains have been characterized
in [7]. Here, we only employ a version of an approximation result of [7] used to �localize�
the Young measure, adapted to the whole space instead of bounded domains.

Proposition 5.3 (cf. Proposition 3.8 in [7]9). Let 1 ≤ p < ∞ and let ν = (νx) be a Young
measure generated by a bounded sequence (un) ⊂ Lp(RN ; RM) which does not concentrate

in Lp and satis�es ‖(−∆)−
1
2Aun‖Lp → 0. Then for a.e. a ∈ RN , there exists a sequence

(wn) ⊂ Lp] (RN ; RM), which is bounded in Lp(Q; RM), does not concentrate in Lp and satis�es

Awn = 0 in RN , such that wn generates the homogeneous Young measure νa and
∫
Q
wn dx =

〈νa, id〉 =
∫

RM µ dνx(µ) for every n.

Proof. Let Bk be a sequence of concentric open balls in RN with radius k ∈ N. For any k
and p′ := p

p−1
, we have

‖Aun‖W−1,p(Bk+1;RM )

= sup

{∫
RN
un · A∗η dx

∣∣∣∣ η ∈ C∞c (Bk+1; RL) with ‖η‖W 1,p′ ≤ 1

}
≤ sup

{∫
RN
un · A∗η dx

∣∣∣∣ η ∈ C∞c (RN ; RL) with ‖∇η‖Lp′ ≤ 1

}
≤ C

∥∥(−∆)−
1
2Aun

∥∥
Lp(RN ;RM )

−→
n→∞

0.

Hence, we may apply Proposition 3.8 in [7] to un restricted to Bk(0) (which generates ν
restricted to Bk(0)) for every k ∈ N, which yields the assertion.

As an immediate consequence, we have the following.

Proposition 5.4. Let Ω ⊂ RN be open, let 1 ≤ p <∞ and let ν = (νx) be a Young measure
generated a bounded sequence (vn) ⊂ Lp(RN ; RM) ∩ kerA such that (vn) is equiintegrable
in Lp and vn ⇀ 0 weakly in Lp, and suppose that f satis�es (f:0) and (f:1). Then, for
a.e. a ∈ Ω such that f(a, ·) is A-quasiconvex at ξ ∈ RM , we have∫

RM
f(a, ξ + µ) dνa(µ) ≥ f(a, ξ) (5.1)

Moreover, for a.e. a ∈ Ω such that f(a, ·) is strictly p-A-quasiconvex at ξ,

equality in (5.1) implies that νa = δ0, (5.2)

9Beware that the notion of equiintegrability used in [7] is equivalent to what we term �does not concen-
trate� and hence coincides with our de�nition only on domains with �nite measure.
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where δ0 denotes the Dirac mass concentrated at the point 0 ∈ RM . In particular, given
u ∈ Lp(Ω; RM) such that f(x, ·) is A-quasiconvex at u(x) for a.e. x ∈ Ω, we have that

lim inf
n→∞

∫
Ω

f(x, u(x) + vn(x)) dx ≥
∫

Ω

f(x, u(x)) dx (5.3)

and if f(x, ·) is strictly p-A-quasiconvex at u(x) for a.e. x ∈ Ω, then

equality in (5.3) implies that vn → 0 in Lp. (5.4)

Proof. The �rst assertion (5.1) is a simple consequence of Proposition 5.3, Theorem 5.1 and
the de�nition of A-quasiconvexity. Here, note that we may assume that the sequence wn
of Proposition 5.3 actually belongs to C∞] (RN ; RM), because if not, we can replace it with
a molli�ed sequence w̃n (molli�ed as usual by convolution with a smooth kernel with small
support) such that w̃n−wn → 0 strongly in Lp] , whence w̃n inherits all properties of wn. To
show (5.2), we again employ Proposition 5.3 to choose a sequence wn of smooth functions
which is equiintegrable in Lpper and generates νa. If (5.1) holds with equality, Theorem 5.1
and the strict p-A-quasiconvexity of f imply that g(tn, T ) → 0 with tn :=

∫
Q
|wn| and

T := supn
∫
Q
|wn|p (recall that g is decreasing in its second variable). This is possible only

if tn → 0, whence wn → 0 in L1
] and νa = δ0 due to Corollary 5.2. Finally, (5.1) and (5.2)

imply (5.3) and (5.4), respectively, by Theorem 5.1. As to (5.4), we �rst get that vn → 0
locally in measure, which in turn implies that vn → 0 in Lp by Vitali's theorem, since vn is
equiintegrable in Lp.

Remark 5.5. In fact, the converse of Proposition 5.4 is also true. More precisely, if f satis�es
(f:0) and (f:1) then the following holds for a.e. a ∈ Ω and every ξ ∈ RM : If (5.1) is valid
for every homogeneous A-free Lp] -Young measure10 νa such that 〈νa, id〉 = 0, then f is
A-quasiconvex at ξ, and if (5.1) and (5.2) hold for every such νa, then f is strictly p-A-
quasiconvex at ξ. Corresponding converse statements of (5.3) and (5.4) also hold, at least
if f is bounded from below by a constant: If (5.3) is satis�ed for every (vn) ⊂ Lp(Ω; RM)
which is A-free, equiintegrable in Lp and satis�es vn ⇀ 0 weakly in Lp, then f(x, ·) is A-
quasiconvex at u(x) for a.e. x, and if (5.3) and (5.4) hold for every such (vn), then f(x, ·) is
strictly p-A-quasiconvex at u(x) for a.e. x. The proof is omitted. It is not entirely trivial as
it involves a problem of measurable selection on the level of the associated Young measures
(cf. the concluding remark in [17]).

Remark 5.6. Given Ω ⊂ RN open, any Young measure generated by a bounded, A-free se-
quence (un) ⊂ Lp(Ω; RM) is also generated by a bounded, A-free sequence (ũn) ⊂ Lp(Ω; RM)
which is equiintegrable in Lp. For instance, one may take ũn := u+vn with u and vn de�ned
in Lemma 4.4.

Below, (f:2) is used exclusively in form of the following simple observation.

Proposition 5.7. Let 1 ≤ p <∞, let Ω ⊂ RN be open and suppose that f satis�es (f:0) and
(f:2). Then the map u 7→ f(·, u), Lp(Ω; RM) → L1(Ω), is uniformly continuous on bounded
subsets of Lp(Ω; RM).

10i.e., a homogeneous Young measure generated by an A-free, bounded sequence (wn) ∈ Lp] (RN ; RM )
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Proof. By (f:2) and Hölder's inequality, we have∫
Ω

|f(x, u)− f(x, v)| dx ≤ C

(
‖u‖

p−1
p

Lp + ‖v‖
p−1
p

Lp + ‖h‖
p−1
p

Lp

)
‖u− v‖Lp

for any u, v ∈ Lp(Ω; RM).

5.2 Domains with compact boundary

As we shall see, the proof of Theorem 2.12 heavily relies on the corresponding decomposi-
tion lemma of Section 4, Lemma 4.5. In a sense made precise below, it exploits that the
component sequences do not interact with each other in f , essentially due to Proposition 5.7.

Proposition 5.8. Let 1 < p <∞, let Ω ⊂ RN be open with compact boundary and suppose
that f satis�es (f:0)�(f:2). Moreover, let un be an A-free, bounded sequence which weakly
converges to a function u in Lp(Ω; RM), and let

un = u+ w0
n + . . .+ w5

n

be a decomposition as in Lemma 4.5. Then for any j0 ∈ {1, . . . , 5}, we have

f(·, un)− f(·, un − wj0n )−
[
f(·, wj0n )− f(·, 0)

]
−→
n→∞

0 in L1(Ω). (5.5)

In particular,

f(·, un)− f(·, u+ w0
n)−

∑5
j=1

[
f(·, wjn)− f(·, 0)

]
−→
n→∞

0 in L1(Ω). (5.6)

This kind of result is fairly standard in the context of bounded domains, where only two
component sequences appear in the decomposition lemma besides the weak limit (i.e., os-
cillations and concentrations); in particular, it is implicitely used in [8]. For a sequence of
gradients on an unbounded domain, a corresponding result was obtained in [11]. In our
present context, it would still be possible to give a proof relying on the abstract frame-
work developed in [11], which provides a way to handle the numerous di�erent properties
of the component sequences wjn in a more systematic way. However, the case of function-
als is somewhat simpler than that of operators mapping into a Banach space which allows
a reasonably-sized self-contained proof �by hand�, although our proof of (5.5) below only
discusses the case j0 = 5 in full detail, the other cases being more or less analogous.

Proof of Proposition 5.8. For δ > 0 let

Ωδ := {x ∈ Ω | dist (x; ∂Ω) > δ}.

We �rst show (5.5) for j0 = 5. Fix ε > 0 and de�ne

E = E(δ) := Ω \ Ωδ,

and choose δ = δ(ε) ∈ (0, 1) small enough such that

sup
n∈N

∥∥χE(δ)(un − w5
n)
∥∥
Lp
≤
∥∥χE(δ)u

∥∥
Lp

+
4∑
j=0

sup
n∈N

∥∥χE(δ)w
j
n

∥∥
Lp
< ε. (5.7)
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Note that such a choice of δ is possible because the constant sequence u, as well as χΩ\Ω1w
1
n,

. . . , χΩ\Ω1w
4
n, are Ω-tight in Lp, the latter as a consequence of their properties (a)�(e) listed

in Lemma 4.5. In addition, we have

χΩ\E(δ)w
5
n = χΩδw

5
n −→
n→∞

0 in Lp for any �xed δ ∈ (0, 1), (5.8)

by de�nition of w5
n. Together with the uniform continuity of v 7→ f(·, v), Lp → L1, on

bounded subsets of Lp as derived in Proposition 5.7, (5.7) and (5.8) imply that

lim sup
n→∞

∫
Ω

∣∣f(x, un)− f(x, un − w5
n)−

[
f(x,w5

n)− f(x, 0)
]∣∣dx

≤ lim sup
ε→0

sup
n∈N

∫
E

∣∣f(x, (un − w5
n) + w5

n)− f(x,w5
n)
∣∣ dx

+ lim sup
ε→0

sup
n∈N

∫
E

∣∣f(x, 0)− f(x, un − w5
n)
∣∣dx

+ lim sup
ε→0

lim sup
n→∞

∫
Ω\E

∣∣f(x, un)− f(x, un − w5
n)
∣∣dx

+ lim sup
ε→0

lim sup
n→∞

∫
Ω\E

∣∣f(x,w5
n)− f(x, 0)

∣∣ dx
= 0,

(5.9)

with E = E(δ(ε)). This concludes the proof of (5.5) for j0 = 5. Essentially, we exploited that
w5
n → 0 in Lp(Ω\E; RM) while at the same time the remaining components u and w0

n, . . . , w
4
n

are uniformly close to zero in Lp(E; RM) by their properties obtained in Lemma 4.5. The
same kind of argument also yields (5.5) for j0 = 1, . . . , 4, employing di�erent choices for
E which now also depend on n, adapted to the properties of the component sequence wj0n
which is separated from the rest. More precisely, we use

En = En(δ) := Ωδ ∩
{ ∣∣w3

n

∣∣ < δ
}
∩
{ ∣∣w2

n

∣∣ < 1
}
\B 1

δ
(0) if j0 = 4,

En = En(δ) := Ωδ ∩
{ ∣∣w3

n

∣∣ > δ
}
∩
{ ∣∣w2

n

∣∣ < 1
}
\B 1

δ
(0) if j0 = 3,

En = En(δ) := Ωδ ∩
{ ∣∣w2

n

∣∣ > 1
δ

}
\B 1

δ
(0) if j0 = 2,

En = En(δ) := Ωδ ∩
{ ∣∣w1

n

∣∣ > 1
δ

}
∩B 1

δ
(0) if j0 = 1,

where in each case δ = δ(ε, j0) is chosen small enough such that

sup
n∈N

∥∥χEn(un − wj0n )
∥∥
Lp
< ε and

∥∥χΩ\Enw
j0
n

∥∥
Lp
−→
n→∞

0 for �xed δ.

As before, it is not di�cult to see that the choice is possible due to the properties (a)�(e) of
wjn obtained in Lemma 4.5, and these also yield that χΩ\Enw

j0
n → 0 in Lp in each case; we

omit the (lengthy) details. Repeating (5.9) in each case then gives (5.5) for j0 = 1, . . . , 4.
Finally, note that (5.6) can be obtained by applying (5.5) successively to the sequences

ũ
(j0)
n := u+ w0

n +
∑5

j=j0
wjn, for j0 = 1, . . . , 5.

Remark 5.9. In the preceding proof, we exploited that u 7→ f(·, u), Lp → L1, is uniformly
continuous on bounded subsets of Lp, and not just on bounded subsets on UA (as a closed
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subspace of Lp). In view of the fact that we are only interested in F de�ned on UA, this is a
somewhat arti�cial assumption on the functional. It remains unclear if this is just a technical
de�ciency. If Ω = RN , we can apply the projector P of Section 4 to any sequences in the
proof without having to face the problem of A-free extension. In this case, it is possible to
work under the assumption that FE(u) :=

∫
E
f(x, u) dx is uniformly continuous on bounded

subsets of UA for any E ⊂ RN measurable, with a modulus of continuity which is also
uniform in E. There is still no obvious way to do the proof just using uniform continuity of
F on bounded subsets of UA, though.

If f is A-quasiconvex and F is bounded from below, the assertion of Proposition 5.8 can be
enhanced. As a byproduct, we get weak lower semicontinuity of F on UA.

Proposition 5.10. Let 1 < p < ∞, let Ω ⊂ RN be open with compact boundary, let un be
an A-free, bounded sequence which weakly converges to a function u in Lp(Ω; RM), and let

un = u+ w0
n + . . .+ w5

n

be a decomposition as in Lemma 4.5. Moreover, suppose that f satis�es (f:0)�(f:2), that
f(x, ·) is A-quasiconvex at u(x) for a.e. x ∈ Ω and that inf{F (v) | v ∈ UA} > −∞. Then

lim inf
n→∞

[
F (u+ w0

n)− F (u)
]
≥ 0,

lim inf
n→∞

[
F (wjn)− F (0)

]
≥ 0 for j = 1, . . . , 5,

(5.10)

and

lim inf F (un) ≥ F (u). (5.11)

If, in addition, lim supF (un) ≤ F (u), then even have that

F (u+ w0
n) −→

n→∞
F (u) and F (wjn) −→

n→∞
F (0) for j = 1, . . . , 5. (5.12)

Proof. The �rst inequality in (5.21) is an immediate consequence of Proposition 5.4, since
w0
n is equiintegrable and f(·, u(x)) is A-quasiconvex at u(x), for a.e. x ∈ Ω. To check the

remaining inequalities, �x an ε > 0 and choose u∗ε ∈ UA such that inf{F (v) | v ∈ UA}+ ε ≥
F (u∗ε). In particular,

lim inf
n→∞

[
F (u∗ε + wjn)− F (u∗ε)

]
≥ −ε. (5.13)

Moreover, by applying Proposition 5.8 to the sequences ũn = ũn(ε, j) := u∗ε + wjn (which is
also an admissible decomposition of ũn) for �xed ε and j, we get that[

F (u∗ε + wjn)− F (u∗ε)
]
−
[
F (wjn)− F (0)

]
−→
n→∞

0 for j = 1, . . . , 5.

Using this to replace F (u∗ε + wjn) ≥ F (u∗ε) in (5.13), we infer that

lim inf
n→∞

[
F (wjn)− F (0)

]
≥ −ε for j = 1, . . . , 5.
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Since this is true for any ε > 0, this concludes the proof of (5.21). As to the remaining
assertions, �rst note that by (5.6) in Proposition 5.8,

lim inf F (un)− F (u)

≥ lim inf
[
F (u+ w0

n)− F (u)
]

+
∑5

j=1 lim inf
[
F (wjn)− F (0)

]
,

(5.14)

whence lim inf F (un) ≥ F (u) due to (5.21). Finally, assume that lim supF (un) ≤ F (u).
Proposition 5.8 then allows us to replace (5.14) by

0 ≥ lim sup
[
F (u+ w0

n)− F (u)
]

+
∑5

j=1 lim inf
[
F (wjn)− F (0)

]
, (5.15)

where each of the six summands is nonnegative due to (5.21). Hence

0 ≥ lim sup
[
F (u+ w0

n)− F (u)
]
≥ lim inf

[
F (u+ w0

n)− F (u)
]
≥ 0,

which implies the �rst line of (5.23). The other lines can be obtained analogously, with
suitable variants of (5.15).

Proof of Theorem 2.12. From any given subsequence of un (not relabeled, speci�ed later),
we can extract another subsequence uk(n) such that

uk(n) = u+ w0
n + . . .+ w5

n

according to Lemma 4.5. Since lim supF (un) ≤ F (u) by assumption, Proposition 5.10 yields
that

F (u+ w0
n)→ F (u) and F (wjn)→ F (0) for j = 1, . . . , 5. (5.16)

With (5.16) as a starting point, we are now ready to prove (i)�(iv). Throughout, we argue
by contradiction.

(i) Suppose that un does not converge to u locally in measure. Hence it has a subsequence
(not relabeled) such that

lim inf
n→∞

|Ω′ ∩ {|un − u| > δ}| ≥ ε (5.17)

for an ε > 0, a δ > 0 and a bounded, open set Ω′ ⊂ Ω. The properties of wjn obtained in the
decomposition lemma entail that for j = 1, . . . , 5, wjn → 0 locally in measure. In particular,
we can replace un by u+w0

n in (5.17). But by (5.16) for w0
n and Proposition 5.4, w0

n → 0 in
Lp and thus also locally in measure, contradicting (5.17).

(ii) Suppose that un does concentrate in Lp. Then it has a subsequence (not relabeled) such
that lim infn→∞ ‖χEnun‖Lp > 0 for suitable measurable sets En ⊂ Ω with |En| → 0. In
particular,

lim inf
n→∞

∥∥χEk(n)
uk(n)

∥∥
Lp
> 0 (5.18)

Recall that by the properties of the component sequences in Lemma 4.5, w3
n and w4

n do not
concentrate in Lp, while (w1

n), (w2
n) and (w5

n) are elements of Φc. Hence, by assumption,
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(5.16) for j = 1, 2, 5 implies that w1
n, w

2
n and w

3
n converge to zero strongly in L

p. In particular,
uk(n) = u+ w0

n + . . .+ w5
n does not concentrate in Lp, which contradicts (5.18).

(iii) Suppose that χ{s−1<|un|<s}un is not RN -tight in Lp for an s > 1. Then un has a sub-
sequence (not relabeled) such that lim infn→∞

∥∥χ{s−1<|un|<s}\BRnun
∥∥
Lp

> 0 for a suitable
sequence of balls BRn centered at zero with radius Rn →∞. In particular,

lim inf
n→∞

∥∥χ{s−1<|uk(n)|<s}\BRk(n)

uk(n)

∥∥
Lp
> 0. (5.19)

By the properties of the component sequences in Lemma 4.5, this is only possible if (5.19)
also holds for w3

n instead of uk(n). However, (w3
n) ∈ Φ3, whence by assumption, (5.16) for

j = 3 implies that w3
n → 0 in Lp.

(iv) Suppose that un does spread out in Lp. Then it has a subsequence (not relabeled) such
that lim infn→∞ ‖χ|un|<δn}un‖Lp > 0 for a suitable sequence δn → 0+. In particular,

lim inf
n→∞

∥∥χ|uk(n)|<δk(n)}
uk(n)

∥∥
Lp
> 0. (5.20)

As before, by Lemma 4.5, u and wjn for j 6= 4 cannot contribute to (5.20), while (w4
n) ∈ Φ4.

Hence by assumption, (5.16) for j = 4 implies that w4
n → 0 in Lp, contradicting (5.20).

Last but not least, observe that if the conclusions of (i)�(iv) all hold, then un is equiintegrable
in Lp and un → u locally in measure. By Vitali's theorem, this entails that un → u strongly
in Lp.

Proof of Corollary 2.13. Essentially, (ii.1)�(ii.3) can be obtained by arguing as in (ii) in
the proof of Theorem 2.15. We omit the details.

5.3 General domains

In complete analogy to Proposition 5.8 and Proposition 5.10, using Lemma 4.4 instead of
Lemma 4.5, we have the following.

Proposition 5.11. Let 1 < p <∞, let Ω ⊂ RN be open and suppose that f satis�es (f:0)�
(f:2). Moreover, let un be an A-free, bounded sequence which weakly converges to a function
u in Lp(Ω; RM), and let

un = u+ vn + wn + zn

be a decomposition as in Lemma 4.4. Then for qn = wn as well as for qn = zn, we have that

f(·, un)− f(·, un − qn)−
[
f(·, qn)− f(·, 0)

]
−→
n→∞

0 in L1(Ω).

In particular,

f(·, un)− f(·, u+ vn)−
[
f(·, wn)− f(·, 0)

]
−
[
f(·, zn)− f(·, 0)

]
−→
n→∞

0 in L1(Ω).
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Proposition 5.12. Let 1 < p < ∞, let Ω ⊂ RN be open, let un be an A-free, bounded
sequence which weakly converges to a function u in Lp(Ω; RM), and let

un = u+ vn + wn + zn

be a decomposition as in Lemma 4.4. Moreover, suppose that f satis�es (f:0)�(f:2), that
f(x, ·) is A-quasiconvex at u(x) for a.e. x ∈ Ω and that inf{F (v) | v ∈ UA} > −∞. Then
we have that

lim inf
n→∞

[
F (u+ vn)− F (u)

]
≥ 0,

lim inf
n→∞

[
F (wn)− F (0)

]
≥ 0, lim inf

n→∞

[
F (zn)− F (0)

]
≥ 0,

(5.21)

and

lim inf F (un) ≥ F (u). (5.22)

If, in addition, lim supF (un) ≤ F (u), then even have that

F (u+ vn) −→
n→∞

F (u), F (wn) −→
n→∞

F (0) and F (zn) −→
n→∞

F (0). (5.23)

Proof of Theorem 2.5. As already observed in Remark 2.6, it su�ces to show that F is
lower semicontinuous along sequences in UA which weakly converge in Lp, and this is due to
Proposition 5.12.

Proof of Theorem 2.15. The proof is analogous to the one of Theorem 2.12, substituting
Lemma 4.4 for Lemma 4.5 and and Proposition 5.12 for Proposition 5.10.

5.4 Proof of Proposition 2.2 and Proposition 2.14

To prove the characterization of strict p-A-quasiconvexity of Proposition 2.2, we need a
decomposition lemma for A-free sequences of periodic functions on RN .

Lemma 5.13 (cf. Lemma 2.15 in [7]). Let Q := (0, 1)N , let 1 < p <∞, let (un) ⊂ Lp(Q; RM)
be a bounded sequence with

∫
Q
un = 0, and suppose that Aun = 0 on RN . Here, functions

in Lp(Q; RM) are identi�ed with their Q-periodic extension to RN . Then there exists a
subsequence uk(n) of un and a bounded sequence (vn) ⊂ Lp(Q; RM) such that Avn = 0 on
RN ,

∫
Q
vn = 0, vn is equiintegrable in Lp and uk(n) − vn → 0 locally in measure.

Proof. To be precise, Lemma 2.15 in [7] is stated for functions un de�ned on a bounded
domain Ω ⊂ RN instead of periodic functions on RN , but the construction in the proof
actually yields a sequence vn ∈ Lp(Q̃; RM), bounded and equiintegrable in Lp with χΩ(un −
vn)→ 0 locally in measure, which is de�ned on a given open cube Q̃ ∈ RN containing Ω. In
addition, vn is A-free on RN if extended Q̃-periodically. Since any open cube Q̃ containing
Ω is admissible in [7], we may use Q̃ := Ω := Q in our context. (In fact, some of the steps
in the proof could be simpli�ed as well, as in our case there is no need to extend from Ω to
Q̃-periodic functions.)
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Proposition 5.14. Let Q := (0, 1)N , let 1 < p < ∞, and suppose that f : RM → R is a
continuous function which satis�es (f:1) and (f:2) where h(x) is replaced by a constant. If
uk(n) and vn denote the sequences of Lemma 5.13, then we have

f(uk(n))− f(vn)−
[
f(uk(n) − vn)− f(0)

]
−→
n→∞

0 in L1(Q)

Proof. This is analogous to the proof of Proposition 5.8.

Proof of Proposition 2.2. We want to show that f(x, ·) is strictly p-A-quasi-convex at
ξ ∈ RM if and only if (2.1) holds. For simplicity, omit x in the following, and we assume
that ξ = 0 (otherwise use f̃(µ) := f(x, µ− ξ)).
�only if�: Obviously, strict p-A-quasiconvexity at 0 implies A-quasiconvexity at 0. Now
suppose that ∫

Q

[
f(ϕn(y))− f(0)

]
dy → 0

for a sequence (ϕn) ∈ Φ0, i.e., (ϕn) ∈ C∞] (Q; RM) is A-free and bounded and equiintegrable
in Lp(Q; RM) with weak limit zero. By the de�nition of strict p-A-quasiconvexity at 0, we
infer that

g
(∫

Q
|ϕn|, T̄

)
→ 0 with T̄ := supn∈N

∫
Q
|ϕn|p (5.24)

Since g(t, T̄ ) is increasing in t and nonzero whenever t > 0, this is possible only if
∫
Q
|ϕn| → 0,

which in turn implies that ϕn → 0 locally in measure.

�if�: For t, T ≥ 0 de�ne

g(t, T ) := inf

{∫
Q

[
f(ϕ(y))− f(0)

]
dy

∣∣∣∣ ϕ ∈ φA, ∫
Q

|ϕ| ≥ t,

∫
Q

|ϕ|p ≤ T

}
,

with the convention that g(t, T ) = +∞ if no admissible ϕ exists. Here, recall that φA :=
{ϕ ∈ C∞] (RN ; RM) | Aϕ = 0 on RN and

∫
Q
ϕ = 0}. By construction, the inequality required

in the de�nition of strict p-A-quasiconvexity at 0 is satis�ed. Moreover, g is increasing in t
and decreasing in T , and since f(x, ·) is A-quasiconvex at ξ, we have g ≥ 0. It remains to
show that g(t, T ) > 0 for all t > 0, T ≥ 0. Assume by contradiction that there is a t0 > 0
and a T0 ≥ 0 such that g(t0, T0) = 0. In particular, T0 > 0 as g(t0, 0) = +∞, and there is a
sequence (ϕ̃n) ⊂ φA such that

∫
Q
|ϕ̃n| ≥ t0,

∫
Q
|ϕ̃n|p ≤ T0 and∫

Q

[
f(ϕ̃n(y))− f(0)

]
dy −→

n→∞
0. (5.25)

For y ∈ RN de�ne ϕ̂n(y) := ϕ̃n(ny), which inherits all the properties of ϕ̃n stated above. In
particular, (5.25) turns into ∫

Q

[
f(ϕ̂n(y))− f(0)

]
dy −→

n→∞
0. (5.26)
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In addition, ϕ̂n ⇀ 0 weakly in Lp(Q; RM), as
∫
Q
ϕ̃n = 0. By Lemma 5.13 applied to un := ϕ̂n,

we get an A-free sequence ϕn which is bounded and equiintegrable in Lp(Q; RM) and which
still satis�es

∫
Q
ϕn = 0 and ϕn ⇀ 0 weakly in Lp. Moreover, lim

∫
Q
|ϕn| = lim

∫
Q

∣∣ϕ̂k(n)

∣∣ =

t0 > 0 since ϕ̂k(n) − ϕn → 0 locally in measure and thus in L1 as ϕ̂k(n) − ϕn is bounded in
Lp and p > 1. Hence (ϕn) ∈ Φ0 and ϕn does not converge to zero locally in measure. Due
to Proposition 5.14, (5.26) gives∫

Q

[
f(ϕn)− f(0)

]
+

∫
Q

[
f(ϕ̂n − ϕn)− f(0)

]
−→
n→∞

0, (5.27)

Since f is A-quasiconvex at 0, both terms on the left hand side of (5.27) are nonnegative
for every n, whence (5.27) implies that∫

Q

[
f(ϕn)− f(0)

]
−→
n→∞

0,

contradicting (2.1)

Proof of Proposition 2.14. We want to show that (2.7) is equivalent to (2.3) with Ψ =
Φ2 ∪ Φ3 ∪ Φ4. First assume that Ω = RN . Due to (2.6),

χRN\BR |f∞(u)− f(·, u)| −→
R→∞

0 in L1(RN), uniformly in u ∈ U , (5.28)

where U may be any subset of UA which is bounded in Lp. In the following, let

Φ∞ :=

{
(ϕn) ∈ UA

∣∣∣∣ ϕn is bounded in Lp and satis�es χBϕn → 0 in Lp

for every bounded, open set B ⊂ RN

}
Note that Φ2∪Φ3∪Φ4 ⊂ Φ∞. Since f∞ satis�es the same growth conditions as f (i.e., (f:1),
with h(x) replaced by 0 = lim inf |x|→∞ h(x)), we have that f∞(0) = 0, and (5.28) implies
that

f(·, ϕn)− f(·, 0)− f∞(ϕn) −→
n→∞

0 in L1(RN), for every (ϕn) ∈ Φ∞. (5.29)

As a consequence of (5.29), f can be replaced by f∞ in (2.3) for any Ψ ⊂ Φ∞, whence (2.7)
implies (2.3) for Ψ = Φ2 ∪ Φ3 ∪ Φ4. It remains to show that the converse is also true. First
suppose that there exists a t0 > 0 such that {u inf UA | ‖u‖Lp = t0} = ∅. In this case,
{u inf UA | ‖u‖Lp = t} = ∅ for all t > 0 since UA is invariant under multiplication with
scalars. Hence UA = {0} and there is nothing to show. Otherwise, for t ∈ [0,∞) de�ne

g(t) := inf

{∫
RN
f∞(ϕ) dx

∣∣∣∣ ϕ ∈ Lp(RN ; RM), Aϕ = 0, ‖u‖Lp = t

}
.

Since f∞ also inherits the p-Lipschitz property (f:2) (with h replaced by lim inf |x|→∞ h(x) =
0), F∞(u) :=

∫
RN f∞(u) dx is uniformly continuous on bounded subsets of Lp by Proposition

5.7, which implies that g is continuous. It remains to show that g > 0 on (0,∞). Suppose
by contradiction that g(t0) = 0 for a t0 > 0. Then there exists a sequence (ηn) ⊂ UA
with ‖ηn‖Lp = t0 such that

∫
RN f∞(ηn) dx → 0. Since ηn is bounded in Lp, there exists a
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subsequence k(n) of n and a sequence of points (xn) ⊂ RN such that χBn(xn)ηk(n) → 0 in Lp.
For x ∈ RN let

ϕn(x) := ηk(n)(x− xn)

By construction, (ϕn) ∈ Φ∞, ‖ϕn‖Lp = t0 > 0 and
∫

RN f∞(ϕn) dx→ 0. By (5.29), the latter
entails that ∫

RN
f(x, ϕn) dx→

∫
RN
f(x, 0) dx. (5.30)

This already contradicts (2.3) for Ψ = Φ∞. To get the contradiction also with the smaller
set Ψ = Φ2 ∪ Φ3 ∪ Φ4, decompose ϕn =

∑4
j=0 ϕ

j
n according to Lemma 4.1 (or a suitable

subsequence, not relabeled; note that ϕn weakly converges to zero). We have that ϕ0
n+ϕ1

n →
0 in Lp, since ϕ0

n + ϕ1
n = ϕn −

∑4
j=2 ϕ

j
n is RN -tight and converges to zero in Lploc. Since

‖ϕn‖Lp = t0 > 0, this means that at least one of the three sequences ϕjn, j = 2, 3, 4, does
not converge to zero strongly in Lp. Moreover, Proposition 5.8 and (5.30) imply that∫

RN
f(x, ϕjn) dx→

∫
RN
f(x, 0) dx for j = 2, 3, 4. (5.31)

As (ϕjn) ∈ Φj, this contradicts (2.3) for Ψ = Φ2 ∪ Φ3 ∪ Φ4.

The general case where Ω ⊂ RN is the complement of some compact set is essentially
analogous. The only additional di�culty occurs while showing that (2.7) implies (2.3) for
Ψ = Φ∞, because (2.7) just applies to functions de�ned on the whole space while the
sequences in Φ2 ∪ Φ3 ∪ Φ4 and Φ∞ now are de�ned only on Ω. However, any sequence
(ϕn) ∈ Φ∞ converges to zero strongly in Lp on any bounded set, in particular on any
bounded vicinity of ∂Ω. Using smooth cut-o� functions as in the proof of Lemma 4.5 to
extend before projecting back onto A-free �elds allows us to replace ϕn with an A-free
sequence ϕ̃n such that ϕn − ϕ̃n → 0 in Lp(Ω; RM) and ϕ̃n → 0 in Lp(RN \ Ω; RM).

6 Concluding remarks

Remark 6.1. While the main results of this paper and the decomposition lemmas of Section 4
are stated for the space Lp, the method presented here can actually handle more general
spaces without signi�cant additional di�culties. In fact, the results of Section 3 are already
stated in a form more general than needed if we only study Lp. In particular, it is easy to
adapt the decompositions lemmas and the main results to Lp +Lq and Lp∩Lq, respectively,
with 1 < q < p < ∞. This generalization is particularly useful for functionals on domains
with in�nite measure whose integrand does not have the same behavior near zero and near
in�nity, which is actually quite natural (e.g., f(x, µ) ≈ |µ|2 as |µ| → 0 and f(x, µ) ≈ |µ|p as
µ → ∞). In addition, the results can be extended to weighted Lebesgue spaces, as long as
the suitable results for the continuity of Fourier multipliers in these spaces are still available.
Beware though that even if one is interested in one speci�c space only, Fourier multiplier
results are still needed for a suitable family of related spaces to use the arguments employed
in the proof of Lemma 3.4 (iii) and Lemma 4.1.
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Remark 6.2. If Ω = RN , all of the results of this paper involving a given bounded, A-
free sequence (un) ⊂ Lp(RN ; RM) stay true if instead of Aun = 0, we only require the

weaker condition ‖(−∆)−
1
2Aun‖Lp → 0. To see this, simply replace un with the A-free

sequence ũn := Pun, where P is the projection on A-free �elds de�ned in Section 3. Since
un− ũn = (I −P)un → 0 strongly in Lp by Lemma 3.4 (iv), the uniform continuity of F on
bounded sets shown in Proposition 5.7 implies that F (un)− F (ũn)→ 0, which means that
any assumption on F (un) used in our results will not be a�ected. Unfortunately, it is not
clear if this also works on domains with unbounded boundary if

‖Aun‖L−1,p := sup
{∫

Ω
unA∗ϕ

∣∣ ϕ ∈ C∞c (Ω; RL) with
∫

Ω
|∇ϕ|

p
p−1 ≤ 1

}
is used to replace ‖(−∆)−

1
2Aun‖Lp .

Remark 6.3. The su�cient conditions listed in Theorem 2.12 (i)�(iv), Corollary 2.12 (ii.1)�
(ii.3) and Theorem 2.15 (i)�(iii), respectively, are also necessary. For instance, if in the
situation of Theorem 2.12, the assumption of (ii) does not hold, i.e., (2.3) is violated for
Ψ = Φc, then there exists a sequence ϕn ∈ Φ1 with F (ϕn) → F (0) and ϕn 6→ 0 in Lp (a
bounded, Ω-tight, A-free, purely concentrating sequence). In particular, for any u ∈ UA,
un := u+ ϕn is a bounded, A-free sequence in Lp which does concentrate, and limF (un)−
F (u) = limF (ϕn)−F (0) = 0 as a consequence of Proposition 5.10, whence un is admissible
for the theorem. Similar arguments also show that the conditions of Theorem 2.12 (iii),(iv),
Corollary 2.12 (ii.1)�(ii.3) and and Theorem 2.15 (ii),(iii) are sharp. The necessity of strictA-
quasiconvexity for the local convergence in measure in part (i) of both theorems is equivalent
to the converse of the second part of Proposition 5.4 discussed in Remark 5.5.

Acknowledgements

I am grateful for the �nancial support I received from the German Research Foundation
(DFG fellowship KR 3544/1-1,2), as well as for the hospitality of the Center for Nonlinear
Analysis at Carnegie Mellon University (NSF Grants No. DMS-0405343 and DMS-0635983).

References

[1] E. Acerbi and N. Fusco. Semicontinuity problems in the calculus of variations. Arch. Ra-
tion. Mech. Anal., 86:125�145, 1984.

[2] Robert A. Adams. Sobolev spaces, volume 65 of Pure and Applied Mathematics. Aca-
demic Press, Inc., a subsidiary of Harcourt Brace Jovanovich, Publishers, New York-San
Francisco-London, 1975.

[3] J. M. Ball. A version of the fundamental theorem for young measures. In M. Rascle,
D. Serre, and M. Slemrod, editors, PDEs and continuum models of phase transitions.
Proceedings of an NSF-CNRS joint seminar held in Nice, France, January 18-22, 1988,
volume 344 of Lect. Notes Phys., pages 207�215, Berlin etc., 1989. Springer.

[4] Andrea Braides, Irene Fonseca, and Giovanni Leoni. A-quasiconvexity: Relaxation and
homogenization. ESAIM, Control Optim. Calc. Var., 5:539�577, 2000.

29



[5] L.C. Evans and R.F. Gariepy. Some remarks concerning quasiconvexity and strong
convergence. Proc. R. Soc. Edinb., Sect. A, 106:53�61, 1987.

[6] Irene Fonseca and Martin Kruºík. Oscillations and concentrations generated by A-
free mappings and weak low semicontinuity of integral functions. Preprint 08-CNA-19,
http://www.math.cmu.edu/CNA/publications.html, 2008.

[7] Irene Fonseca and Stefan Müller. A-quasiconvexity, lower semicontinuity, and Young
measures. SIAM J. Math. Anal., 30(6):1355�1390, 1999.

[8] Irene Fonseca, Stefan Müller, and Pablo Pedregal. Analysis of concentration and oscil-
lation e�ects generated by gradients. SIAM J. Math. Anal., 29(3):736�756, 1998.

[9] Agnieszka Kaªamajska and Martin Kruºík. Oscillations and concentrations in sequences
of gradients. ESAIM, Control Optim. Calc. Var., 14(1):71�104, 2008.

[10] T. Kato, M. Mitrea, G. Ponce, and M. Taylor. Extension and representation of
divergence-free vector �elds on bounded domains. Math. Res. Lett., 7(5-6):643�650,
2000.

[11] Stefan Krömer and Markus Lilli. On properness and related properties of quasilinear
systems on unbounded domains. Preprint, arXiv:0711.0863v1 [math.AP], 2007.

[12] D. S. Kurtz and R. L. Wheeden. Results on weighted norm inequalities for multipliers.
Trans. Am. Math. Soc., 255:343�362, 1979.

[13] Stefan Müller. Variational models for microstructure and phase transisions. In S. Hilde-
brandt, editor, Calculus of variations and geometric evolution problems. Lectures given
at the 2nd session of the Centro Internazionale Matematico Estivo (CIME), Cetraro,
Italy, June 15-22, 1996, volume 1713 of Lect. Notes Math., pages 85�210, Berlin, 1999.
Springer.

[14] François Murat. Compacite par compensation: condition necessaire et su�sante de
continuite faible sous une hypothèse de rang constant. Ann. Sc. Norm. Super. Pisa, Cl.
Sci., IV. Ser., 8:69�102, 1981.

[15] E.M. Stein. Singular integrals and di�erentiability properties of functions. Princeton
University Press, Princeton, N.J., 1970.

[16] M.A. Sychev. Young measure approach to characterization of behaviour of integral func-
tionals on weakly convergent sequences by means of their integrands. Ann. Inst. Henri
Poincaré, Anal. Non Linéaire, 15(6):755�782, 1998.

[17] M.A. Sychev. A new approach to young measure theory, relaxation and convergence in
energy. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 16(6):773�812, 1999.

[18] A. Visintin. Strong convergence results related to strict convexity. Commun. Partial
Di�er. Equations, 9:439�466, 1984.

[19] Kewei Zhang. A weak-strong convergence theorem and its applications. Northeast.
Math. J., 5(1):11�26, 1989.

30


