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1 Introduction

Higher order variational problems appear often in the engineering literature and
in connection with the so-called gradient theories of phase transitions within
elasto-plastic regimes. The study of equilibria of micromagnetic materials asks
for mastery of second order energies (see [51], [91]; see also [31], [38], [44], [45],
[61], [77], [78], [79], [108]), and the Blake-Zisserman model for image segmenta-
tion in computer vision (see [34], [35], [36]; see also [50]) seats squarely among
second-order free discontinuity models which may be recasted as higher order
Griffiths’ models for fracture mechanics (see [7], [24], [28],[58], [68], [69], [70],
[71]). The energy functionals may include lower dimensional order terms to
take into account interfacial energies and discontinuities of underlying fields
(see [10]). Here we will neglect the role played by these terms and we will focus
on the added difficulties inherent to the presence of derivatives of order two or
more.

We consider an energy functional

I(u) :=

∫

Ω

f(x, u,∇u, . . . ,∇ku) dx (1.1)

where Ω ⊂ RN is an open, bounded domain, u : Ω → Rd, N, d ≥ 1, u :=
(u1, . . . , ud), ∇u ∈ Rd×N , and (∇u)ij := ∂ui

∂xj
for i ∈ {1, . . . , d}, j ∈ {1, . . . , N}.
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Many interesting phenomena are related to the nonconvexity of the bulk energy
density, and this brings us to two questions commonly asked in the Calculus of
Variations:

Question I: Can we find necessary and sufficient conditions ensuring lower
semicontinuity of I (with respect to an appropriate topology)?
Precisely, what assumptions on f guarantee that if {un} is a sequence bounded
in W k,1(Ω;Rd) and if un → u in W k−1(Ω;Rd) then

I(u) ≤ lim inf
n→+∞

I(un)?

Question II: Is it possible to characterize the effective energy of a family {Iε}
of functionals of the type (1.1)?
Here we search for an integral representation for the limiting energy in the sense
of De Giorgi’s Γ-limit (see [46], [49]), i.e.,

I(u) := inf
{ε},{uε}

{

lim inf
ε→0+

Iε(uε) : uε → u inW k−1,1(Ω;Rd)

}

. (1.2)

Multiple scales arise in problems of type (1.2) where natural scaling laws
and physical parameters are taken into account by the dependence ε→ fε (see
[29], [51], [52], [54]). Also, in questions of type (1.1) and when the growth
of f is at most linear at infinity, we are faced with energies which may allow
for concentrations, and therefore the interaction between measures of different
dimensionality becomes an issue. F

A lesson to be learned is that techniques for higher order variational prob-
lems do not reduce to mere generalizations of their counterparts for first order
problems (e.g., by assuming k-quasiconvexity in place of quasiconvexity, see [42],
[87], [88]). Indeed, although functionals depending uniquely on the highest or-
der derivatives can be treated easily, those where lower order terms are present
require new ideas and new tools to handle localization and the truncation of
lower order terms. Truncating gradients so that they remain gradients may be
achieved through the techniques of maximal functions and of Fourier multipliers
(see [1], [99], [100]) in those cases where the bulk energy density f has super-
linear growth (see the proof of Lemma 2.15 in [66]). In fact, the success of this
approach relies heavily on p-equi-integrability, and thus cannot be extended to
the case p = 1 where one replaces weak convergence in W k,1(Ω;Rn) with the
natural convergence, i.e., strong convergence in W k−1,1(Ω;Rn). As it turns out,
when f grows at most linearly at infinity many seemingly simple questions, long
ago answered within the realm of first order problems, still defy all attempts
when we deal with order two or more. As an example, a standing open problem
is the following (in the case where k = 1 this question was answered by Fonseca
and Leoni in [59] Theorem 1.8):

is it true that if f : Ω × Rs × Rd×Nk → [0,∞) is a Borel integrand, with
s := d+ d×N + . . . + d×Nk−1, if f(x,v, ·) is k-quasiconvex, with k ≥ 2 and
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v := (u,∇u, . . . ,∇k−1u), if f satisfies “reasonable” continuity properties with
respect to x and v, if

C|ξ| − 1

C
≤ f(x,v, ξ) ≤ C(1 + |ξ|)

for all (x,v) ∈ Ω×Rs, if u ∈W k−1,1(Ω;Rd), ∇ku ∈ BV (Ω;Rd×Nk

), and if {un}
is a sequence of functions inW k,1(Ω;Rd) converging to u inW k−1,1(Ω;Rd), then

∫

Ω

f(x, u, . . . ,∇ku) dx ≤ lim inf
n→∞

∫

Ω

f(x, un, . . . ,∇kun) dx?

2 Lower Semicontinuity Results for Higher

Order Variational Problems

In this section we address Question I.
Morrey’s notion of quasiconvexity was extended by Meyers [87] to the realm

of higher-order variational problems. We recall that f : Ω→ [0,+∞) is said to
be quasiconvex if (see [42], [88])

f(ξ) ≤
∫

Q

f(ξ +∇ϕ(x)) dx (2.1)

for all ϕ ∈ C∞
c (Q;Rd), and a function F : Ed

k → R is said to be k-quasiconvex
if

F (ξ) ≤
∫

Q

F (ξ +∇kw(y)) dy (2.2)

for all ξ ∈ Ed
k and all w ∈ C∞

c (Q;Rd) .
To fix notation, here and in what follows, Ω is an open, bounded domain

in RN , Q := (−1/2, 1/2)N , C∞
c (RN ;Rd) is the space of infinitely differentiable

Rd-valued functions in Ω with compact support, and C∞
per(RN ;Rd) stands for

the space of Q–periodic functions in C∞(RN ;Rd). Recall that f is said to be
Q-periodic if f(x + kei) = f(x) for all x, all k ∈ Zk, and for all i = 1, . . . , N ,
where {e1, . . . , eN} is the standard orthonormal basis of RN . For any multi-
index α = (α1, . . . , αN ) ∈ NN , we set

∇α :=
∂|α|

∂xα1
1 . . . ∂xαNN

, |α| = α1 + . . .+ αN ,

and for each j ∈ N the symbol ∇ju stands for the vector-valued function whose
components are all the components of ∇αu for |α| = j. If u is C∞ then for j ≥ 2
we have that ∇ju(x) ∈ Ed

j , where E
d
j denotes the space of symmetric j-linear

maps from RN into Rd. We set Ed
0 := Rd, Ed

1 := Rd×N and

Ed
[j−1] := Ed

0 × · · · × Ed
j−1, Ed

[0] := Ed
0 .
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For any integer k ≥ 2 we define

BV k(Ω;Rd) :=
{
u ∈W k−1,1(Ω;Rd) : ∇k−1u ∈ BV (Ω;Ed

k−1)
}
,

where here∇ju is the Radon–Nikodym derivative of the distributional derivative
Dju of ∇j−1u, with respect to the N–dimensional Lebesgue measure LN .

Meyers [87] proved that k-quasiconvexity is a necessary and sufficient con-
dition for (sequential) lower semicontinuity of (1.1) with respect to weak con-
vergence (resp. weak* convergence if p =∞) in W k,p(Ω;Rd) under appropriate
growth and continuity conditions on the integrand f . Meyers’ argument uses
results of Agmon, Douglis and Nirenberg [2] concerning Poisson kernels for ellip-
tic equations, and later Fusco [72] gave a simpler proof using De Giorgi’s Slicing
Lemma. He also extended the result to Carathéodory integrands when p = 1,
while the case p > 1 has been recently established by Guidorzi and Poggiolini
[75], who relied heavily on a p-Lipschitz assumption, i.e.,

|f(x,v, ξ)− f(x,v, ξ1)| ≤ C(1 + |ξ|p−1 + |ξ1|p−1)|ξ − ξ1|.

As it turns out, k-quasiconvex integrands with p-growth are p-Lipschitz. This
assertion was established by Marcellini [84] for k = 1, the case k = 2 was proven
in [75], and recently Santos and Zappale [97] extend it to arbitrary k.

To date, the most general results concerning lowersemicontinuity and re-
laxation for higher-order variational problems with superlinear growth were ob-
tained by Braides, Fonseca and Leoni in [30], where these questions may be seen
as corollaries of very broad results casted for variational problems under pde
constraints (here curl= 0), the A-quasiconvexity theory. In a recent paper Fon-
seca and Müller [66] proved that A-quasiconvexity is a necessary and sufficient
condition for (sequential) lower semicontinuity of a functional

(u, v) 7→
∫

Ω

f(x, u(x), v(x)) dx,

whenever f : Ω× Rm × Rd → [0,∞) is a Carathéodory integrand satisfying

0 ≤ f(x, u, v) ≤ a(x, u) (1 + |v|q) ,

for a.e. x ∈ Ω and all (u, v) ∈ Rm×Rd, where 1 ≤ q <∞, a ∈ L∞
loc(Ω×R; [0,∞)),

un → u in measure, vn ⇀ v in Lq(Ω;Rd) and Avn → 0 in W−1,q(Ω;Rl) (see

also [43]). In the sequel A : Lq(Ω;Rd) → W−1,q(Ω;Rl), Av :=
∑N

i=1A
(i) ∂v

∂xi

is a constant–rank, first order linear partial differential operator, with A(i) :
Rd → Rl linear transformations, i = 1, . . . , N . We recall that A satisfies the
constant-rank property if there exists r ∈ N such that

rankAw = r for all w ∈ SN−1, (2.3)

where

Aw :=
N∑

i=1

wiA
(i), w ∈ RN .
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A function f : Rd → R is said to be A-quasiconvex if

f(v) ≤
∫

Q

f(v + w(y)) dy

for all v ∈ Rd and all w ∈ C∞
per(RN ;Rd) such that Aw = 0 and

∫

Q
w(y) dy = 0.

The relevance of this general framework, as emphasized by Tartar (see [102],
[103], [104], [105], [106], [107]; see also [42], [43], [92]) lies on the fact that in
continuum mechanics and electromagnetism pdes other than curl v = 0 arise
naturally, and this calls for a relaxation theory which encompasses pde con-
straints of the type Av = 0. Some important examples included in this general
setting are given by:

(a) [Unconstrained Fields]
Av ≡ 0.

Here, due to Jensen’s inequality A-quasiconvexity reduces to convexity.
(b) [Divergence Free Fields]

Av = 0 if and only if div v = 0,

where v : Ω ⊂ RN → RN (see also [95]).
(c) [Magnetostatics Equations]

A
(
m
h

)

:=

(
div(m+ h)

curlh

)

= 0,

where m : R3 → R3 is the magnetization and h : R3 → R3 is the induced
magnetic field (see [51, 106]); often these are also called Maxwell’s Equations in
the micromagnetics literature.
(d) [Gradients]

Av = 0 if and only if curl v = 0.

Note that w ∈ C∞
per(RN ;Rd) is such that curl w = 0 and

∫

Q
w(y) dy = 0 if and

only if there exists ϕ ∈ C∞
per(RN ;Rn) such that ∇ϕ = v, where d = n × N .

In this case we recover the notion of quasiconvexity (see (2.1)) for continuous
integrands. Indeed, it suffices to prove that if f is continuous and satisfies (2.1)
for test functions ϕ ∈ C∞

c (Q;Rd), then (2.1) remains valid if ϕ ∈ C∞
per(Q;Rd).

Fix ξ ∈ Rd×N and consider ϕ ∈ C∞
per(Q;Rd). Let ε > 0 and let θ ∈ C∞

c (Q; [0, 1])
be a test function such that θ = 1 in (1 − ε)Q, and ||∇θ||∞ ≤ 2/ε. Setting
ϕn(x) :=

1
nθ(x)ϕ

(
n
x

)
we have

f(ξ) ≤ lim inf
n→∞

∫

Q

f (ξ +∇ϕn(x)) dx

≤ lim
n→∞

∫

Q

f(ξ +∇ϕ(nx)) dx+ lim sup
n→∞

∫

Q\(1−ε)Q

f(ξ +∇ϕ(nx)) dx.

In view of the Q-periodicity of ∇ϕ, by the Riemann-Lebesgue Lemma

lim
n→∞

∫

Q

f(ξ +∇ϕ(nx)) dx =

∫

Q

f(ξ +∇ϕ(y)) dy.
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On the other hand, for n > 1/ε and for all x ∈ Q

|ξ +∇ϕn(x)| =

∣
∣
∣
∣
ξ +

1

n
∇θ(x)ϕ(nx) + θ(x)∇ϕ(nx)

∣
∣
∣
∣

≤ C

where the constant C is independent of n and ε. We deduce, therefore, that

f(ξ) ≤
∫

Q

f(ξ +∇ϕ(y)) dy + CO(ε).

Letting ε→ 0+ we conclude that

f(ξ) ≤
∫

Q

f(ξ +∇ϕ(y)) dy.

(e) [Higher Order Gradients] Replacing the target space Rd by the finite dimen-
sional vector space En

s , it is possible to find a first order linear partial differen-
tial operator A such that v ∈ Lp(Ω;En

s ) and Av = 0 if and only if there exists
ϕ ∈W s,q(Ω;Rn) such that v = ∇sϕ (see Theorem 2.4). Here A-quasiconvexity
reduces to k-quasiconvexity (see (2.2)) when the energy density is continuous.

Let 1 ≤ p <∞ and 1 < q <∞, and consider the functional

F : Lp(Ω;Rm)× Lq(Ω;Rd)×O(Ω)→ [0,∞)

defined by

F ((u, v);D) :=

∫

D

f(x, u(x), v(x)) dx,

where O(Ω) is the collection of all open subsets of Ω, and the density f satisfies
the following hypothesis:

(H) f : Ω× Rm × Rd → [0,∞) is a Carathéodory function, and

0 ≤ f(x, u, v) ≤ C (1 + |u|p + |v|q)

for a.e. x ∈ Ω and all (u, v) ∈ Rm × Rd, and for some constant C > 0.

For D ∈ O(Ω) and (u, v) ∈ Lp(Ω;Rm)×
(
Lq(Ω;Rd) ∩KerA

)
define

F((u, v);D) := inf

{

lim inf
n→∞

F ((un, vn);D) : (un, vn) ∈ Lp(D;Rm)× Lq(D;Rd),

un → u in Lp(D;Rm), vn ⇀ v in Lq(D;Rd),

Avn → 0 in W−1,q(D;Rl)

}

.

(2.4)
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It can be shown that the condition Avn → 0 imposed in (2.4) may be equiv-
alently replaced by requiring that vn satisfy the homogeneous pde Av = 0.
Precisely,

F((u, v);D) = inf

{

lim inf
n→∞

F ((un, vn);D) : (un, vn) ∈ Lp(D;Rm)× Lq(D;Rd),

un → u in Lp(D;Rm), vn ⇀ v in Lq(D;Rd), Avn = 0

}

.

(2.5)

The following integral representation for the relaxed energy F was obtained
in [30].

Theorem 2.1 ([30], Theorem 1.1) Under condition (H) and the constant-
rank hypothesis (2.3), for all D ∈ O(Ω), u ∈ Lp(Ω;Rm), and v ∈ Lq(Ω;Rd) ∩
KerA, we have

F((u, v);D) =

∫

D

QAf(x, u(x), v(x)) dx

where, for each fixed (x, u) ∈ Ω × Rm, the function QAf(x, u, ·) is the A-
quasiconvexification of f(x, u, ·), namely

QAf(x, u, v) := inf

{
∫

Q

f(x, u, v + w(y)) dy :w ∈ C∞
per(RN ;Rd) ∩KerA,

∫

Q

w(y) dy = 0

}

for all v ∈ Rd.

The proof of this theorem relies heavily on the use of Young measures (see
[15], [109]), together with the blow-up method introduced by Fonseca and Müller
in [64], and the arguments developed in [66] (see also [13], [81]) .

Remark 2.2 (i) Note that in the degenerate case where A = 0, A-quasiconvex
functions are convex and Theorem 2.1 together with condition (2.6) below yield
a convex relaxation result with respect to Lp × Lq(weak) convergence. See the
monograph of Buttazzo [32] for related results in this context.

(ii) If the function f also satisfies a growth condition of order q from below
in the variable v, that is

f(x, u, v) ≥ 1

C
|v|q − C (2.6)

for a.e. x ∈ Ω and all (u, v) ∈ Rm×Rd, then a simple diagonalization argument
shows that (u, v) 7→ F((u, v);D) is Lp × (Lq-weak) lower semicontinuous, i.e.,

∫

D

QAf(x, u(x), v(x)) dx ≤ lim inf
n→∞

∫

D

QAf(x, un(x), vn(x)) dx (2.7)
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whenever un ∈ Lp(Ω;Rm), vn ∈ Lq(Ω;Rd) ∩ KerA, un → u in Lp(D;Rm),
vn ⇀ v in Lq(D;Rd). In particular QAf is A-quasiconvex if f is continuous and

1

C
|v|q − C ≤ f(v) ≤ C(1 + |v|q)

for some constant C > 0, and all v ∈ Rd.
The lower semicontinuity result (2.7) is not covered by Theorem 3.7 in [66],

where it is assumed that the integrand be A-quasiconvex and continuous in
the v variable. Indeed, and as remarked in [66], in the realm of general A-
quasiconvexity the function QAf(x, u, ·) may not be continuous, even if f(x, u, ·)
is. To illustrate this, it suffices to consider the degenerate case KerA = {0} all
functions are A-quasiconvex. Also, when N = 1, d = 2, and v = (v1, v2), let

Av :=
(
0 1

)
(
v′1
v′2

)

.

Then for w ∈ R
Aw =

(
0 w

)

and thus when |w| = 1 the matrix Aw has constant rank 1. For any given
function f the A-quasiconvex envelope of f is obtained by convexification in
the first component, so that by considering e.g. (see [66], [85])

f1(v) := e−|v1| v2
2 , f2(v) := (1 + |v1|)|v2|,

one gets

QAf1(v) =

{

0 if v2 6= 0,

1 if v2 = 0,
QAf1(v) =

{

(1 + |v1|)|v2| if |v2| ≥ 1,

1 if |v2| < 1.

(iii) The continuity of f with respect to v is essential to ensure the representation
of F provided in Theorem 2.1, in contrast with the curl-free case where Av = 0
if and only if curl v = 0. In fact, if f : Rn×N → [0,∞) is a Borel function
satisfying the growth condition

0 ≤ f(v) ≤ C(1 + |v|q)

for C > 0, 1 ≤ q <∞, v ∈ Rn×N , then it can be shown easily that

F(w;D) =

∫

D

Qf(∇w(x)) dx (2.8)

for all D ∈ O(Ω), w ∈W 1,q(Ω;Rn), where Qf is the quasiconvex envelope of f .
Indeed, Qf is a (continuous) quasiconvex function satisfying (H) (see [56], [25]
Theorem 4.3); therefore by Theorem 2.1

w 7→
∫

D

Qf(∇w(x)) dx
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is W 1,q-sequentially weakly lower semicontinuous, and so

∫

D

Qf(∇w(x)) dx ≤ F(w;D).

Conversely, under hypothesis (H) it is known that F(v; ·) admits an integral
representation (see Theorem 9.1 in [27], Theorem 20.1 in [46])

F(w;D) =

∫

D

ϕ(∇w(x)) dx,

where ϕ is a quasiconvex function, and ϕ(v) ≤ f(v) for all v ∈ Rn×N . Hence
ϕ ≤ Qf and we conclude that (2.8) holds.

For general constant-rank operators A, and if f is not continuous with re-
spect to v, it may happen that F0((u, v); ·) is not even the trace of a Radon
measure in O(Ω), and thus (2.5) fails, where we define

F0((u, v);D) = inf

{

lim inf
n→∞

F ((un, vn);D) : (un, vn) ∈ Lp(D;Rm)× Lq(D;Rd),

un → u in Lp(D;Rm), vn ⇀ v in Lq(D;Rd), Avn = 0

}

.

As an example, consider d = 2, N = 1, Ω := (0, 1), v = (v1, v2), and let A(v) = 0
if and only if v′2 = 0 as in (ii) above. Let

f(v) :=

{

(v1 − 1)2 + v22 if v2 ∈ Q,
(v1 + 1)2 + v22 if v2 /∈ Q.

Although f satisfies a quadratic growth condition of the type (H), it is easy to
see that for all intervals (a, b) ⊂ (0, 1),

F0((u, v); (a, b)) = F0(v; (a, b))

= min

{
∫ b

a

((v1 − 1)2 + v22)dx,

∫ b

a

((v1 + 1)2 + v22)dx

}

which is not the trace of a Radon measure on O(Ω). On the other hand, it may
be shown that

F((u, v); (a, b)) = F(v; (a, b)) =

∫ b

a

(ψ∗∗(v1) + v22) dx,

where ψ∗∗(v1) is the convex envelope of

ψ(v1) := min
{
(v1 − 1)2, (v1 + 1)2

}
.
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(iv) Using the growth condition (H), a mollification argument, and the linearity
of A, it can be shown that (see Remark 3.3 in [66])

QAf(x, u, v) = inf

{
∫

Q

f(x, u, v + w(y)) dy : w ∈ Lq
per(RN ;Rd) ∩KerA,

∫

Q

w(y) dy = 0

}

.

We write w ∈ Lq
per(RN ;Rd) ∩ KerA when w ∈ Lq

per(RN ;Rd) and Aw = 0 in

W−1,q(Q;Rl).

Although in Theorem 2.1 the functions u and v are not related to each other,
the arguments of the proof work equally well when u and v are not independent.
Indeed as corollaries, we can prove the following two theorems.

Theorem 2.3 ([30], Theorem 1.5) Let 1 ≤ p ≤ ∞, let Ω ⊂ RN be an open,

bounded, connected set, and suppose that f : Ω × RN × RN2 → [0,∞) is a
Carathéodory function satisfying

0 ≤ f(x, u, v) ≤ C (1 + |u|p + |v|p) , 1 ≤ p <∞,

for a.e. x ∈ Ω and all (u, v) ∈ RN × RN2

, where C > 0, and

f ∈ L∞
loc(Ω× RN × RN2

; [0,∞)) if p =∞.

Then for every u ∈W 1,p(Ω;RN ) such that div u = 0, we have

∫

Ω

f̄(x, u(x),∇u(x)) dx = inf

{

lim inf
n→∞

∫

Ω

f(x, un(x),∇un(x)) dx : (2.9)

{un} ⊂W 1,p(Ω;RN ),div un = 0, un ⇀ u in W 1,p(Ω;RN ), (
∗
⇀ if p =∞)

}

,

where, for a.e. x ∈ Ω and all (u, v) ∈ RN × RN2

,

f̄(x, u, v) := inf

{
∫

Q

f(x, u, v +∇w(y)) dy : w ∈ C∞
1-per(RN ;RN ), divw = 0

}

.

This result was proved in [30] in all this generality (for a different proof, with
additional smoothness assumptions, see [26]). A related problem was addressed
by Dal Maso, Defranceschi and Vitali in [47], where it was shown that the Γ-
limit of a family of functionals of the type (2.9) may be non local if (H) is
violated.
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Theorem 2.4 ([30], Theorem 1.3) Let 1 ≤ p ≤ ∞, s ∈ N, and suppose that
f : Ω× Ed

[k−1] × Ed
k → [0,∞) is a Carathéodory function satisfying

0 ≤ f(x,u, v) ≤ C (1 + |u|p + |v|p) , 1 ≤ p <∞,

for a.e. x ∈ Ω and all (u, v) ∈ Ed
[k−1] × Ed

k , where C > 0, and

f ∈ L∞
loc(Ω×Ed

[k−1] × Ed
k ; [0,∞)) if p =∞.

Then for every u ∈W k,p(Ω;Rd) we have

∫

Ω

Qkf(x, u, . . . ,∇ku) dx = inf

{

lim inf
n→∞

∫

Ω

f(x, un, . . . ,∇kun) dx :

{un} ⊂W k,p(Ω;Rd), un ⇀ u in W k,p(Ω;Rd) (
∗
⇀ if p =∞)

}

,

where, for a.e. x ∈ Ω and all (u, v) ∈ Ed
[k−1] × Ed

k ,

Qkf(x,u, v) := inf

{
∫

Q

f(x,u, v +∇kw(y)) dy : w ∈ C∞
per(RN ;Rd)

}

.

When k > 1 earlier lower semicontinuity results related to Theorem 2.4 are
due to Meyers [87], Fusco [72], and Guidorzi and Poggiolini [75] (see also [5]),
while the first integral representation results for the relaxed energy when the
integrand depends on the full set of variables, that is f = f(x, u, . . . ,∇ku), were
obtained by [30]. As mentioned before, classical truncation methods for k = 1
cannot be extended in a simple way to truncate higher order derivatives, and
successful techniques often rely on p-equi-integrability, and thus cannot work in
the linear growth case. Indeed, when p = 1 due to loss of reflexivity of the space
W k,1(Ω;Rd) one can only conclude that an energy bounded sequence {un} ⊂
W k,1(Ω;Rd) with supn ‖un‖Wk,1 < ∞ admits a subsequence (not relabelled)
such that

un → u in W k−1,1(Ω;Rd),

where u ∈ W k−1,1(Ω;Rd) and ∇k−1u is a vector-valued function of bounded
variation. This leads us now to seek to establish lower semicontinuity in the
space W k,1(Ω;Rd) under this natural notion of convergence, and when u ∈
BV k(Ω;Rd) (see [55], [110]).

When k = 1 the scalar case d = 1 has been extensively treated, while the
vectorial case d > 1 was first studied by Fonseca and Müller in [64] where it was
proven (sequential) lower semicontinuity in W 1,1(Ω;Rd) of a functional

u 7→
∫

Ω

f(x, u(x),∇u(x)) dx,
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with respect to strong convergence in L1(Ω;Rd) (see also [8], [59], [60], [65], and
the references contained therein). The approach in [64] is based on blow–up and
truncation methods.

The following theorem was proved in the case k = 1 by Ambrosio and Dal
Maso [8], while Fonseca and Müller [64] treated general integrands of the form
f = f(x, u,∇u), but their argument requires coercivity (see also [73]). The case
k ≥ 2 is due to Amar and De Cicco [4] (see [62] for a proof for all k ≥ 1).

Proposition 2.5 ([62], Proposition 2.1) Let f : Ed
k → [0,∞) be a function

k-quasiconvex, such that

0 ≤ f(ξ) ≤ C (1 + |ξ|) ,

for all ξ ∈ Ed
k . Moreover, when k ≥ 2 assume that

f(ξ) ≥ C1 |ξ| for |ξ| large.

Let {un} be a sequence of functions in W k,1(Q;Rd) converging to 0 in the space
W k−1,1(Q;Rd). Then

f(0) ≤ lim inf
n→∞

∫

Q

f(∇kun) dx.

More generally we consider the case where f depends essentially only on x
and on the highest order derivatives, that is ∇ku(x). This situation is signifi-
cantly simpler than the general case, since it does not require to truncate the
initial sequence {un} ⊂ W k,1(Ω;Rd).

Theorem 2.6 ([62], Theorem 1.1) Let f : Ω × Ed
[k−1] × Ed

k → [0,∞) be a

Borel integrand. Suppose that for all (x0,v0) ∈ Ω×Ed
[k−1] and ε > 0 there exist

δ0 > 0 and a modulus of continuity ρ, with ρ(s) ≤ C0(1 + s) for s > 0 and for
some C0 > 0, such that

f(x0,v0, ξ)− f(x,v, ξ) ≤ ε(1 + f(x,v, ξ)) + ρ(|v − v0|) (2.10)

for all x ∈ Ω with |x− x0| ≤ δ0, and for all (v, ξ) ∈ Ed
[k−1] × Ed

k . Assume also
that one of the following three conditions is satisfied:
(a) f(x0,v0, ·) is k-quasiconvex in Ed

k and

1

C1
|ξ| − C1 ≤ f(x0,v0, ξ) ≤ C1(1 + |ξ|) for all ξ ∈Ed

k ,

where C1 > 0;
(b) f(x0,v0, ·) is 1-quasiconvex in Ed

k and

0 ≤ f(x0,v0, ξ) ≤ C1(1 + |ξ|) for all ξ ∈Ed
k ,

where C1 > 0;

12



(c) f(x0,v0, ·) is convex in Ed
k .

Let u ∈ BV k(Ω;Rd) and let {un} be a sequence of functions in W k,1(Ω;Rd)
converging to u in W k−1,1(Ω;Rd). Then

∫

Ω

f(x, u, . . . ,∇ku) dx ≤ lim inf
n→∞

∫

Ω

f(x, un, . . . ,∇kun) dx.

Here f(x0,v0, ·) is said to be 1-quasiconvex if f(x0,v0, ·) is the trace on Ed
k

of a 1-quasiconvex function f̄ defined on R(d×Nk−1)×N .
An important class of integrands which satisfy (2.10) of Theorem 2.6 is given

by

f = f(x, ξ) := h(x)g(ξ),

where h(x) is a nonnegative lower semicontinuous function and g is a nonnega-
tive function which satisfies either (a) or (b) or (c). The case where h(x) ≡ 1
and g satisfies condition (a) was proved by Amar and De Cicco [4]. Theorem
2.6 extends a result of Fonseca and Leoni (Theorem 1.7 in [59]) to higher order
derivatives, where the statement is exactly that of Theorem 2.6 setting k = 1
and excluding part (a). Related results when k = 1 where obtained previously
by Serrin [98] in the scalar case d = 1 and by Ambrosio and Dal Maso [8] in the
vectorial case d > 1 (see also Fonseca and Müller [64], [65]). Even in the simple
case where f = f(ξ) it is not known if Theorem 2.6(a) still holds without the
coercivity condition

f(ξ) ≥ 1

C1
|ξ| − C1.

The main tool in the proof of Theorem 2.6, used also in an essential way in
subsequent results, is the blow–up method introduced by Fonseca and Müller
[64], [65], which reduces the domain Ω to a ball and the target function u to a
polynomial.

When the integrand f depends on the full set of variables in an essential
way, the situation becomes significantly more complicated since one needs to
truncate gradients and higher order derivatives in order to localize lower order
terms. The following theorem was proved for k = 1 by Fonseca and Leoni in
[59], Theorem 1.8, and extended to the higher order case in [62].

Theorem 2.7 ([62], Theorem 1.2) Let f : Ω × Ed
[k−1] × Ed

k → [0,∞) be

a Borel integrand, with f(x,v, ·) 1-quasiconvex in Ed
k . Suppose that for all

(x0,v0) ∈ Ω × Ed
[k−1] either f(x0,v0, ·) ≡ 0, or for every ε > 0 there exist C,

δ0 > 0 such that

f(x0,v0, ξ)− f(x,v, ξ) ≤ ε(1 + f(x,v, ξ)), (2.11)

C|ξ| − 1

C
≤ f(x0,v0, ξ) ≤ C(1 + |ξ|) (2.12)
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for all (x,v) ∈ Ω × Ed
[k−1] with |x − x0| + |v − v0| ≤ δ0 and for all ξ ∈ Ed

k .

Let u ∈ BV k(Ω;Rd), and let {un} be a sequence of functions in W k,1(Ω;Rd)

converging to u in W k−1,1(Ω;Rd). Then
∫

Ω

f(x, u, . . . ,∇ku) dx ≤ lim inf
n→∞

∫

Ω

f(x, un, . . . ,∇kun) dx.

A standing open problem is to decide whether Theorem 2.7 continues to
hold under the weaker assumption that f(x,v, ·) is k-quasiconvex, which is the
natural assumption in this context.

As in Theorem 2.6, conditions (2.11) and (2.12) can be considerably weak-
ened if we assume that f(x,v, ·) is convex rather than 1-quasiconvex. Indeed
we have the following result:

Theorem 2.8 ([62], Theorem 1.5) Let f : Ω × Ed
[k−1] × Ed

k → [0,∞] be a

lower semicontinuous function, with f(x,v, ·) convex in Ed
k . Suppose that for

all (x0,v0) ∈ Ω×Ed
[k−1] either f(x0,v0, ·) ≡ 0, or there exist C1, δ0 > 0, and a

continuous function g : B(x0, δ0)×B(v0, δ0)→ Ed
k such that

f(x,v, g(x,v)) ∈ L∞ (B(x0, δ0)×B(v0, δ0);R) , (2.13)

f(x,v, ξ) ≥ C1|ξ| −
1

C1

for all (x,v) ∈ Ω × Ed
[k−1] with |x − x0| + |v − v0| ≤ δ0 and for all ξ ∈ Ed

k .

Let u ∈ BV k(Ω;Rd), and let {un} be a sequence of functions in W k,1(Ω;Rd)
converging to u in W k−1,1(Ω;Rd). Then

∫

Ω

f(x, u, . . . ,∇ku) dx ≤ lim inf
n→∞

∫

Ω

f(x, un, . . . ,∇kun) dx.

Theorem 2.8 was obtained by Fonseca and Leoni (see [60], Theorem 1.1) in
the case k = 1 . It is interesting to observe that without a condition of the type
(2.13) Theorem 2.8 is false in general. This has been recently proved by Černý
and Malý in [37].

The proofs of Theorems 2.6(b) and (c), 2.7 and 2.8 can be deduced easily
from the corresponding ones in [59], [60], where k = 1. It suffices to write

∫

Ω

f(x, u(x), . . . ,∇ku(x)) dx =:

∫

Ω

F (x,v(x),∇v(x)) dx

with v :=
(
u, . . . ,∇k−1u

)
, and then to perturb the new integrand F in order

to recover the full coercivity conditions necessary to apply the results in [59],
[60]. This approach cannot be used for k-polyconvex integrands and a new proof
is needed to treat this case (see [48]). Thus Theorem 2.6(a) and Theorem 2.9
below are the only truly genuine higher order results, in that they cannot be
reduced in a trivial way to a first order problem.

For each ξ ∈ Ed
k let M(ξ) ∈ Rτ be the vector whose components are all the

minors of ξ.
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Theorem 2.9 ([59], Theorem 1.6) Let h : Ω × Ed
[k−1] × Rτ → [0,∞] be a

lower semicontinuous function, with h(x,v, ·) convex in Rτ . Suppose that for
all (x0,v0) ∈ Ω× Ed

[k−1] either h(x0,v0, ·) ≡ 0, or there exist C, δ0 > 0, and a

continuous function g : B(x0, δ0)×B(v0, δ0)→ Rτ such that

h(x,v, g(x,v)) ∈ L∞ (B(x0, δ0)×B(v0, δ0);R) ,

h(x,v, v) ≥ C|v| − 1

C

for all (x,v) ∈ Ω×Ed
[k−1] with |x− x0|+ |v − v0| ≤ δ0 and for all v ∈ Rτ . Let

u ∈ BV k(Ω;Rd), and let {un} be a sequence of functions in W k,p(Ω;Rd) which
converges to u in W k−1,1(Ω;Rd), where p is the minimum between N and the
dimension of the vectorial space Ed

k−1. Then

∫

Ω

h (x, u, . . . ,∇k−1u,M(∇ku)) dx

≤ lim inf
n→∞

∫

Ω

h(x, un, . . . ,∇k−1un,M(∇kun)) dx.

Theorem 2.9 is closely related to a result of Ball, Currie and Olver [16],
where it was assumed that

h(x,v, v) ≥ γ (|v|)− 1

C
,

where

γ (s)

s
→∞ as s→∞.

Also, as stated above and with k = 1, Theorem 2.9 was proved by Fonseca and
Leoni in [60], Theorem 1.4.

In the scalar case d = 1, that is when u is an R-valued function, and for first
order gradients, i.e. k = 1, condition (2.12) can be eliminated, see Theorem 1.1
in [59]. In particular in [59] Fonseca and Leoni have shown the following result

Proposition 2.10 ([59], Corollary 1.2) Let g : RN → [0,∞) be a convex
function, and let h : Ω × R → [0,∞) be a lower semicontinuous function. If
u ∈ BV (Ω;R) and {un} ⊂W 1,1(Ω;R) converges to u in L1(Ω;R), then

∫

Ω

h(x, u)g(∇u) dx ≤ lim inf
n→∞

∫

Ω

h(x, un)g(∇un) dx.

It is interesting to observe that an analog of this result is false when k ≥ 2.

Theorem 2.11 ([62], Theorem 1.4) Let Ω := (0, 1)
N
, N ≥ 3, and let h be

a smooth cut-off function on R with 0 ≤ h ≤ 1, h(u) = 1 for u ≤ 1
2 , h(u) = 0
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for u ≥ 1. There exists a sequence of functions {un} in W 2,1(Ω;R) converging
to zero in W 1,1(Ω;R) such that {‖∆un‖L1(Ω;R)} is uniformly bounded and

lim sup
n→∞

∫

Ω

h(un)(1−∆un)
+ dx <

∫

Ω

h(0) dx.

Here Theorem 2.8 fails to apply because we do not have bounds on the
full Hessian matrices {D2un}. The proof of Theorem 2.11 is hinged on the
construction below.

Lemma 2.12 ([62], Lemma 4.1) Let D be a cube with |D| ≤ 1, and let N ≥
3. Then there exists constants C > 0, λ ∈ (0, 1) depending only on N, a
function u ∈ W 2,∞(D;R) with compact support in D, and sets A, E, G ⊂ D,
with A ∪ E ∪G = D and |E| ≤ λ|D|, such that

‖∆u‖L1(D;R) ≤ C|D|, ‖u‖W 1,1(D;R) ≤ C|D|1+ 1
N , (2.14)

∆u = 1 on A, (2.15)

u = 0 on E, u ≥ 1 on G. (2.16)

Proof. After a translation we may assume that there exists B(0, R) ⊂ D
such that

C−1RN ≤ |D| ≤ CRN , R ∈ (0, 1/2),

for some C > 0. We search for a radial function of type

u(x) := ϕ(|x|),

where ϕ is a C2-function on (0,∞) such that

ϕ(t) = 0 for t ≥ R, (2.17)

ϕ′(0+) = 0. (2.18)

Further we want that for some a > 0

∆u(x) =

{
−a if |x| < r,
1 if r < |x| < R,

(2.19)

where r is determined by the equation

r2−NRN = 2N(N − 2). (2.20)

Note that r ∈ (0, R) because R < 1 and N ≥ 3. In order to find a and ϕ
satisfying (2.17), (2.18) and (2.19), we note that

∆u(x) = ϕ′′(|x|) + |x|−1 (N − 1)ϕ′(|x|), for |x| 6= 0,

or, equivalently,

∆u(x) = t1−N (tN−1ϕ′(t))′ , where t = |x|.
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On the interval (r,R) (2.19) now yields

(tN−1ϕ′(t))′ = tN−1,

and thus, by (2.17),

ϕ′(t) =
t

N

(

1− RN

tN

)

. (2.21)

On the interval (0, r), and in view of (2.19), we have

(tN−1ϕ′(t))′ = −atN−1

which, together with (2.18), implies that

ϕ′(t) = −at
N
. (2.22)

We have

−ar
N

= ϕ′(r−) = ϕ′(r+) =
r

N

(

1− RN

rN

)

and thus

a =

(
RN

rN
− 1

)

. (2.23)

Now the function u is uniquely determined by its properties. Obviously we have
(2.16)1 by setting

A := B(0, R) \B(0, r), E := D \B(0, R), G := B(0, r),

with |E| ≤ λ|D| and λ = λ (N) . In light of (2.19) and (2.23) we have

‖∆u‖L1(D;R) ≤ |B(0, R) \B(0, r)|+ a |B(0, r)|

= ωN

(

RN − rN +

(
RN

rN
− 1

)

rN
)

≤ 2ωNR
N ,

where ωN := |B(0, 1)|. If x ∈ G, we have by (2.22), (2.21) and (2.20)

u(x) ≥ ϕ(r) = −
∫ R

r

ϕ′(t) dt =
1

N

∫ R

r

(RN t1−N − t) dt

≥ 1

N(N − 2)
(r2−NRN −R2)− R2

2N
= 2− R2

2 (N − 2)
≥ 1,

as R ≤ 1
2 as B(0, R) ≤ D and the side length of D does not exceed 1. This

proves (2.16)2. By (2.21) and (2.22),

∫

D

|∇u| dx ≤ C

∫ R

0

tN−1|ϕ′(t)| dt

≤ C

(
∫ r

0

r−NRN tN dt+

∫ R

r

RN dt

)

≤ CRN+1,
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which, with the aid of the Poincaré inequality for zero boundary values, proves
(2.14)2.

Proof of Theorem 2.11. We set Ω = (0, 1)N , and we construct the 1
n -

periodic sequence {un} as follows: divide Ω into small cubes Dα of measure
1

nN
, α ∈ In where the set of indices In has cardinality nN . On each Dα we

construct un as indicated in 2.12, and denote by Aα, Eα, Gα the corresponding
sets. Then un → 0 in W 1,1(Ω;R) because

‖un‖W 1,1(Ω;R) =
∑

α∈In
‖un‖W 1,1(Dα;R) ≤ nNC

(
1

nN

)1+ 1
N

→ 0 as n→∞,

and {‖∆un‖L1(Ω;R)} is uniformly bounded since

‖∆un‖L1(Ω;R) =
∑

α∈In
‖∆un‖L1(Dα;R) ≤ nNC

1

nN
= C.

Consider the functional

F (v) :=

∫

Ω

h(v)(1−∆v)+ dx.

For α ∈ In we have by (2.14)–(2.16)

h(un) = 1 and ∆un = 0 on Eα,

∆un = 1 on Aα,

h(un) = 0 on Gα,

and thus
∫

Dα

h(un)(1−∆un)
+ dx = |Eα| ≤ λ|Dα|.

Summing up over α ∈ In, we conclude that
∫

Ω

h(un)(1−∆un)
+ dx ≤ λ < 1 = F (0).

3 On a Phase Transitions Model for Second Or-

der Derivatives

We now turn to Question II where we will focus on a singular perturbations
model for a double-well potential W . The asymptotic behavior of functionals
of the type

Jε (v; Ω) :=

∫

Ω

1

ε
W (v) + ε|∇v|2 dx. (3.1)
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has been exploited in theories of phase transitions, and it was first studied ana-
lytically by Modica and Mortola [90], and subsequently it was applied by Modica
[89] to the van der Waals–Cahn-Hilliard theory of fluid-fluid phase transitions
to solve an “optimal design” problem proposed by Gurtin [76]:

Minimize

∫

Ω

W (u) dx,

under the density constraint

1

|Ω|

∫

Ω

u dx = θa+ (1− θ)b,

for some θ ∈ (0, 1), and where W is a nonnegative bulk energy density with
{W = 0} = {a, b}, a, b ∈ R, a < b. It is easy to see that this problem admits
infinitely many solutions, and a selection criteria for physically preferred solu-
tions takes into account interfacial energy, thus adding a gradient term which,
upon rescaling, leads to (3.1).

Using De Giorgi’s notion of Γ-convergence ([49]; see also [3], [27], [46]), it
was shown in [89], [90], that

Γ− lim
ε→0+

Jε (u0; Ω) =







K0PerΩ(E) if u = χEa+ (1− χE)b, |E| = θ |Ω|
u ∈ BV (Ω; {a, b}) ,

+∞ otherwise,

(3.2)

where K0 :=
∫ b

a

√

W (s)ds. The theory of Γ-convergence guarantees that pre-
ferred designs are those which, for the given volume fraction θ, exhibit minimal
interfacial area.

Generalizations of (3.1)-(3.2) were obtained by Bouchitté [23] and by Owen
and Sternberg [94] for the undecoupled problem, in which the integrand in Jε
has the form ε−1f(x, v(x), ε∇v(x)). For the study of local minimizers we refer
to Kohn and Sternberg [83].

The vector-valued setting, where u : Ω → Rd, Ω ⊂ RN , d,N > 1, was
considered in [18], [67], where K0 is replaced by

K1 := inf
{∫ L

−L
W (g (s)) + |g′ (s)|2 ds : L > 0, g piecewise C1, g(−L) = a,

g(L) = b

}

.

The case where W has more than two wells was addressed by Baldo [14] (see
also Sternberg [101]), and later generalized by Ambrosio [6].

Motivated by questions within the realm of elastic solid-to-solid phase tran-
sitions [17], [39] , [82], with u : Ω → Rd standing for the deformation, we now

19



consider the corresponding problem for gradient vector fields, where in place of
Jε we introduce

Iε (u; Ω) :=







∫

Ω

1

ε
W (∇u) + ε|∇2u|2 dx if u ∈W 2,2

(
Ω;Rd

)
,

+∞ otherwise.
(3.3)

The analysis of this model has defied a considerable mathematical effort during
the past decade. Here we will report on a recent contribution by Conti, Fonseca
and Leoni [40].

An intermediate case between (3.1) and (3.3), where the nonconvex potential
depends on u and the singular perturbation on ∇2u, has been recently studied
by Fonseca and Mantegazza [63] (for other generalizations see [57]). Also, in
the two-dimensional case and when W vanishes on the unit circle (3.3) reduces
to the so-called Eikonal functional which arises in the study of liquid crystals
(see [11]) as well as in blistering of delaminated thin films (see [93]). Recently,
the Eikonal problem has received considerable mathematical attention, but in
spite of substantial partial progress (see [9], [12], [53], [80]) its Γ-limit remains
to be identified.

Going back to the results obtained in [40] concerning (3.3), we first notice
that frame-indifference requires that W (ξ) = W (Rξ) for all ξ and all R ∈
SO(N), where SO(N) is the set of rotations in RN . Therefore, and by analogy
with the hypotheses initially placed on (3.1), if we assume that W (A) = 0 =
W (B) then {W = 0} ⊂ SO(N)A ∪ SO(N)B. Also, in order to guarantee the
existence of “classical” (as opposed to measure-valued) non affine solutions for
the limiting problem, and in view of Hadamard’s compatibility condition for
layered deformations (see also Ball and James [17]), the two wells must be rank-
one connected. Hence, so as to be able to construct gradients taking values only
on {A,B} and layered perpendicularly to ν, we assume that

A−B = a⊗ ν

for some a ∈ RN and ν ∈ SN−1 := ∂B(0, 1) ⊂ RN , and we simplify (greatly!)
the problem by removing the frame-indifference constraint, and assuming simply
that

{W = 0} = {A,B} .

Since now interfaces of minimizers must be planar with normal ν (see [17]), at
first glance the analysis may seem to be greatly simplified as compared with
the initial problem (3.1) which requires handling minimal surfaces. However,
it turns out that the pde constraint curl = 0 imposed on the admissible fields
presents numerous difficulties to the characterization of the Γ-limsup. In par-
ticular, if, say, ∇u has a layered structure with two interfaces then it is possible
to construct a “realizing” (effective, or recovering) sequence nearby each inter-
face, but the task of gluing together the two sequences on a suitable low-energy
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intermediate layer is very delicate. In order to illustrate the difficulties encoun-
tered here, we explain briefly how we would “normally” undertake the heuristic
argument to glue together two optimal sequences {(un, εn)}, corresponding to
an interface of a cylindrical body Ω at a given height h, and {(vn, δn)}, corre-
sponding to an interface at a height h′, h′ > h.

First we must convince ourselves that the sequences {εn} and {δn} (related to
the “periodicity” of the ripples of the optimal fine structure near each interface)
may be taken to be the same. This is by no means trivial (although true)! But
let us take this for granted, and, as it is usual, we consider as a candidate for
the two-interface situation a convex combination

wk,n := ϕkun + (1− ϕk)vn

where ϕk is a smooth cut-off function, with {0 < ϕk < 1} ⊂ Lk,n and Lk,n is a
horizontal layer intermediate between heights h and h′ (here we are assuming
that ν = eN ). The crux of the problem is to choose Lk,n in a judicious way so
that no extra energy is added to the system by the new sequence {wk,n}.

Using De Giorgi’s Slicing Method, we slice horizontally the layer between
heights h and h′ into M horizontal sub-layers Lk of width (h′ − h)/M . In view
of the fact that ||∇ϕ||∞ = O(M), we then have

M∑

k=1

∫

Lk

1

εn
W (wk,n) + εn|∇wk,n|2 ≤ O

(
1

εn

)

+ εnM
2||un − vn||2. (3.4)

Choosing k = k(n) such that

∫

Lk(n)

1

εn
W (wk(n),n) + εn|∇wk(n),n|2 ≤

1

M

M∑

k=1

∫

Lk

1

εn
W (wk,n) + εn|∇wk,n|2,

(3.5)

it is clear that by setting M = O

(

1

εn
√

||un−vn||L2

)

, and using the fact that the

admissible sequences {un} and {vn} satisfy ||un−vn||L2 → 0 in the intermediate
layer between heights h and h′, we may conclude that

lim
n→∞

∫

Lk(n)

1

εn
W (wk(n),n) + εn|∇wk(n),n|2 = 0.

Suppose now that we want to extend this argument to the present setting in-
volving second order derivatives. The estimate (3.4) now becomes

M∑

k=1

∫

Lk

1

εn
W (∇wk,n) + εn|∇2wk,n|2 ≤ O

(
1

εn

)

+ εnM
4||un − vn||2,

and, seeking equi-partition of energy as we have done above, we are led to

εnM
4||un − vn||2 = O

(
1

εn

)

.
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This would entail M = O

(

1√
εn
√

||un−vn||L2

)

, and thus the upper bound in

(3.5) would be

∫

Lk(n)

1

εn
W (wk,n) + εn|∇wk,n|2 ≤

1

M
O

(
1

εn

)

≤ C

√

||un − vn||L2

εn
.

Therefore, to ensure that the extra energy in the layer Lk(n) does not affect the
optimality of the sequence, we would have to guarantee that {un − vn} goes to
zero in L2 faster than

√
εn, and whether or not this holds it remains an open

question !

The restrictive constitutive hypotheses placed on W in Theorems 3.2 and
3.3 below allow us to find alternative ways in which the gluing is successful. The
main idea consists in accepting the fact that matching in one single swift step is
simply to abrupt for higher order problems. We proceed using two-set matchings
where control of Poincaré and Poincaré-Freidrichs’ constants is carefully kept.

Assume

(H1) W is continuous, W (ξ) = 0 if and only if ξ ∈ {A,B} , where A−B = a⊗ν
for some a ∈ Rd\ {0} and ν ∈ SN−1,

and we introduce our candidate for Γ-limit

I (u; Ω) =

{
K∗HN−1(S (∇u) ∩ Ω) if u ∈W 1,1(Ω;Rd),∇u ∈ BV (Ω; {A,B}),
+∞ otherwise,

where S (∇u) is the singular set of ∇u, i.e. the collection of interfaces,

K∗ := Γ− lim inf
ε→0+

Iε (u0;Qν)

= inf
{

lim inf
n→∞

Iεn(un;Qν) : εn → 0+, un ∈W 2,2
(
Qν ;Rd

)

un → u0 in L1
(
Q;Rd

)}
,

where Qν is a unit cube in RN centered at the origin and with two of its faces
orthogonal to ν, and

∇u0 :=
{
A if x · ν > 0,
B if x · ν < 0.

We start with the following compactness result.

Theorem 3.1 ([40], Theorem 1.1) [Compactness] Assume that the double
well potential W satisfies conditions (H1) and

(H2) there exists C > 0 such that

W (ξ) ≥ C |ξ| − 1

C

for all ξ ∈ Rd×N .
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Let εn → 0+. If {un} ⊂W 2,2
(
Ω;Rd

)
is such that

sup
n
Iεn (un; Ω) <∞,

then there exist a subsequence {unk} and a function u ∈ W 1,1
(
Ω;Rd

)
, with

∇u ∈ BV (Ω; {A,B}) , such that

unk −
1

|Ω|

∫

Ω

unk dx→ u in W 1,1
(
Ω;Rd

)
.

Next, and without loss of generality, we may assume that

A = −B = a⊗ eN .

Consider

(H2) W (ξ)→∞ as |ξ| → ∞;

(H3) W (ξ) ≥W (0, ξN ) where ξ = (ξ′, ξN ) ∈ Rd×(N−1) × Rd.

Note that (H3) is satisfied by the prototype bulk energy density

W (ξ) := min
{

|ξ −A|2 , |ξ −B|2
}

.

Theorem 3.2 ([40], Theorem 1.3) Let Ω ⊂ RN be an open, bounded, simply
connected domain with Lipschitz boundary. Assume that W satisfies the condi-
tions (H1) , (H2) and (H3) . Suppose, in addition, that W is differentiable at A
and B. Let u ∈W 1,1

(
Ω;Rd

)
, with ∇u ∈ BV (Ω; {A,B}) . Then

Γ− lim
ε→0+

Iε (u; Ω) = K∗ PerΩ(E),

where ∇u = (1− χE (x))A+ χE (x) B for LN a.e. x ∈ Ω.

The hypothesis (H3) entails a one dimensional character to the asymptotic
problem. Indeed in this case the characterization of the constant K∗ can be
greatly simplified. It can be shown thatK∗ reduces to the analog of the constant
K1 introduced in (3), precisely, K∗ = K where

K := inf

{
∫ L

−L

W (0, g (s)) + |g′ (s)|2 ds : L > 0, g piecewise C1,

g(−L) = −a, g(L) = a

}

.

Theorem 3.2 is related to work of Kohn and Müller [82] who studied the mini-
mization of the functional

∫

(0,L)×(0,1)

(
∂u

∂x1

)2

+ ε

∣
∣
∣
∣

∂2u

∂x22

∣
∣
∣
∣
dx1dx2
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subject to the constraint
∣
∣
∣
∂u
∂x2

∣
∣
∣ = 1 and boundary conditions.

The construction of a realizing sequence for the Γ−limsup is strongly hinged
to the geometry of the domain. As an example, if we assume that

for each t ∈ R the horizontal section

Ωt := {(x′, xN ) ∈ Ω : xN = t} is connected in RN ,

and that

t 7→ HN−1 (Ωt) is continuous in (α, β) ,

where

α := inf {xN : x ∈ Ω} , β := sup {xN : x ∈ Ω} ,

(it is easy to see that convex domains or cylinders of the form ω× (a, b) , where
ω ⊂ RN−1, satisfy these conditions), then it is relatively easy to show that real-
izing sequences are one-dimensional. However, once this hypothesis is lost the
analysis becomes exceedingly more complicated. We remark that these difficul-
ties cannot be resolved by performing rotations and translations of Ω nearby
the identity because the perimeter of the interface may change discontinuously
under these transformations.

Next we present a situation where the transition behavior is no longer one-
dimensional. Consider the isotropy condition

(H4) W is even in each variable ξi, i = 1, · · · , N − 1, that is

W (ξ1, · · · ,−ξi, · · · , ξN ) =W (ξ1, · · · , ξi, · · · , ξN )

for each i = 1, · · · , N − 1,

where

ξ = (ξ1, · · · , ξN ) ∈ Rd × · · · × Rd

︸ ︷︷ ︸

N times

, ξ′ = (ξ1, · · · , ξN − 1) ∈ Rd × · · · × Rd

︸ ︷︷ ︸

N−1 times

,

so that ξ = (ξ′, ξN ) ∈ Rd×(N−1) × Rd.

Theorem 3.3 ([40], Theorem 1.4) Let Ω ⊂ RN be an open, bounded, simply
connected domain with Lipschitz boundary. Assume that W satisfies the condi-
tions (H1) , (H5) , and that there exist an exponent p ≥ 2, constants c, C, ρ > 0
and a convex function g : [0,∞) → [0,∞), with g (s) = 0 if and only if s = 0,
such that g is derivable in s = 0, g (2t) ≤ cg (t) for all 0 ≤ t ≤ ρ,

g (|ξ −A|) ≤W (ξ) ≤ cg (|ξ −A|) if |ξ −A| ≤ ρ,

g (|ξ −B|) ≤W (ξ) ≤ cg (|ξ −B|) if |ξ −B| ≤ ρ,

and

1

C
|ξ|p − C ≤W (ξ) ≤ C (|ξ|p + 1)
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for all ξ ∈ Rd×N . Let u ∈W 1,1
(
Ω;Rd

)
, with ∇u ∈ BV (Ω; {A,B}) . Then

Γ− lim
ε→0+

Iε (u; Ω) = K∗ PerΩ(E),

where ∇u(x) = (1− χE (x))A+ χE (x) B for LN a.e. x ∈ Ω. Moreover

K∗ = Kper,

where

Kper := inf

{∫

Q

LW (∇v) + 1

L

∣
∣∇2v

∣
∣
2
dx : L > 0, v ∈W 2,∞ (Q;Rd

)
,

∇v = ±a⊗ eN nearby xN = ±1

2
, v periodic of period one in x′

}

.

The condition g (2t) ≤ cg (t) for all 0 ≤ t ≤ ρ, is called the doubling

condition – it prevents g to be too degenerate near t = 0; it is satisfied if
g (t) ∼const. tp as t → 0+, for some p ≥ 1, while it does not hold if g grows

exponentially near the origin, i.e., g (t) ∼const. e−1/t2 as t→ 0+.
It would be interesting to know if Theorem 3.3 continues to hold without

assuming the isotropy assumption (H4) . We have not been able to prove this.
Most of the literature on singularly perturbed double-well potentials deals

with asymptotic problems which are one-dimensional, i.e. with asymptotically
optimal interface profiles which depend only on one coordinate (the distance to
the interface). Such profiles have been shown to be optimal in the first-order
gradient theory of phase transitions modeled by (3.1) (see also [63]), and the
same has been conjectured in various other cases such as the Eikonal prob-
lem mentioned above. However, Jin and Kohn [80] have shown that a simple
perturbation of the Eikonal functional has non one-dimensional minimizers. A
one-dimensional ansatz is also often used in the physics literature on ferroelastic
domain walls, even if its validity is still under debate (see e.g. [19], [33], [41],
[96], and references therein).

In the problem of interest here, we defined K as the energy of the optimal
one-dimensional interface profile, and Kper as the optimal energy of interface
profiles which are periodic along the interface. As discussed above, under hy-
pothesis (H3) we show that Kper = K, hence that one-dimensional interface
profiles are energetically preferred. However, building upon the example by Jin
and Kohn [80], in [40], Section 8, we show that without hypothesis (H3), in
general, we may have

Kper < K

thereby proving that optimal interface profiles are, at least in some cases, not
one-dimensional. This happens because generating finite in–plane gradients
(i.e. having a dependence on the coordinates parallel to the interface) reduces
the energy in the regions far away from the two potential wells. The zero-curl
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constraint leads then to an oscillatory pattern. In elasticity, this multidimen-
sional behavior has been predicted in [33]. Similar mechanisms are at play in
the theory of micromagnetism, where indeed various non-one-dimensional wall
structures are known, such as cross-tie domain walls and charged zigzag walls
in ferromagnetic thin films (see e.g. [77] and references therein). It would be
interesting to know if Kper is smaller or equal to K for realistic ferroelastic
potentials obtained from the Landau theory of phase transitions.

As mentioned before, gluing of recovering sequences asks for a careful han-
dling of Poincaré and Poincaré-Friedrichs’ inequalities. We conclude by present-
ing a generalization of Poincaré’s inequality to Orlicz-Sobolev spaces, which can
then be used to prove Theorem 3.3. Our argument in [40] follows that of Maz’ja
[86] for the case g (s) = |s|p . A first version has been proved by Bhattacharya
and Leonetti [21] in the case where Ω is convex and S = Ω.

First we observe that the function g introduced in Theorem 3.3 to control the
behavior ofW near the wells may be extended to a function G still satisfying the
doubling condition, and such that G (|· −A|) and G (|· −B|) may be compared
with W in the whole Rd×N .

Lemma 3.4 ([40], Lemma 7.2) Let g : [0,∞)→ [0,∞) be a convex function,
with g (s) = 0 if and only if s = 0, such that

g (2t) ≤ Cg (t) (3.6)

for all 0 ≤ t ≤ ρ,

g (|ξ −A|) ≤W (ξ) ≤ Cg (|ξ −A|) (3.7)

for all ξ ∈ Rd×N with |ξ −A| ≤ ρ, and

g (|ξ −B|) ≤W (ξ) ≤ Cg (|ξ −B|) (3.8)

for all ξ ∈ Rd×N with |ξ −B| ≤ ρ, for some constant C = C (ρ) > 0. Then
there exists a convex function G : [0,∞)→ [0,∞) such that G (t) = g (t) for all
t ∈ [0, ρ] ,

G (s+ t) ≤ C1 (G (s) +G (t)) (3.9)

for all s, t ≥ 0 and for some constant C1 > 0,

lim
t→∞

G (t)

tp
= 1, (3.10)

1

C2
G (|ξ′|) ≤ 1

C2
min {G (|ξ −A|) , G (|ξ −B|)} ≤W (ξ)

≤ C2min {G (|ξ −A|) , G (|ξ −B|)} (3.11)
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for all ξ ∈ Rd×N and for some constant C2 > 0,

W (ξ) ≤ C3 (W (η) +G (|ξ − η|)) (3.12)

for all ξ, η ∈ Rd×N and for some constant C3 > 0,

C4G (|ξ −A|) ≤W (ξ) (3.13)

for all ξ ∈ Rd×N such that |ξ −A| , |ξ −B| ≥ ρ and for some constant C4 > 0.

Remark 3.5 In light of Lemma 3.4, and in spite of the fact that the qualitative
properties of g are only given nearby zero, in the sequel, and without loss of
generality, we will assume that g satisfies (3.9)-(3.11) and (3.12)-(3.13) with g
in place of G.

We recall that an open set Ω ⊂ RN is starshaped with respect to a set S ⊂ Ω
if Ω is star-shaped with respect to each point of S, i.e. if x ∈ Ω and s ∈ S then
θx+ (1− θ) s ∈ Ω for all θ ∈ (0, 1) .

Proposition 3.6 ([40], Proposition 9.1) Let Ω ⊂ RN be an open bounded
set, star-shaped with respect to a set S ⊂ Ω, with |S| > 0. Let g : [0,∞) →
[0,∞) be a convex function, with g (0) = 0. Let u ∈ W 1,1

(
Ω;Rd

)
be such that

g (|∇u|) ∈ L1 (Ω) . Then
∫

Ω

g

( |u (x)− uS |
d

)

dx ≤
(
αN dN

|Ω|

)1− 1
N |Ω|
|S|

∫

Ω

g (|∇u|) dx,

where uS := 1
|S|
∫

S
u dx, d is any number greater or equal than the diameter of

Ω, and αN is the volume of the unit ball in RN .

Proof. We follow Lemma 7.16 in Gilbarg and Trudinger [74]. Assume first
that u ∈ W 1,1

(
Ω;Rd

)
∩ C1

(
Ω;Rd

)
. Since Ω is star-shaped with respect to

S ⊂ Ω, for x ∈ Ω and y ∈ S we have

u (x)− u (y) = −
∫ |x−y|

0

Dru (x+ rω) dr, ω =
y − x
|y − x| .

Averaging with respect to y over S yields

u (x)− uS = − 1

|S|

∫

S

dy

∫ |x−y|

0

Dru (x+ rω) dr.

Since |x− y| ≤ d we have

|u (x)− uS |
d

≤ 1

|S|

∫

S

1

|x− y|

∫ |x−y|

0

|Dru (x+ rω)| drdy.

As g is convex, it now follows from applying twice Jensen’s inequality that

g

( |u (x)− uS |
d

)

≤ 1

|S|

∫

S

1

|x− y|

∫ |x−y|

0

g (|Dru (x+ rω)|) drdy.
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Defining

V (x) =

{
|∇u (x)| x ∈ Ω,
0 x /∈ Ω,

and, as g is increasing, we have

g

( |u (x)− uS |
d

)

≤ 1

|S|

∫

{y:|x−y|<d}

1

|x− y|

∫ ∞

0

g (V (x+ rω)) drdy

=
1

|S|

∫ ∞

0

∫

|ω|=1

∫ d

0

g (V (x+ rω)) ρN−2dρdωdr

=
dN−1

(N − 1) |S|

∫ ∞

0

∫

|ω|=1
g (V (x+ rω)) dωdr

=
dN−1

(N − 1) |S|

∫

Ω

|x− y|1−N
g (|∇u (y)|) dy,

where we have used the fact that g (0) = 0. The theory of Riesz potentials
(Lemma 7.12 in Gilbarg and Trudinger [74]) now yields

∫

Ω

g

( |u (x)− uS |
d

)

dx ≤ 1

N
(αN )

1− 1
N |Ω| 1

N
dN−1

(N − 1) |S|

∫

Ω

g (|∇u (x)|) dx

and the proof is complete.

Proposition 3.7 ([40], Proposition 9.2) Let Ω ⊂ RN be an open bounded
domain having the cone property, let g : [0,∞) → [0,∞) be a convex function
satisfying the doubling condition, with g (0) = 0. Let u ∈ W 1,1

(
Ω;Rd

)
be such

that g (|∇u|) ∈ L1 (Ω) . Then
∫

Ω

g (|u (x)− uB |) dx ≤ C

∫

Ω

g (|∇u|) dx,

where

uB :=
1

|B|

∫

B

u (y) dy,

B is any fixed ball whose closure is contained in Ω, and C is a positive constant
depending only on Ω and on the ball B.

Proof. Since Ω has the cone property, it is the union of a finite number
of domains starshaped with respect to a ball. Let d be a number greater than
the diameter of all these domains, and let A be any of these subdomains with
D being the corresponding ball. Construct a finite family of balls B0, · · · , BM
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contained in Ω and such that B0 = D, Bi ∩Bi+1 6= ∅, BM = B. Since A is star-
shaped with respect to any fixed ball B̃ contained in B0 ∩ B1, by Proposition
3.6 we obtain

∫

A

g

( |u (x)− uB̃ |
d

)

dx ≤
(
αN dN

|A|

)1− 1
N |A|
∣
∣
∣B̃
∣
∣
∣

∫

A

g (|∇u|) dx.

By Remark 3.5 and (3.9)

∫

A

g

( |u (x)|
d

)

dx ≤ C |A| g
( |uB̃ |

d

)

+ C

(
αN dN

|A|

)1− 1
N |A|
∣
∣
∣B̃
∣
∣
∣

∫

A

g (|∇u|) dx

≤ C
|A|
∣
∣
∣B̃
∣
∣
∣

∫

B̃

g

( |u (x)|
d

)

dx + C

(
αN dN

|A|

)1− 1
N |A|
∣
∣
∣B̃
∣
∣
∣

∫

A

g (|∇u|) dx,

where we have used Jensen’s inequality. Hence

∫

A

g

( |u (x)|
d

)

dx ≤ C
|A|
∣
∣
∣B̃
∣
∣
∣

∫

B0∩B1

g

( |u (x)|
d

)

dx

+ C

(
αN dN

|A|

)1− 1
N |A|
∣
∣
∣B̃
∣
∣
∣

∫

A

g (|∇u|) dx.

Similarly, since for i = 1, · · · ,M − 1 the ball Bi is star-shaped with respect to
any fixed ball B̃i contained in Bi ∩Bi+1 6= ∅, we obtain

∫

Bi

g

( |u (x)|
d

)

dx ≤ C
|Bi|
∣
∣
∣B̃i

∣
∣
∣

∫

Bi∩Bi+1

g

( |u (x)|
d

)

dy

+ C

(
αN dN

|Bi|

)1− 1
N |Bi|
∣
∣
∣B̃i

∣
∣
∣

∫

Bi

g (|∇u|) dx.

Therefore
∫

A

g

( |u (x)|
d

)

dx ≤ C

(∫

B

g

( |u (x)|
d

)

dx+

∫

Ω

g (|∇u|) dx
)

.

Summing over all A gives

∫

Ω

g

( |u (x)|
d

)

dx ≤ C

(∫

B

g

( |u (x)|
d

)

dx +

∫

Ω

g (|∇u|) dx
)

. (3.14)

Since B is convex, by Proposition 3.6

∫

B

g

( |u (x)− uB |
d

)

dx ≤
(
αN dN

|B|

)1− 1
N
∫

B

g (|∇u|) dx,
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where uB := 1
|B|
∫

B
u dx. Replacing u by u− uB in (3.14) we obtain

∫

Ω

g

( |u (x)− uB |
d

)

dx ≤ C

(∫

B

g

( |u (x)− uB |
d

)

+

∫

Ω

g (|∇u|) dx
)

≤ C

∫

Ω

g (|∇u|) dx.

Applying the latter inequality to du in place of u yields

∫

Ω

g (|u (x)− uB |) dx ≤ C

∫

Ω

g (d |∇u|) dx ≤ C1

∫

Ω

g (|∇u|) dx,

where we have used the fact that g (dz) ≤const. g (z) for all z ≥ 0 (see Remark
3.5 and (3.9)). This concludes the proof.
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[62] I. Fonseca, G. Leoni, J. Malý, and R. Paroni, A Note on Meyer’s
Theorem in W k,1. To appear in Trans. A. M. S..

[63] I. Fonseca and C. Mantegazza, Second order singular perturbation
models for phase transitions, SIAM J. Math. Anal. 31 (2000), 1121–1143.

[64] I. Fonseca and S. Müller, Quasi-convex integrands and lower semicon-
tinuity in L1, SIAM J. Math. Anal. 23 (1992), 1081–1098.

[65] I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in
BV(Ω,Rp) for integrands f(x, u,∇u), Arch. Rat. Mech. Anal. 123 (1993),
1–49.

[66] Fonseca I. and S. Müller, A-quasiconvexity, lower semicontinuity and
Young measures, SIAM J. Math. Anal., 30 (1999) 1355-1390.

[67] I. Fonseca and L. Tartar, The gradient theory of phase transitions
for systems with two potential wells, Proc. Roy. Soc. Edin. Sect. A 111
(1989), 89–102.

[68] G. Francfort and J.-J. Marigo, Stable damage evolution in a brittle
continuous medium, European J. Mech. A Solids 12 (1993), 149–189.

34



[69] G. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy
minimization problem, J. Mech. Phys. Solids 46 (1998), 1319–1342.

[70] G. Francfort and J.-J. Marigo, Cracks in fracture mechanics: a
time indexed family of energy minimizers. Variations of domain and free-
boundary problems in solid mechanics, Solid Mech. Appl. 66, Kluwer Acad.
Publ., Dordrecht, 1999.

[71] G. Francfort and J.-J. Marigo, Une approche variationnelle de
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