Lectures at the CNA Summer School, June 2008
(mostly) on Energy-driven Pattern Formation
Robert V. Kohn

Overview: Nature is full of energy-driven patterns. Some represent local or global mini-
mizers of a suitable free energy. Others are self-organized transients produced by energy-
dissipating dynamics. Simulation can demonstrate the adequacy of a model, but it rarely
explains "why” a pattern forms. Nonlinear PDE and the calculus of variations can some-
times provide a more global understanding. I'll give four independent lectures on problems
of this type, followed by a fifth lecture that’s a bit different.

Note: references on which I'm an author can be downloaded as pdf files from
www.math.nyu.edu/faculty /kohn.

Lecture 1: Bounds on coarsening rates. Some energy-driven systems develop inter-
esting patterns transiently (as they evolve) rather than in steady state (at local minima).
An example is the coarsening of a complex initial state under motion by surface diffusion.
In this setting (and many others), the “local length scale” increases with time, often with
an exponent that can be guessed by dimensional analysis. I'll introduce this phenomenon,
then discuss a scheme introduced with F. Otto a few years ago for proving an upper bound
on the coarsening rate, focusing on one of the earliest applications: “motion by surface
diffusion.”

1. R. Kohn and F. Otto, Upper bounds on coarsening rates, Comm. Math. Phys. 229
(2002) 375-395 (focuses on diffuse-interface models; the sharp-interface setting of my
lecture is a little simpler)

2. R. Kohn and X. Yan, Upper bounds on the coarsening rate for an epitaxial growth
model, Comm. Pure App. Math. 56 (2003) 1549-1564 (this paper’s introduction is
shorter and more focused than the CMP paper)

3. R. Kohn and X. Yan, Coarsening rates for models of multicomponent phase separation,
Interfaces and Free Boundaries 6 (2004) 135-149 (again, this paper’s introduction is
shorter and more focused than the CMP paper)

4. F. Otto, T. Rump, and D. Slepcev, Coarsening rates for a droplet model: rigorous
upper bounds, SIAM J. Math. Anal. 38 (2006) 503-529 (besides giving an interesting
new application of the method, this paper explains that there’s a natural way to
choose the “negative Sobolev norm” L.)

5. S. Dai and R. Pego, Universal bounds on coarsening rates for mean-field models of
phase transitions, SIAM J. Math. Anal. 37 (2005) 347-371.

6. R. Pego, Lectures on dynamics in models of coarsening and coagulation, in Dynamics
in Models of Coarsening, Coagulation, Condensation, and Quantization, W. Bao and
J-G Liu eds, (Lect. Notes Ser. Inst. Math. Sci., Nat. Univ. Singapore) World
Scientific, 2007. Available from www.math.cmu.edu/cna as preprint 06-CNA-001



7. S. Conti, F. Otto, B. Niethammer, Coarsening rates in off-critical miztures, STAM J.
Math. Anal. 37 (2006) 1732-1741

8. R. Choksi, S. Conti, R. Kohn, F. Otto, Ground state scaling laws during the onset and
destruction of the intermediate state in a type-I superconductor, Comm. Pure Appl.
Math. 61 (2008) 595-626 (not about coarsening; but the end of Section 3 discusses
our “interpolation inequality” in the low-volume-fraction regime, getting the optimal
dependence of the “constant” on volume fraction)

9. S. Esedoglu and J. Greer, Upper bounds on the coarsening rate of discrete, ill-posed
nonlinear diffusion equations, Comm. Pure Appl. Math, in press. Available from
www.math.lsa.umich.edu/~esedoglu

Lectures 2 and 3: The internal structure of a cross-tie wall. The cross-tie wall is a
particular type of domain wall that forms in soft, thin ferromagnetic films. I'll explain its
structure by identifying an associated variational problem, then showing that the pattern
we see achieves its minimum. Central issues include (a) the relation between sharp-interface
and diffuse-interface models, and (b) use of suitable “entropies” to prove lower bounds on
the energy of a boundary value problem. In exploring these issues we’ll discuss the Modica-
Mortola problem and the Aviles-Giga problem as well as the Alouges-Riviere-Serfaty picture
of a cross-tie wall.

1. R. Kohn, Energy-driven pattern formation, in Proceedings of the International Congress
of Mathematicians — Madrid, August 22-30, 2006, Vol 1, M. Sanz-Solé et. al. eds.,
European Mathematical Society, 2007 (an expository article; Section 3 is very close
to my lectures).

2. A. DeSimone, R. Kohn, S. Miiller, F. Otto, Recent analytical developments in micro-
magnetics, in The Science of Hysteresis II: Physical Modeling, Micromagnetics, and
Magnetization Dynamics, G. Bertotti and 1. Mayergoyz eds., pp. 269-381, Elsevier
2006 (a review article; Section 6.5 is close to my lecture).

3. F. Alouges, T. Riviere, S. Serfaty, Néel and cross-tie wall energies for planar magnetic
configurations, ESAIM:COCV 8 (2002) 31-68 (more general than my treatment; their
formulation has diffuse rather than sharp walls)

4. Y. Nakatani, Y. Uesaka, N. Hayashi, Direct solution for the Landau-Lifshitz-Gilbert
equation for micromagnetics, Jap. J. Appl. Phys. 28 (1989) 2845-2507 (includes
both numerical and experimental pictures of cross-tie walls; my favorite experimental
picture comes from there)

5. W. Jin and R. Kohn, Singular perturbation and the energy of folds, J. Nonlin. Sci. 10
(2000) 355-390 (first use of “entropy” for Aviles-Giga)

6. A. DeSimone, R. Kohn, S. Miiller, F. Otto, Repulsive interaction of Néel walls, and
the internal length scale of the cross-tie wall, Multiscale Modeling & Simulation 1
(2003) 57-104 (explains internal length scale of cross-tie wall).



7. A. DeSimone, R. Kohn, S. Miiller, F. Otto, A compactness result in the gradient theory
of phase transitions, Proc. Royal Soc. Edinburgh 131A (2001) 833-844 (uses entropies
to prove compactness for Aviles-Giga).

Lecture 4: The sharp-interface limit of action minimization. Energy-driven systems
typically achieve local not global minima. Thermal fluctuations lead to switching from
one local minimum to another. The action functional identifies the rate and most likely
pathway of switching. I’ll introduce this topic, then consider the sharp-interface limit of
action minimization for the Modica-Mortola functional, drawing on recent joint work with
F. Otto, Y. Tonegawa, E. Vanden-Eijnden, and M. Westdickenberg.

1. R. Kohn, Energy-driven pattern formation, in Proceedings of the International Congress
of Mathematicians — Madrid, August 22-30, 2006, Vol 1, M. Sanz-Solé et. al. eds.,
European Mathematical Society, 2007 (an expository article; Section 4 is very close
to my lecture).

2. M. Westdickenberg, Rare events, action minimization, and sharp interface limits,
to appear in proc. CRM Workshop on Singularities in PDE and the Calculus of
Variations (an expository article, close to my lecture, goes further than my ICM
piece). Available from www.math.gatech.edu/~maria

3. R. Kohn, F. Otto, M. Reznikoff, E. Vanden-Eijnden, Action minimization and sharp-
interface limits for the stochastic Allen-Cahn equation, Comm. Pure Appl. Math. 60
(2007) 393-438 (partly formal, partly rigorous)

4. R.V. Kohn, M. Reznikoff, Y. Tonegawa, Sharp-interface limit of the Allen-Cahn action
functional in one space dimension, Calc. Var. PDE 25 (2006) 503-534 (fully rigorous
lower bound in 1D)

5. M. Westdickenberg and Y. Tonegawa, Higher multiplicity in the one-dimensional
Allen-Cahn action functional, Indiana Univ Math J. 56 (2007) 2935-2990 (sharp-
interface I'-limit of action functional in 1D)

6. L. Mugnai and M. Roger, The Allen-Cahn functional in higher dimensions, Interfaces
and Free Boundaries 10 (2008) 45-78 (sharp-interface I'-limit of action functional in
2 and 3 dimensions)

7. M. Roger and R. Schatzle, On a modified conjecture of DeGiorgi, Math. Zeitschrift
254 (2006) 675-714 (sharp-interface I'-limit of action is closely related to DeGiorgi’s
conjecture)

8. R. Kohn, M. Reznikoff, and E. Vanden-Eijnden, Magnetic elements at finite tem-
perature and large deviation theory, J. Nonlin. Sci. 15 (2005) 223-253 (includes an
expository discussion of action minimization, and an application involving magnetic
switching)

9. M. Heymann and E. Vanden-FEijnden, The geometric minimum action method: a least
action principle on the space of curves, Comm. Pure Appl. Math., presently online



in “early-view” (recent progress on numerical methods for finding action-minimizing
paths in non-gradient systems)

10. W. E, W. Ren, and E. Vanden-Eijnden, Simplified and improved string method for
computing the minimum energy paths in barrier-crossing events, J. Chem. Phys. 126
(2007) 164103 (recent progress on finding saddles, thereby determining transition rates
for gradient systems)

Lecture 5: Cloaking by change of variables. We say a region of space is “cloaked” with
respect to electromagnetic measurements if its contents — and even the existence of the cloak
— are inaccessible to such measurements. One recent proposal for achieving cloaking takes
advantage of the coordinate-invariance of Maxwell’s equations. I’ll explain this scheme,
including its mathematical basis and its apparent limitations, drawing on recent work with
Onofrei, Shen, Vogelius, and Weinstein.

1. R. Kohn, H. Shen, M. Vogelius, and M. Weinstein, Cloaking via change of variables in
electric impedance tomography, Inverse Problems 24 (2008) 015016 (this paper includes
a long, expository introduction and is a lot like my lecture)

2. A. Greenleaf, M. Lassas, and G. Uhlmann, On nonuniqueness for Calderon’s inverse
problem, Math. Res. Lett. 10 (2003) 685-693

3. J. Pendry, D. Schurig, and D. Smith, Controlling electromagnetic fields, Science 312
(2006) 1780-1782

4. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Full-wave invisibility of active
devices at all frequencies, Comm. Math. Phys. 275 (2007) 749-789

5. R. Kohn, D. Onofrei, M. Vogelius, and M. Weinstein, in preparation (this work dis-
cusses the design of a change-of-variable-based “near-cloak” in the finite-frequency
setting, for a system described by Helmholtz’s equation).



