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Abstract

A recent paper by Pendry, Schurig, and Smith [Science 312, 2006, 1780-1782] used the
coordinate-invariance of Maxwell’s equations to show how a region of space can be “cloaked” –
in other words, made inaccessible to electromagnetic sensing – by surrounding it with a suitable
(anisotropic and heterogenous) dielectric shield. Essentially the same observation was made
several years earlier by Greenleaf, Lassas, and Uhlmann [Mathematical Research Letters 10,
2003, 685-693 and Physiological Measurement 24, 2003, 413-419] in the closely related setting of
electric impedance tomography. These papers, though brilliant, have two shortcomings: (a) the
cloaks they consider are rather singular; and (b) the analysis by Greenleaf, Lassas, and Uhlmann
does not apply in space dimension n = 2. The present paper provides a fresh treatment that
remedies these shortcomings in the context of electric impedance tomography. In particular,
we show how a regular near-cloak can be obtained using a nonsingular change of variables, and
we prove that the change-of-variable-based scheme achieves perfect cloaking in any dimension
n ≥ 2.
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1 Introduction

We say a region of space is “cloaked” with respect to electromagnetic sensing if its contents – and
even the existence of the cloak – are inaccessible to such measurements.

Is cloaking possible? The answer is yes, at least in principle. A cloaking scheme based on change-
of-variables was discussed for electric impedance tomography by Greenleaf, Lassas, and Uhlmann in
2003 [19, 20], and for the time-harmonic Maxwell’s equation by Pendry, Schurig, and Smith in 2006
[35, 38]. Other schemes have also been discussed, including one based on optical conformal mapping
[28, 29], another based on anomalous localized resonances [32], and a third based on use of sensors
and active sources [30, 36]. Recent developments include numerical [6, 12, 45] and experimental [39]
implementations of change-of-variable-based cloaking; adaptations of the change-of-variable-based
scheme to acoustic or elastic sensing [13, 31]; and the introduction of related schemes for cloaking
active objects such as light sources [17].

Is cloaking interesting? The answer is clearly yes. One reason is theoretical: the existence of
cloaks reveals intrinsic limitations of electromagnetic-based schemes for remote sensing, such as
inverse scattering and impedance tomography. A second reason is practical: cloaking provides an
easy method for making any object invisible – by simply surrounding it with a cloak. The appeal
of this idea has attracted a lot of attention, e.g. [8, 44].

Is cloaking practical? The answer is not yet clear. All approaches to cloaking require the
design of materials with exotic dielectric properties. One hopes that the desired properties can be
achieved (or at least approximated) by means of “metamaterials” [40]; for the schemes based on
change-of-variables this seems to be the case [39]. For a cloaking scheme to be practical it must be
reasonably insensitive to imperfection; the robustness of the change-of-variable-based scheme has
just begun to be addressed [10, 18, 37] (see Section 2.3 for comments on this work.)

The present paper is related to the first and last of the preceding questions. We ask:

(i) Does the change-of-variables-based scheme really achieve a perfect cloak?

(ii) What about a regularized version of the this scheme? How close does it come to achieving
cloaking?

Our analysis is restricted to electric impedance tomography. This amounts to considering electro-
magnetic sensing in the low-frequency limit [26]; it is simpler than the finite-frequency setting, due
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to the ready availability of variational principles. But we do discuss the finite-frequency setting, in
Section 2.5.

Concerning (i): there is cause for concern, because the underlying change of variables is highly
singular (see Section 2.3). Singularities are sometimes significant; for example, the fundamental
solution of Laplace’s equation is harmonic except at a point. The physics literature recognizes this
issue; for example, Cummer et al. write in [12] that “whether perfect cloaking is achievable, even in
theory, is . . . an open question.” They also suggest, using an argument based on geometrical optics,
that the presence of a singularity “may degrade cloaking performance to an unknown degree.”

Actually, (i) was settled for electric impedance tomography by [19] in space dimension n ≥
3, using a method that does not work in space dimension two. One goal of the present paper
is to show that the situation is not significantly different when n = 2: perfect cloaking is also
possible in space dimension two. Our discussion of perfect cloaking, presented in Section 4, is not
fundamentally different from that in [19]; in particular, our main tool (like [19]) is a result about
the removability of singularities for harmonic functions. However our discussion differs from [19]
by treating all dimensions n ≥ 2 simultaneously, and by working directly with the divergence-form
PDE of electrostatics rather than rewriting it as the Laplace-Beltrami equation of an associated
Riemannian metric. In addition, our exposition is perhaps more elementary (thus more accessible
to non-expert readers).

Concerning (ii): the question is as important as the answer. We suggest that the “perfect
cloak,” obtained using a singular change of variables, not be taken literally. Instead, it should be
used to design a more regular “near-cloak,” based on a less singular change of variable. The near-
cloak is physically more plausible (for example, its dielectric tensor is strictly positive and finite).
Moreover, the mathematical analysis of the near-cloak is actually easier, since nothing is singular.
Basically, the problem reduces to understanding how boundary measurements are influenced by
dielectric inclusions (see Section 2.3 for further explanation).

The paper is organized as follows. We begin, in Section 2, by introducing electric impedance
tomography and giving a brief, nontechnical explanation of the change-of-variable-based cloaking
scheme. That section also puts our work in context, discussing its relation to known uniqueness
results and explaining why the finite-frequency case is similar to but different from the one consid-
ered here. Then, in Sections 3 and 4, we give a rigorous analysis of the change-of-variable-based
cloaking scheme. In Section 3 we use a regular change of variables and prove that the inclusion is
almost cloaked. In Section 4 we use a singular change of variables and prove that the inclusion is
perfectly cloaked.

2 The main ideas

2.1 Electric impedance tomography

In electric impedance tomography, one uses static voltage and current measurements at the bound-
ary of an object to gain information about its internal structure.

Mathematically, we suppose the object occupies a (known) bounded region Ω ⊂ IRn, n ≥ 2. Its
(unknown) electrical conductivity σ(x) is a non-negative symmetric-matrix-valued function on Ω.
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The PDE of electrostatics is

∇ · (σ∇u) =
∑
i,j

∂

∂xi

(
σij(x)

∂u

∂xj

)
= 0 in Ω; (1)

it relates the voltage u and the associated electric field ∇u to the resulting current σ∇u (see
Section 2.5). The PDE (1) determines a “Dirichlet to Neumann map” Λσ; by definition, it takes
an arbitrary boundary voltage to the associated current flux:

Λσ : u|∂Ω → (σ∇u) · ν|∂Ω (2)

where ν is the outward unit normal to ∂Ω. Electric impedance tomography seeks information on σ,
given knowledge of the mapping Λσ. In the mathematics literature this problem was first proposed
and partially addressed by Calderón [7].

Does Λσ determine σ? In general, the answer is no: the PDE is invariant under change of
variables, so σ can at best be determined “up to change of variables.” We shall explain this
statement in Section 2.2. If, however, σ is scalar-valued, positive, and finite1, then the answer is
basically yes: under some modest (apparently technical) conditions on the regularity of σ, knowledge
of the Dirichlet-to-Neumann map Λσ determines an internal isotropic conductivity σ(x) uniquely.
We shall review these results in Section 2.4.

σ (x)cσ
A

=

σ
A

=A(x)

voltage f implies same current flux gvoltage f implies current flux g

σ 1

Figure 1: The region D is cloaked by σc if, regardless of the conductivity distribution A(x) in D,
the boundary measurements at ∂Ω are identical to those of a uniform region with conductivity 1.

What does it mean in this context for a subset D of Ω to be cloaked? In principle, it means that
the contents of D – and even the existence of the cloak – are invisible to electrostatic boundary
measurements. To keep things simple, however, we shall use a slightly more restrictive definition:
we say D ⊂ Ω is cloaked by a conductivity distribution σc(x) defined outside D if the associated
boundary measurements at ∂Ω are identical to those of a homogeneous, isotropic region with
conductivity 1 – regardless of the conductivity in D (see Figure 1). More precisely:

1When we say σ is “positive and finite” we mean it is a bounded, measurable function with σ(x) ≥ c0 a.e. in Ω
for some c0 > 0.
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Definition 1 Let D ⊂ Ω be fixed, and let σc : Ω \D be a non-negative, matrix-valued conductivity
defined on the complement of D. We say σc cloaks the region D if its extensions across D,

σA(x) =
{

A(x) for x ∈ D
σc(x) for x ∈ Ω \ D

(3)

produce the same boundary measurements as a uniform region with conductivity σ ≡ 1, regardless
of the choice of the conductivity A(x) in D.

The name is appropriate: a cloak makes the associated region D invisible with respect to electric
impedance tomography. Indeed, suppose σc cloaks D ⊂ Ω in the sense of of Definition 1, and let
Ω′ be any domain containing Ω. Then the Dirichlet-to-Neumann map of

σ(x) =




A(x) for x ∈ D
σc(x) for x ∈ Ω \ D
1 for x ∈ Ω′ \ Ω

(4)

is independent of A, and identical to that of the domain Ω′ with constant conductivity 1. This
holds because Ω communicates with its exterior only through its Dirichlet-to-Neumann map.

Notice that from a single example of cloaking, this extension argument produces many other
examples. Indeed, according to (4), if σc cloaks D ⊂ Ω in the sense of Definition 1, then the
extension of σc by 1 cloaks D in any larger domain Ω′.

We shall explain in Section 2.3, following [20, 35], how the invariance of electrostatics under
change of variables leads to examples of cloaks.

2.2 Invariance by change of variables

The invariance of the PDE (1) by change-of-variables is well known. So is the fact that Λσ can
determine σ at best “up to change of variables.” This observation is explicit e.g. in [22, 25], with
an attribution to Luc Tartar.

It is convenient to think variationally. Recall that if σ(x) is bounded and positive definite, then
the solution of (1) with Dirichlet data f solves the variational problem

min
u=f at ∂Ω

∫
Ω
〈σ∇u,∇u〉 dx. (5)

Moreover the minimum “energy” is determined by Λσ, since when u solves (1) we have∫
Ω
〈σ∇u,∇u〉 dx =

∫
∂Ω

fΛσ(f). (6)

Thus, knowledge of Λσ determines the minimum energy, viewed as a quadratic form on Dirichlet
data. The converse is also true: knowledge of the minimum energy for all Dirichlet data determines
the boundary map Λσ. This follows from the well known polarization identity: for any f and g,

4
∫

∂Ω
fΛσg =

∫
∂Ω

(f + g)Λσ(f + g) −
∫

∂Ω
(f − g)Λσ(f − g). (7)
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The right hand side is the minimum energy for f + g minus that for f − g, while the left hand side
is the boundary map, viewed as a bilinear form on Dirichlet data.

We turn now to change of variables. Suppose y = F (x) is an invertible, orientation-preserving
change of variables on Ω. Then we can change variables in the variational principle (5):∫

Ω

∑
σij

∂u

∂xi

∂u

∂xj
dx =

∫
Ω

∑
σij

∂u

∂yk

∂yk

∂xi

∂u

∂yl

∂yl

∂xj
det

(
∂x

∂y

)
dy.

We can write this more compactly as∫
Ω
〈σ(x)∇xu,∇xu〉 dx =

∫
Ω
〈F∗σ(y)∇yu,∇yu〉 dy

where
F∗σ(y) =

1
det(DF )(x)

DF (x)σ(x)(DF (x))T (8)

in which DF is the matrix with i, j element ∂yi/∂xj and the right hand side is evaluated at
x = F−1(y). We call F∗σ the push-forward of σ by the change of variables F .

We come finally to the main point: if F (x) = x at ∂Ω, then the boundary measurements
associated with σ and F∗σ are identical, in other words

Λσ(f) = ΛF∗σ(f) for all f. (9)

Indeed, if F (x) = x at ∂Ω then the change of variables does not affect the Dirichlet data. So for
any f , ∫

∂Ω
fΛσf = min

u=f at ∂Ω

∫
Ω
〈σ(x)∇xu,∇xu〉 dx

= min
u=f at ∂Ω

∫
Ω
〈F∗σ(y)∇yu,∇yu〉 dy

=
∫

∂Ω
fΛF∗σf.

Thus Λσ and ΛF∗σ determine identical quadratic forms, from which it follows by (7) that Λσ = ΛF∗σ.

2.3 Cloaking via change of variables

We now explain how change-of-variables-based cloaking works. For simplicity we focus on the radial
case: Ω = B2 is a ball of radius 2, and the region D to be cloaked is B1, the concentric ball of
radius 1 (see Figure 2). It will be clear, however, that the method is much more general.

We start by explaining how B1 can be nearly cloaked using a regular change of variables. Fixing
a small parameter ρ > 0, consider the piecewise-smooth change of variables

F (x) =

{ x
ρ if |x| ≤ ρ(

2−2ρ
2−ρ + 1

2−ρ |x|
)

x
|x| if ρ ≤ |x| ≤ 2.

(10)

Its key properties are that
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• F is continuous and piecewise smooth,

• F expands Bρ to B1, while mapping the full domain B2 to itself,

• F (x) = x at the outer boundary |x| = 2.

B
2

B
2

Bρ

1B

F

Figure 2: The change of variables leading to a regular near-cloak: F expands a small ball Bρ to a
ball of radius 1.

The associated near-cloak is the push-forward via F of the constant conductivity σ = 1, re-
stricted to the annulus B2 \ B1. (Abusing notation a bit, we write this as F∗1.) To explain why,
consider any conductivity of the form

σA(y) =
{

A(y) for y ∈ B1

F∗1(y) for y ∈ B2 \ B1.
(11)

By the change-of-variables principle (9) its boundary measurements are identical to those of

F−1
∗ σA(x) =

{
F−1∗ A(x) for x ∈ Bρ

1 for x ∈ B2 \ Bρ

where
F−1
∗ σA = (F−1)∗σA

denotes the push-forward of the conductivity distribution σA by the map F−1. Thus, the boundary
measurements associated with σA are the same as those of a uniform ball perturbed by a small
inclusion at the center. The contents of the inclusion are uncontrolled, since A is arbitrary. But
the radius of the inclusion is small, namely ρ. As we explain in Section 3, this is enough to assure
that the boundary measurements are close to those of a completely uniform ball. Thus: when ρ is
sufficiently small, this scheme comes close to cloaking the unit ball (see Theorem 1 in Section 3.3).

Now we show how B1 can be perfectly cloaked using a singular change of variables. The idea is
obvious: just take ρ = 0 in (10). The resulting change of variables

F (x) =
(

1 +
1
2
|x|

)
x

|x| (12)

is the same one used in [19, 20] for electrostatics and in [35] for electromagnetics. Its key properties
are that:
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• F is smooth except at 0;

• F blows up the point 0 to the ball B1, while mapping the full domain B2 to itself; and

• F (x) = x at the outer boundary |x| = 2.

A heuristic “proof” that F∗1 gives a perfect cloak uses the same argument as before. This time
F−1∗ A occupies a point rather than a ball. Changing the conductivity at a point should have no
effect on the boundary measurements. Therefore we expect that when σA is given by (11) with F
given by (12), the boundary measurements should be identical to those obtained for a uniform ball
with σ ≡ 1.

This heuristic proof needs some clarification. The validity of the change of variables formula
is open to question when F is so singular. Worse: our cloak F∗1 is quite singular near its inner
boundary |x| = 1; some care is therefore needed concerning what we mean by a solution of the
PDE (1). These topics will be addressed in Section 4.

We have focused on the radial case because the simple, explicit form of the diffeomorphism F
leads to an equally simple, explicit formula for the associated cloak (see Section 4.1). However the
method is clearly not limited to the radial case (see Theorems 2 and 4).

Our “regular near-cloak” is quite different from the approximate cloaking scheme considered
in [18, 37]. Those papers start with a perfect cylindrical cloak, obtained using the 2D version
of the familiar construction (12). This cloak fills the annulus 1 < |y| < 2 with an anisotropic,
heterogeneous medium, whose behavior is rather singular near the inner boundary |y| = 1 (see
Section 4.1). The approximate cloak considered in [18, 37] is obtained by restricting the perfect cloak
to a slightly smaller annulus 1+δ < |y| < 2. Perfect cloaking (at any frequency) is obtained as δ → 0,
however the convergence is extremely slow. The convergence can be greatly improved by introducing
a layer at the edge of the cloak that permits surface currents [18]. In summary: our “regular near-
cloak” avoids singular behavior by using a regularized change of variables, whereas [18, 37] avoid
singular behavior by truncation. We also note the interesting article [10], which explores the
sensitivity of the ideal cloak to various types of material or manufacturing imperfections.

The focus of this paper is on cloaking. But we note in passing that it might be possible to design
other interesting devices using similar change-of-variable-based techniques. A recent example of
this type is the scheme of [9] for rotating electromagnetic fields.

2.4 Relation to known uniqueness results

The uniqueness problem for electric impedance tomography asks whether it is possible, in principle,
to determine σ(x) using boundary measurements. In other words, does Λσ determine σ?

If it is known in advance that the conductivity is scalar-valued, positive, and finite, then the
answer is basically yes. The earliest uniqueness results – in the class of analytic or piecewise analytic
conductivities – date from the early 80’s [14, 23, 24]. A few years later, using entirely different
methods, uniqueness was proved for conductivities that are several times differentiable in dimension
n ≥ 3 [42] and in dimension n = 2 [33]. Recently, using yet another method, uniqueness has been
shown in two space dimensions with no regularity hypothesis at all, assuming only that σ(x) is
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scalar-valued, strictly positive, and finite [4]. We have given just a few of the most important
references; for more complete surveys see [11, 21, 43].

We observed in Section 2.2 that when σ(x) is symmetric-matrix-valued, boundary measurements
can at best determine it “up to change of variables.” Is this the only invariance? In other words,
if two conductivities give the same boundary measurements, must they be related by change of
variables? If cloaking is possible then the answer should be no, since the conductivities σA in (3)
are not related, as A varies, by change of variables.

Paradoxically, Sylvester proved that in two space dimensions, boundary measurements do deter-
mine σ up to change of variables [41]! 2 The heart of his proof was the introduction of isothermal
coordinates – i.e. construction of a (unique) map G : Ω → Ω such that G∗σ is isotropic and
G(x) = x at ∂Ω. By uniqueness in the isotropic setting, Λσ determines G∗σ; thus boundary
measurements determine σ up to change of variables.

Does cloaking contradict Sylvester’s result? Not at all. The resolution of the paradox is that the
introduction of isothermal coordinates depends crucially on having upper and lower bounds for σ(x).
Indeed, if Ω is a ball and σ = F∗1 with F given by (10), then the associated isothermal coordinate
transformation is G = F−1. As ρ → 0 in (10) the isothermal coordinates become singular. When
ρ is positive we do not get perfect cloaking (consistent with Sylvester’s theorem). When ρ = 0 we
do get cloaking – but the eigenvalues of σ are unbounded both above and below near |x| = 1 (see
Section 4.1), Sylvester’s argument no longer applies, and indeed there is no isothermal coordinate
system.

Do boundary measurements determine σ up to change of variables in three or more space
dimensions? If we assume only that σ is nonnegative then the answer is no, since cloaking is
possible. If, however, we assume that σ is strictly positive and finite, then such a result could still
be true. A proof for real-analytic conductivities is given in [27].

2.5 Comments on cloaking at nonzero frequency

This paper focuses on electric impedance tomography, because we can explain the essence of change-
of-variable-based cloaking in this electrostatic setting with a minimum of mathematical complexity.
The practical applications of cloaking are, however, mainly at nonzero frequencies – for exam-
ple, making objects invisible at optical wavelengths, or undetectable by electromagnetic scattering
measurements. We therefore discuss briefly how the positive-frequency problem is similar to, yet
different from, the static case.

For time-harmonic fields in a linear medium, Maxwell’s equations become

∇× H = (σ − iωε)E, ∇× E = iωµH. (13)

Here E and H are complex vector fields representing the electric and magnetic fields; σ, ε, and µ are
real-valued, positive-definite symmetric tensors representing the electrical conductivity, dielectric
permittivity, and magnetic permeability of the medium; and ω > 0 is the frequency. The physical
electric and magnetic fields are Re

{
Ee−iωt

}
and Re

{
He−iωt

}
.

2Sylvester’s paper proved only a local result, and required σ to be C3. When combined with [33], however, his
analysis gives a global C3 result. The recent improvement in [5] assumes only that σ is bounded and positive-definite.
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When ω = 0, (13) reduces formally to (1). Indeed, Maxwell’s equations become ∇× H = σE
and ∇× E = 0. The latter implies E = ∇u and the former implies that σ∇u is divergence-free.

The analogue of the Dirichlet-to-Neumann map Λσ at finite frequency is the correspondence
between the tangential component of E and the tangential component of H at ∂Ω. When ω is not
an eigenfrequency this can be expressed as a map from E|∂Ω × ν to H|∂Ω × ν, sometimes known
as the admittance. (When ω is an eigenfrequency the map is not well-defined and one should
consider instead all pairs (E|∂Ω × ν,H|∂Ω × ν).) Mathematically, the admittance specifies the set
of possible Cauchy data for (13) at frequency ω. Physically, a body interacts with its exterior only
through its admittance; therefore two objects with the same admittance are indistinguishable by
electromagnetic measurements at frequency ω – for example, by scattering measurements.

Digressing a bit, we remark that many of the uniqueness results sketched in Section 2.4 have
been extended to finite frequency. In particular, the admittance of a 3D body at a single frequency
determines σ, µ, and ε provided they are known in advance to be scalar-valued, sufficiently smooth,
and constant near the boundary [34]. A different connection between the positive-frequency and
electrostatic cases is provided by [26], which shows that the admittance determines the electrostatic
Dirichlet-to-Neumann map in the limit ω → 0.

Let us focus now on cloaking. The positive-frequency analogue of our definition of cloaking is
clear: three nonnegative matrix-valued functions σ, ε, and µ defined on Ω \ D cloak a region D if
the associated admittance at ∂Ω does not depend on how σ, ε, and µ are extended across D. The
positive-frequency analogue of our change-of-variables scheme is also clear: if Ω = B2, D = B1,
and F (x) =

(
1 + 1

2 |x|
)

x
|x| as in (12) and [19, 20, 35], we should be able to cloak D by taking σ|Ω\D,

ε|Ω\D, and µ|Ω\D each to be the “push-forward” of the constant 1. The correctness of this scheme
is demonstrated in [17], though it is not the main focus of that paper. Their argument is, roughly
speaking, a finite-frequency (and more general) analogue of the one in presented here in Section 4.

What about our regular near-cloak? The discussion in Section 3 has an obvious extension to
the time-harmonic Maxwell setting. To analyze the performance of this near-cloak, we would need
an estimate for the effect of a small inclusion (with uncontrolled dielectric properties) upon the
boundary measurements (admittance). Unfortunately, this question is to the best of our knowledge
open, though the effect of a uniform inclusion is very well understood [3]. We anticipate a result
similar to the electrostatic setting – the effect of an inclusion should tend to zero as its radius tends
to zero. Such a result would, as an immediate consequence, extend the analysis of Section 3 to the
time-harmonic Maxwell setting.

We refer to [17] for further discussion of the time-harmonic problem. That paper includes,
among other things, a new change-of-variable-based scheme for cloaking an active device (such as
a light source).

3 Analysis of the regular near-cloak

This section reviews some well known facts about the Dirichlet-to-Neumann map, then analyzes
the near-cloak obtained using the change of variable (10).
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3.1 The Dirichlet-to-Neumann map

In discussing the PDE (1), we assume throughout this section that the conductivity is strictly
positive and bounded in the sense that for some constants 0 < m,M < ∞,

m|ξ|2 ≤ 〈σ(x)ξ, ξ〉 ≤ M |ξ|2 (14)

for all x ∈ Ω and ξ ∈ IRn. Our discussion of cloaking focused on the case when Ω is a ball, but in
this section Ω can be any bounded domain in IRn with sufficiently regular boundary.

We will make essential use of the variational principle (5). Therefore we must restrict our
attention to Dirichlet data f for which there exists a “finite energy” solution. When σ satisfies (14)
it is well known that this occurs precisely when

f ∈ H1/2(∂Ω) =
{
f : f = v|∂Ω for some v such that

∫
Ω |∇v|2 dx < ∞}

.

When f is constant the solution is also constant – a trivial case – so it is natural to restrict attention
to the subspace H

1/2
∗ (∂Ω) = H1/2(∂Ω) ∩ {∫∂Ω f = 0}, with the natural norm

‖f‖2

H
1/2
∗ (∂Ω)

= min
v=f at ∂Ω

∫
Ω
|∇v|2 dx. (15)

This is a fractional Sobolev space, consisting of functions with “one-half derivative in L2(∂Ω)”
(see e.g. [1]). We shall not try to explain what this means in general, but we note that when Ω is
a ball BR in IR2 the interpretation is quite simple. In fact, if f =

∑∞
k=1 ak sin(kθ)+bk cos(kθ) at the

boundary then the optimal v for (15) is the harmonic function v =
∑∞

k=1(r/R)k (ak sin(kθ) + bk cos(kθ)),
and direct calculation gives

‖f‖2

H
1/2
∗ (∂BR)

= π
∞∑

k=1

k(a2
k + b2

k).

Sometimes it is convenient to specify Neumann rather than Dirichlet data. Note that when
σ is anisotropic, the phrase “Neumann data” refers to g = (σ∇u) · ν. It is well known that the
space of finite energy Neumann data is H

−1/2
∗ (∂Ω) = H−1/2(∂Ω) ∩ {∫∂Ω f = 0}. It consists of

mean-value-zero functions with “minus one-half derivative in L2(∂Ω)”. In general

‖g‖
H

−1/2
∗ (∂Ω)

= sup
{∫

∂Ω
fg : ‖f‖

H
1/2
∗ (∂Ω)

≤ 1
}

;

when Ω is a ball of radius R in IR2 and g =
∑∞

k=1 ak sin(kθ) + bk cos(kθ) this reduces to

‖g‖2

H
−1/2
∗ (∂BR)

= πR2
∞∑

k=1

k−1(a2
k + b2

k).

We defined the Dirichlet-to-Neumann map Λσ in (2) as the operator that takes Dirichlet to
Neumann data. It is a bounded linear map from H

1/2
∗ (∂Ω) to H

−1/2
∗ (∂Ω). Moreover it is positive

11



and symmetric (in the L2 inner product) and invertible, so it defines a positive definite quadratic
form on H

1/2
∗ (∂Ω). This form can be written “explicitly” as

〈Λσf1, f2〉 =
∫

∂Ω
Λσ(f1)f2 =

∫
Ω
〈σ∇u1,∇u2〉 dx

where u1 and u2 solve the PDE (1) with Dirichlet data f1 and f2 respectively. The natural norm
on symmetric linear maps of this type is

‖Λ‖ = sup
{
|〈Λf, f〉| : ‖f‖

H
1/2
∗ (∂Ω)

≤ 1
}

. (16)

This is equivalent to the operator norm of Λ viewed as a map from H
1/2
∗ to H

−1/2
∗ , as a consequence

of the polarization identity (7).
When two conductivities are ordered, the associated Dirichlet-to-Neumann maps are also or-

dered. More precisely: if σ and η satisfy

〈σ(x)ξ, ξ〉 ≤ 〈η(x)ξ, ξ〉

for all x ∈ Ω and all ξ ∈ IRn then Λσ ≤ Λη in the sense that

〈Λσ(f), f〉 ≤ 〈Λη(f), f〉 (17)

for all f ∈ H
1/2
∗ (∂Ω). This follows easily from the variational principle (5), since if ∇ · (σ∇u) = 0

and ∇ · (η∇v) = 0 in Ω with u = v = f at ∂Ω, then

〈Λσf, f〉 =
∫

Ω
〈σ∇u,∇u〉

≤
∫

Ω
〈σ∇v,∇v〉

≤
∫

Ω
〈η∇v,∇v〉 = 〈Ληf, f〉.

3.2 Dielectric inclusions

The simplest special case of our PDE (1) is when σ ≡ 1. Then the solution u is harmonic. We
understand almost everything about harmonic functions and the associated Dirichlet-to-Neumann
map.

Another relatively simple case arises when σ is uniform except for a constant-conductivity
spherical inclusion of radius ρ centered at some x0 ∈ Ω:

σα,ρ(x) =
{

α for x ∈ Bρ(x0)
1 for x ∈ Ω \ Bρ(x0).

(18)

In view of (17), the effect of the inclusion depends monotonically on its conductivity α. It is
therefore natural to consider the extreme limits as α → 0 and α → ∞.

12



We now discuss these limits in detail, since they are important to our analysis. Given any
f ∈ H1/2(∂Ω) let uρ

0 denote the solution to

∆uρ
0 = 0 in Ω \ Bρ(x0) , with

∂uρ
0

∂ν
= 0 on ∂Bρ(x0) , and uρ

0 = f on ∂Ω . (19)

Similarly let let uρ∞ denote the solution to

∆uρ
∞ = 0 in Ω \ Bρ(x0) , with uρ

∞ = c∞ on ∂Bρ(x0) , and uρ
∞ = f on ∂Ω , (20)

where the constant c∞ is (uniquely) determined by∫
∂Bρ(x0)

∂uρ∞
∂ν

= 0 . (21)

Using very standard energy arguments it is easy to see that

uρ
α → uρ

0 as α → 0 , and uρ
α → uρ

∞ as α → ∞ ,

weakly in H1(Ω \Bρ(x0)). Indeed, energy considerations immediately yield that ‖∇uρ
α‖L2(Ω\Bρ(x0))

is bounded uniformly in α, that ‖∇uρ
α‖L2(Bρ(x0)) → 0 as α → ∞, and that ‖α∇uρ

α‖L2(Bρ(x0)) → 0
as α → 0. By extraction of subsequences we now get weak H1(Ω \Bρ(x0)) limits, uρ

0 and uρ∞, that
satisfy (19) and (20), respectively. The boundary conditions on ∂Bρ(x0) follow from the continuity
of (σ∇u) · ν across this “interface.” The condition (21), determining c∞, follows since∫

∂Bρ(x0)

∂uρ
α

∂ν

+

=
∫

∂Bρ(x0)
α

∂uρ
α

∂ν

−
= 0 ,

and therefore ∫
∂Bρ(x0)

∂uρ∞
∂ν

= lim
α→∞

∫
∂Bρ(x0)

∂uρ
α

∂ν

+

= 0 .

It is not hard to see that this same c∞ may also be characterized as the constant that gives rise to
the smallest energy (of uρ∞). The fact that we get single limits as α → 0 and α → ∞, respectively,
is a consequence of the uniqueness of the solution to (19), and the solution to (20). We now define

Λρ
0f = ∇uρ

0 · ν|∂Ω ,

and
Λρ
∞f = ∇uρ

∞ · ν|∂Ω .

Integration by parts, together with the weak H1 convergence, gives that Λσα,ρf → Λρ
0f and

Λσα,ρf → Λρ∞f as α → 0 and α → ∞, respectively. In particular

〈Λσα,ρf, f〉 → 〈Λρ
0f, f〉 as α → 0 ,

and
〈Λσα,ρf, f〉 → 〈Λρ

∞f, f〉 as α → ∞ .

13



Finally we note that if Ω is a ball of radius R in IR2 and the inclusion lies at its center, then the
above convergence of the Dirichlet-to-Neumann maps can easily be derived by explicit solution of
(19) and (20), using separation of variables.

In the small-particle limit ρ → 0, the perturbation introduced by the presence of a small
inclusion (extreme or not) is well understood. We shall not use its exact form; rather what matters
to us is its magnitude, which is proportional to the volume of the inclusion:

Proposition 1 Let Λ1 be the Dirichlet-to-Neumann map when σ ≡ 1, and let Λρ
0 and Λρ∞ be the

Dirichlet-to-Neumann maps associated with the problems (19) and (20) respectively. Then

‖Λ1 − Λρ
0‖ ≤ Cρn and ‖Λ1 − Λρ

∞‖ ≤ Cρn

when ρ is sufficiently small. Here n is the spatial dimension and we mean the operator norm (16)
on the left hand side of each inequality.

A proof of the estimate for Λ1 − Λρ∞ is given in Section 2 of [16] and the same argument can
be used for Λ1 − Λρ

0. The constant C depends of course on the location of x0 and the shape of Ω.
Much more detailed results are known, including a full asymptotic expansion for the dependence
of the Dirichlet-to-Neumann map on ρ; see e.g. [2] for a recent review.

We have focused on spherical inclusions only for the sake of simplicity. The preceding discussion
extends straightforwardly to inclusions of any fixed shape, i.e. to the situation when Bρ(x0) is
replaced by x0 + ρD where D is any “inclusion shape” (a bounded domain in IRn, containing the
origin, with sufficiently regular boundary).

3.3 The regular near-cloak is almost invisible

Now consider the “regular near-cloak” discussed in Section 2.3: Ω = B2 is a ball about the origin
of radius 2, and σ = σA has the form

σA(y) =
{

A(y) for y ∈ B1

F∗1(y) for y ∈ B2 \ B1.

where F is given by (10). The symbol A stands for “arbitrary:” A(x) is the (scalar or matrix-valued)
conductivity in the region being cloaked. We assume it is positive definite and finite,

m|ξ|2 ≤ 〈A(y)ξ, ξ〉 ≤ M |ξ|2 for y ∈ B1, (22)

so the solution of the PDE (1) is well-defined and unique. However our estimates will not depend
on the lower and upper bounds m and M .

As we explained in Section 2.3, the Dirichlet-to-Neumann map of σA is identical to that of

F−1
∗ σA(x) =

{
F−1∗ A(x) for x ∈ Bρ

1 for x ∈ B2 \ Bρ.

By the ordering relation (17), and the convergence results described in the previous section, we
conclude that

lim
α→0

Λσα,ρ = Λρ
0 ≤ ΛσA

= ΛF−1∗ σA
≤ Λρ

∞ = lim
α→∞Λσα,ρ ,

14



whence
Λρ

0 − Λ1 ≤ ΛσA
− Λ1 ≤ Λρ

∞ − Λ1 .

It follows using Proposition 1 that the boundary measurements obtained using this near-cloak are
almost identical to those of a uniform ball with conductivity 1:

‖ΛσA
− Λ1‖ ≤ Cρn , (23)

where the left hand side is the operator norm (16). The constant C is independent of A; in fact it
does not even depend on the values of m and M in (22). We have proved:

Theorem 1 Suppose the shell B2 \ B1 has conductivity F∗1, where F is given by (10). If ρ is
sufficiently small then B1 is nearly cloaked, in the sense made precise by (23).

We have focused on the spherically symmetric setting due to its simple, explicit character.
However our argument did not use this symmetry in any essential way. Indeed, the same argument
proves (see Figure 3):

Theorem 2 Let G : B2 → Ω be a Lipschitz continuous map with a Lipschitz continuous inverse,
and let D = G(B1). Then H = G ◦ F ◦ G−1 : Ω → Ω is piecewise Lipschitz; moreover

• H expands G(Bρ) to D, and

• H(x) = x at ∂Ω.

If the shell Ω \ D has conductivity H∗1 then D is nearly cloaked when ρ is small. More precisely:
when the conductivity of Ω has the form

σA(y) =
{

A(y) for y ∈ D
H∗1(y) for y ∈ Ω \ D,

the Dirichlet-to-Neumann map is nearly independent of A in the sense that

‖ΛσA
− Λ1‖ ≤ Cρn

4 Analysis of the singular cloak

This section discusses the perfect cloak obtained using the singular change of variables (12). We
focus on the radial case for simplicity, but our argument extends straightforwardly to a broad class
of non-radial examples (see Theorem 4).

As we explained in Section 2.3, the basic assertion of cloaking is that for conductivities of the
form (11) with F given by (12), the Dirichlet-to-Neumann map is identical to that of the uniform
ball with conductivity 1. Thus, if the shell B2 \B1 has conductivity F∗1 then the ball B1 is cloaked.

This assertion follows from Theorem 1 by passing to the limit ρ → 0 (see Remark 1 in Section
4.2). But it can also be proved directly, and the direct argument – being very different – gives

15
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−1
G G

Figure 3: The map H = G ◦F ◦G−1 blows up G(Bρ) to D = G(B1) while acting as the identity on
∂Ω = ∂G(B2).

additional insight. In particular, it reveals the mechanism of cloaking: the potential in B1 is
constant, rendering the conductivity in this region irrelevant.

The essence of the argument presented in this section is similar to that of [19]. In particular,
our main tool is a well-known result on the removability of isolated singularities for solutions of
Laplace’s equation (see the proof of Proposition 2).

4.1 Explicit form of the cloak

Recall that F∗1 is defined by (8). When F : B2 → B2 is given by (12) it is easy to make F∗1
explicit. Indeed, the Jacobian matrix DF = (∂Fi/∂xj) is

DF =
(

1
2

+
1
|x|

)
I − 1

|x| x̂ x̂T , (24)

for x 6= 0, where I is the identity matrix and x̂ = x/|x|. Thus DF is symmetric; x̂ is an eigenvec-
tor with eigenvalue 1/2, and (in space dimension n) x̂⊥ is an n − 1-dimensional eigenspace with
eigenvalue 1

2 + 1
|x| . The determinant is evidently

det(DF ) =
1
2

(
1
2

+
1
|x|

)n−1

=
(|x| + 2)n−1

2n|x|n−1
. (25)

It follows by a brief calculation that in the shell 1 < |y| < 2,

F∗1(y) =
2n

(2 + |x|)n−1

[ (
1
4 |x|n−1 + |x|n−2 + |x|n−3

) (
I − x̂ x̂T

)
+ 1

4 |x|n−1x̂ x̂T
]
, (26)

where the right hand side is evaluated at

x = F−1(y) = 2(|y| − 1)
y

|y| . (27)
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Since F is singular at x = 0 we expect F∗1 to be a bit strange near the inner boundary of the shell.
The details depend on the spatial dimension n:

when n = 2, one eigenvalue of F∗1 tends to 0 and the other to ∞; (28)
when n = 3, one eigenvalue tends to 0 while the others remain finite; (29)
when n ≥ 4, all eigenvalues tend to 0. (30)

In fact: writing r = |x| = 2(|y| − 1), when n = 2 the eigenvalues behave like r and r−1 as r → 0;
when n = 3 one eigenvalue behaves like r2 and two like r0; when n ≥ 4 one eigenvalue behaves
like rn−1 and the remaining n − 1 like rn−3. Notice that for n ≥ 3, the conductivity F∗1 depends
smoothly on y near the inner boundary of the shell. The “strangeness” we mentioned above is not
a lack of smoothness but rather a degeneracy (lack of a uniform lower bound). In space dimension
n = 2 the situation is a little different: F∗1 becomes degenerate but also lacks smoothness since
the circumferential eigenvalue becomes infinite. This difference between n = 2 and n ≥ 3 will play
no essential role in our analysis.

4.2 The potential outside the cloaked region

Let v be the potential associated with Dirichlet data f :

∇ · (σA∇v) = 0 in B2, with v = f at ∂B2, (31)

where σA is given by (11) using the singular change of variable (12). We assume, as in Section 3,
that A is bounded above and below in the sense that (22) holds.

Does this PDE have a unique solution? The answer is not immediately obvious, due to the
degeneracy of F∗1 near |y| = 1. We shall show, here and in Section 4.3, that the only reasonable
solution of (31) is

v(y) =
{

u(x) for y ∈ B2 \ B1

u(0) for y ∈ B1,
(32)

where u is the harmonic function with the same Dirichlet data

∆u = 0 in B2, with u = f at ∂B2 (33)

and x = F−1(y).
What can we assume about the solution of (31)? Later, in Section 4.3, we will ask that ∇v and

σA∇v both be square-integrable. For the moment, however, we ask only that v be bounded near
|y| = 1. More precisely, we ask that

|v(y)| ≤ C for |y| ≤ r (34)

for some constants C < ∞ and r > 1. (We do not assume v is bounded in the entire ball B2

because the Dirichlet data can be unbounded – an H1/2 function need not be L∞.) This is a very
modest hypothesis. Indeed, since F∗1 is smooth for |y| > 1, elliptic regularity assures us that v is
uniformly bounded in any compact subset of B2 \ B1. The essential content of (34) is thus that
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v does not diverge as |y| → 1. If the conductivity were positive and finite such growth would be
ruled out by the variational principle (5) and an easy truncation argument.

With this modest hypothesis on v, we can identify its values in B2 \ B1 by changing variables
then using a standard theorem about the removability of point singularities for harmonic functions.

Proposition 2 If v solves (31) and satisfies (34) then

v(y) = u(x) for 1 < |y| < 2 (35)

where x = F−1(y) and u is the harmonic function on B2 with the same Dirichlet data as v.

Proof. Since σA(y) = F∗1(y) is smooth and bounded away from zero for |y| strictly larger than 1,
elliptic regularity applies and v is a classical solution of the PDE in B2 \B1. When φ is supported
in B2 \B1, the PDE combines with the definition of F∗ and the change of variables formula to give

0 =
∫

〈σA∇yv(y),∇yφ(y)〉 dy =
∫

〈∇xv(F (x)),∇xφ(F (x)〉 dx. (36)

Since φ(y) is supported on B2\B1, the test function φ(F (x)) vanishes at 0 and ∂B2 but is otherwise
arbitrary. So (36) tells us that w(x) = v(F (x)) is a weak solution of ∆w = 0 in the punctured ball
B2 \ {0}. By elliptic regularity, it is also a classical solution.

We now use the following well known result about removable singularities for harmonic functions:
if ∆w = 0 in a punctured ball about 0 and if

|w(x)| = o
(|x|2−n

)
in dimension n ≥ 3, or

|w(x)| = o
(
log |x|−1

)
in dimension n = 2

(37)

as x → 0, then w has a removable singularity at 0 (see e.g. [15]). In other words, w(0) is determined
by continuity and (so extended) w is harmonic in the entire ball.

Our w(x) = v(F (x)) satisfies (37) – indeed, it is uniformly bounded near 0 as a consequence of
(34). So w is harmonic on B2. Moreover w has the same Dirichlet data as v, since F (x) = x at
∂B2. Thus w is precisely the function u that appears in (35), and the proof is complete. �

Remark 1 We have shown using elliptic theory that for the cloak constructed using the singular
change of variable (12), the potential outside the cloaked region is given by (35). An alternative,
more physical justification of (35) is this: it gives the limiting value of the potential associated with
our regular near-cloak (10) in the singular limit ρ → 0.

To justify the Remark, let Fρ be the regularized change of variable (10), and let vρ be the potential
in the near-cloak for a given choice of the Dirichlet data. Then uρ(x) = vρ(Fρ(x)) is harmonic
outside Bρ. It is also uniformly bounded (away from the outer boundary |y| = 2), with a bound
independent of ρ. So by a standard compactness argument, the limit as ρ → 0 exists and is harmonic
in B2 \ {0}. Since the limit is bounded, 0 is a removable singularity and u0(x) = limρ→0 uρ(x) is
the unique harmonic function in B2 with the given Dirichlet data. Now for any fixed 1 < |y| < 2
we can pass to the limit ρ → 0 in the relation vρ(y) = uρ(F−1

ρ (y)) to get v0(y) = u0(F−1
0 (y)),

confirming (35).
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4.3 The potential inside the cloaked region

We have asserted that the solution of (31) is given by (32). Proposition 2 justifies this assertion
outside B1; this section completes the justification by showing that (i) the proposed v is indeed a
solution, and (ii) it is the only reasonable solution.

To show that v is a solution, we must demonstrate that σA∇v is divergence-free. This is the
main goal of the following Proposition.

Proposition 3 Fixing f ∈ H
1/2
∗ (∂B2), let v be defined by (32). Then

(a) v is Lipschitz continuous away from ∂B2, i.e. |∇v| is uniformly bounded in Br for every
r < 2.

(b) σA∇v is also uniformly bounded away from ∂B2,

(c) (σA∇v) · ν → 0 uniformly as |y| ↓ 1, where ν = y/|y| is the normal to ∂B1, and

(d) σA∇v is weakly divergence-free in the entire domain B2.

Proof. We observe first that (d) follows immediately from (b), (c), and (36). Indeed, a bounded
vector-field ξ is weakly divergence-free on B2 if and only if it is weakly divergence-free on the
subdomains B1 and B2 \ B1 and its normal flux ξ · ν is continuous across the interface ∂B1. (The
normal flux is well-defined from either side, as a consequence of ξ being divergence free in B1 and
its complement.) We apply this to ξ = σA∇v, which is clearly clearly divergence-free in B1 (where
it vanishes) and in B2 \ B1 (by equation (36)). If (c) holds then the normal flux ξ · ν = 0 vanishes
on both sides of ∂B1. In particular it is continuous, so (d) holds.

The proofs of (a)-(c) are straightforward calculations based on the change of variable formula
and the smoothness of u(x) = v(F (x)), together with our explicit formulas for DF (24) and F∗1
(26). To see that ∇v is bounded away from ∂B2 we observe that, by chain rule and the symmetry
of DF , we have

∇yv = (DF−1)T∇xu = (DF )−1∇xu

for 1 < |y| < 2. The matrix (DF )−1 is uniformly bounded, by (24); and ∇xu is bounded (except
perhaps near ∂B2) since u is harmonic in x. Thus |∇v| is bounded and v is Lipschitz continuous
on 1 ≤ |y| < r for any r < 2. It is moreover constant on B1, and continuous across ∂B1. Therefore
v is Lipschitz continuous on the entire ball Br for every r < 2.

In dimensions n ≥ 3 (b) follows immediately from (a), since F∗1 is uniformly bounded. In
dimension n = 2 however we must be more careful, since F∗1 becomes unbounded as |y| ↓ 1. Using
the definition of σA, chain rule, and the symmetry of DF we have

σA∇yv = F∗1(DF )−1∇xu (38)

for 1 < |y| < 2. The symmetric matrices F∗1 and (DF )−1 have the same eigenvectors, namely x̂
and x̂⊥. Taking n = 2 in (24) and (26) we see that the eigenvalue of F∗1 in direction x̂⊥ behaves
like |x|−1, while that of (DF )−1 behaves like |x|. The eigenvalues of both matrices in direction x̂
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are bounded. Thus the product F∗1(DF )−1 is bounded. This yields (b), since ∇xu is bounded
away from ∂B2 and σA∇v = 0 for y ∈ B1.

The proof of (c) is similar to that of (b). Since |y| ↓ 1 corresponds to |x| → 0 and y/|y| =
x/|x| = x̂, we must show that the x̂ component of (38) tends to zero as |x| → 0. Since F∗1(DF )−1

is symmetric and x̂ is an eigenvector, it suffices to show that the corresponding eigenvalue tends to
0. In fact, its value according to (24) and (26) is

2n−1

(2 + |x|)n−1
|x|n−1 ≤ |x|n−1

which tends to zero linearly (if n = 2) or better (if n ≥ 3). The proof is now complete. �

We have shown that the function defined by (32) solves the PDE (31). Is it the only solution?
If σA were strictly positive and finite, uniqueness would be standard. When σA is degenerate,
however, uniqueness can sometimes fail. For example, if σA were identically 0 in B1 then the
solution would not be unique: v would be arbitrary in B1. Our situation, however, is much more
controlled: the degeneracy occurs only at ∂B1, and it has a very specific form.

Uniqueness should be proved in a specific class. We assumed in Section 4.2 that v was uniformly
bounded near ∂B1. Here we assume further that

∇v ∈ L2(B2) and σA∇v ∈ L2(B2). (39)

Proposition 4 If v is a weak solution of the PDE (31) which also satisfies (34) and (39) then v
must be given by the formula (32).

Proof. We know from Proposition 2 that v(y) = u(x) outside B1. What remains to be proved is
that v ≡ u(0) in B1.

Recall that u has a removable singularity at 0. In particular it is continuous there. Since F−1

maps ∂B1 to 0, it follows that v(y) → u(0) as y approaches ∂B1 from outside.
Since ∇v ∈ L2(B2) by hypothesis, the restriction of v to ∂B1 makes sense, and it is the same

from outside or inside. Evidently this restriction is constant, identically equal to u(0). It follows,
by uniqueness for the PDE ∇ · (A∇v) = 0 in B1, that v ≡ u(0) throughout B1, as asserted. �

The preceding argument actually uses somewhat less than (39). Any condition that makes
v continuous across ∂B1 would be sufficient. However we also need a hypothesis on σA∇v (for
example that it be integrable) for the PDE (31) to make sense.

4.4 The singular cloak is invisible

Our main point is that if the shell B2 \ B1 has conductivity F∗1 then the ball B1 is cloaked. This
is an easy consequence of the preceding results:

Theorem 3 Suppose σA is given by (11), where F is given by (12) and A is uniformly positive and
finite (22). Then the associated Dirichlet-to-Neumann map ΛσA

is the same as that of a uniform
ball B2 with conductivity 1.
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Proof. It suffices to prove that ΛσA
and Λ1 determine the same quadratic form on Dirichlet data,

where Λ1 is the Dirichlet-to-Neumann map of the uniform ball. But by (32) we have∫
B2

〈σA∇v,∇v〉 dy =
∫

B2\B1

〈σA∇v,∇v〉 dy,

and the definition of σA combined with the change of variables formula gives∫
B2\B1

〈σA∇v∇v〉 dy =
∫

B2

|∇xu|2 dx

where u is harmonic with the same Dirichlet data as v. Thus

〈ΛσA
f, f〉 = 〈Λ1f, f〉

for all f ∈ H
1/2
∗ , whence ΛσA

= Λ1 as asserted. �

We have focused on the radial setting for the sake of simplicity. However the analysis in this
section extends straightforwardly to the nonradial cloaks discussed at the end of Section 3.

Theorem 4 Let G : B2 → Ω be a Lipschitz continuous map with Lipschitz continuous inverse, and
let D = G(B1). Then H = G ◦F ◦G−1 : Ω → Ω acts as the identity on ∂Ω, while “blowing up” the
point z0 = G(0) to D. (This is the ρ = 0 limit of Figure 3). Consider a conductivity σA defined on
Ω of the form

σA(y) =
{

A(w) for w ∈ D
H∗1(w) for w ∈ Ω \ D,

where A is symmetric, positive, and finite but otherwise arbitrary. The associated Dirichlet-to-
Neumann map ΛσA

is independent of A; in fact, ΛσA
= Λ1 is the Dirichlet-to-Neumann map

associated with conductivity 1.

Proof. We claim that

v(w) =
{

u(z) for w ∈ Ω \ D
u(z0) for w ∈ D,

(40)

where w = H(z) and u solves ∆u = 0 in Ω with the same Dirichlet data as v. The proof is parallel
to our argument in the radial case, so we shall be relatively brief.

The proof of Proposition 2 made no use of radial symmetry; it applies equally in the present
setting. We must assume of course that v is bounded away from ∂Ω, and we conclude that (40) is
correct outside D.

The analogue of Proposition 3(a) is the statement that v is uniformly Lipschitz in Ω \D except
perhaps near ∂Ω. With the conventions x = G−1(z), y = F (x), and w = G(y), we have

DH(z) = DG(y)DF (x)DG−1(z)

by chain rule. By hypothesis, DG and DG−1 are uniformly bounded. Therefore (DH)−1 is uni-
formly bounded too. Since ∆zu = 0, u is a smooth function of z except perhaps near ∂Ω. It follows
that v(w) = u(H−1(w)) is uniformly Lipschitz continuous away from ∂Ω.
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The analogue of Proposition 3(b) is the statement that H∗1∇wv is uniformly bounded away
from ∂Ω. Recalling the definition

H∗1 =
1

det DH
DHDHT

and using that ∇wv = (DHT )−1∇zu, we see that

H∗1∇wv =
1

detDH
DH ∇zu.

Since u is harmonic, it is smooth away from ∂Ω. As for DH/det(DH): it has the same behavior
as DF/det(DF ), since DG and DG−1 are bounded. One verifies using the explicit formula (24)
that DF/det(DF ) stays bounded as x → 0.

The analogue of Proposition 3(b) is the statement that the normal flux (H∗1∇wv) ·nw → 0 as w
approaches ∂D from outside, where nw is the unit normal at ∂D. We use the fact that nw is parallel
to (DG−1)T (νy), if νy is the unit normal to ∂B1 at the corresponding point y = G−1(w). (To see this,
note that if τ is tangent to ∂B1 then DGτ is tangent to ∂D, and 〈DGτ, (DG−1)T ν〉 = 〈τ, ν〉 = 0.)
It follows that

|(H∗1∇wv) · nw| ≤ C|〈H∗1∇wv, (DG−1)T νy〉|. (41)

Now,
H∗1∇wv = (det DH)−1DH ∇zu = (det DH)−1DGDF DG−1∇zu.

So the inner product on the right side of (41) is equal to

(det DH)−1
∣∣〈DGDF DG−1∇zu, (DG−1)T νy〉

∣∣ = (det DH)−1
∣∣〈DF DG−1∇zu, νy〉

∣∣ .

Since DG and DG−1 are bounded, this is bounded by a constant times

(det DF )−1
∣∣〈DF DG−1∇zu, νy〉

∣∣ .

But recall that νy = y/|y| = x/|x| is an eigenvector of the symmetric matrix (det DF )−1DF , with
an eigenvalue that tends to 0 as x → 0. Therefore

(H∗1∇wv) · nw → 0 as w → D,

as asserted.
The arguments used for Proposition 3(d), Proposition 4 and Theorem 3 did not use radial

symmetry or the explicit form of the cloak, so they extend immediately to the present setting. �
We note that for n ≥ 3 the results in Theorem 3 and Theorem 4 coincide with those already

established in [19].
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pp. 65–73.

[8] K. Chang, Flirting with invisibility, New York Times, Science Times, June 12, 2007

[9] H. Chen and C.T. Chan, Transformation media that rotate electromagnetic fields, Appl. Phys.
Lett. 90 (2007) article 241105

[10] H. Chen, B.-I. Wu, B. Zhang, and J.A. Kong, Electromagnetic wave interactions with a
metamaterial cloak, Phys. Rev. Lett. 99 (2007) article 063903

[11] M. Cheney, D. Isaacson, and J.C. Newell, Electrical impedance tomography, SIAM Review
41 (1999) pp. 85–101

[12] S.A. Cummer, B.-I. Popa, D. Schurig, and D.R. Smith, Full-wave simulations of electromag-
netic cloaking structures, Phys. Rev. E 74 (2006) article 036621

[13] S.A. Cummer and D. Schurig, One path to acoustic cloaking, New J. Phys. 9 (2007) article
45

[14] V.L. Druskin, Uniqueness of the determination of three-dimensional underground structures
from surface measurements for a stationary or monochromatic field source (Russian), Izv.
Akad. Nauk. SSSR Ser. Fiz. Zemli 1985, no. 3, pp. 63–69; abstract available from Math
Reviews: MR788076

[15] G.B. Folland, Introduction to Partial Differential Equations, Princeton University Press (1976)

23



[16] A. Friedman and M. Vogelius, Identification of small inhomogeneities of extreme conductivity
by boundary measurements: a theorem on continuous dependence, Arch. Rational Mech. Anal.
105 (1989) pp. 299–326

[17] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Full-wave invisibility of active devices
at all frequences, Comm. Math. Phys., in press; preprint available at arXiv:math/0611185v3
[math.AP]

[18] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, Improvement of cylindrical cloaking
with the SHS lining, Optics Express 15 (2007) 12717–12734

[19] A. Greenleaf, M. Lassas, and G. Uhlmann, On nonuniqueness for Calderon’s inverse problem,
Mathematical Research Letters 10 (2003) pp. 685–693

[20] A. Greenleaf, M. Lassas, and G. Uhlmann, Anisotropic conductivities that cannot be detected
by EIT, Physiological Measurement 24 (2003) pp. 413–419

[21] V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, 1997.

[22] R.V. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measure-
ments at the boundary, in Inverse Problems, D.W. McLaughlin ed., SIAM–AMS Proceedings
Volume 14, Amer. Math. Soc., Providence (1984) pp. 113–123

[23] R.V. Kohn, and M. Vogelius, Determining conductivity by boundary measurements, Comm.
Pure and Appl. Math. 37 (1984) pp. 289–298

[24] R.V. Kohn, and M. Vogelius, Determining conductivity by boundary measurements II. Interior
results, Comm. Pure and Appl. Math. 38 (1985) pp. 643–667

[25] R.V. Kohn, and M. Vogelius, Relaxation of a variational method for impedance computed
tomography, Comm. Pure and Appl. Math. 40 (1987) pp. 745–777

[26] M. Lassas, The impedance imaging problem as a low-frequency limit, Inverse Problems 13
(1997) 1503–1518

[27] J. Lee, and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary
measurements, Comm. Pure and Appl. Math. 42 (1989) pp. 1097–1112

[28] U. Leonhardt, Optical conformal mapping, Science 312 (2006) pp. 1777–1780

[29] U. Leonhardt, Notes on conformal invisibility devices, New J. Phys. 8 (2006) article 118

[30] D.A.B. Miller, On perfect cloaking, Optics Express 14 (2006) pp. 12457–12466

[31] G. Milton, M. Briane, and J.R. Willis, On cloaking for elasticity and physical equations with
a transformation invariant form, New J. Phys. 8 (2006) article 248

[32] G.W. Milton, and N.-A.P. Nicorovici, On the cloaking effects associated with anomalous
localized resonance, Proc. Roy. Soc. A 462 (2006) pp. 3027–3059

24



[33] A.I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann.
of Math. 143 (1996) pp. 71–96
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