Diffusion mediated transport: can we understand motion in small systems

David Kinderlehrer
Center for Nonlinear Analysis \&
Department of Mathematical Sciences
Carnegie Mellon University

overview: diffusion mediated transport

Feynman 1966	(room at the bottom) discussed possibility of a rachet and pawl device powered by fluctuations concluded that it was impossible
in the meantime	Huxley 1957
Vale et al. 1986	offered an extensive analysis for myosin as a motor responsible for muscle activity myosin isolated from muscle ~ I 860
	proposed kinesin molecular motors responsible for intracellular transport (and analogues in all eukarya!) energetics:ATP \rightarrow ADP + Pi hydrolysis reaction

Also suggested as mechanism for
electron tunneling, lipid bilayers, charged particles moving over interdigitated electrodes ...
some surprises
some references
Doering, Ermentrout, Oster, Peskin
Astumian
Adjari, Prost, Jülicher, Parmeggiani
Palffy-Muhoray, Kosa, \& E
K \& Kowalczyk
Heath, K, \& Kowalczyk
Chipot, K, \& Kowalczyk
basic notion: equilibirum fluctuations do no work
nonequilibrium fluctuations can be 'oriented' to alter the state of the system, for example, to exhibit transport

courtesy of Y. Hiratsuka
one of the groups attempting to engineer motors

Fig. 1. Quick freeze-deep etch electron micrograph of mouse axon. A membranous organelle conveyed by fast transport is linked with a microtubule by a short cross-bridge (arrow), which could be a motor molecule. Scale bar, 50 nm .

Hirokawa, Science, I998

energy transduction

- suggested mechanisms involve complicated chemistry and conformational changes scale where chemistry and mechanics coupled
- main interest: transduction mechanisms shape memory \& magnetostriction began with J.L. Ericksen \& R. James cf. Ball \& James, Fonseca, Chipot \& K

operation of a kinesin motor by ATP hydrolysis

$$
\text { ATP } \rightarrow \mathrm{ADP}+\mathrm{Pi}
$$

shape memory NiTi thermal/mechanical
ferromagnetic shape memory TbDyFe2

> (giant magnetostrictive)
electromagnetic/mechanical

Dooley \& deGraef
this configuration was predicted by our theory and first seen by Dooley \& deGraef

significant differences

- design criteria for new active materials require minimum power consumption: transformation path as near equilibrium as possible
- biological systems like motors are very far from equilibrium
- minimum energy ... absolute metastable nonequilibrium how to assess?
"all stable systems are alike; each metastable system loses stability in its own way" Tolstoy

CuAlNi shape memory mosaic of lamellar twins is close to equilibrium. (Chu \& James)

today's outline

- motion at small scales and Monge-Kantorovich problem
- flashing rachet
- dissipation and Wasserstein
- multiple state motors
- game time
- Flashing rachet

Astumian
diffusion interchanged with transport in anisotropic potential

Dirac masses of same height located asymmetrically in period basin

- diffusion spreads mass
- transport collects mass to special sites
- each process taken separately does not move density
- asymmetric drift is a key for transport
- not the whole story

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=\sigma \frac{\partial^{2} \rho}{\partial x^{2}}+\frac{\partial}{\partial x}\left(\psi^{\prime} \rho\right) \quad \text { in } \Omega, 0<t \leq T_{t r} \\
& \sigma \frac{\partial}{\partial x} \rho+\psi^{\prime} \rho=0 \quad \text { on } \partial \Omega, 0<t \leq T_{t r} \\
& \frac{\partial \rho}{\partial t}=\sigma \frac{\partial^{2} \rho}{\partial x^{2}} \quad \text { in } \Omega, T_{t r}<t \leq T=T_{\text {diff }}+T_{t r} \\
& \sigma \frac{\partial}{\partial x} \rho=0 \quad \text { on } \partial \Omega, T_{t r}<t \leq T
\end{aligned}
$$

Flashing rachet

$$
\begin{array}{llc}
\frac{\partial \rho}{\partial t}=\sigma \frac{\partial^{2} \rho}{\partial x^{2}}+f(t) \frac{\partial}{\partial x}\left(\psi^{\prime} \rho\right) \quad \text { in } \Omega, t>0, & f(t)=\begin{array}{cc}
1 & 0 \leq t \leq T_{t r} \\
\sigma \frac{\partial}{\partial x} \rho+f(t) \psi^{\prime} \rho=0 & \text { on } \partial \Omega, t>0
\end{array} & T_{\text {tr }} \leq t \leq T_{\text {diff }}+T_{t r}=T
\end{array}
$$

study (unique) periodic solution
use the transport/diffusion to construct a Markov chain paradigm
re|
periodic :

:or of the Markov chain

there is a unique periodic solution ρ^{\sharp} for each $\mathrm{T}_{\text {tr }}{ }^{\top} \mathrm{diff}$
it is stable: if ρ is any solution of the Flashing Rachet problem then

$$
\int_{\Omega}\left|\rho-\rho^{\sharp}\right| d x \leq C e^{-c t} \quad \text { or } \quad d\left(\rho, \rho^{\sharp}\right) \leq C e^{-c t}
$$

for ρ_{1}, ρ_{2} solutions of (the same) Fokker-Planck Equation

$$
\int_{\Omega} \rho_{1} \log \frac{\rho_{1}}{\rho_{2}} d x \leq C e^{-c t} \quad \text { from log-Sobolev inequality }
$$

suppose ψ periodic with period intervals $I_{j} j=1 \ldots n$

Markov Chain Paradigm for the Flashing Rachet

begin with density at Dirac masses

$$
\mu^{*}=\mu_{1}^{*} \delta_{a_{1}}+\mu_{2}^{*} \delta_{a_{2}}
$$

Compare Markov chain on Dirac masses (measures)
with density:
use Wasserstein metric
density diffuses for $\mathrm{t}=\mathrm{T}_{\text {diff }}$

$$
\begin{array}{r}
w_{t}=\sigma w_{x x} \text { in } \Omega, t>0 \\
w_{x}=0 \text { on } \partial \Omega, t>0 \\
\left.w\right|_{t=0}=\mu^{*} \text { in } \Omega
\end{array}
$$

accumulate density at Dirac masses

$$
\mu=\mu_{1} \delta_{a_{1}}+\mu_{2} \delta_{a_{2}}
$$

this is a Markov chain:

$$
\mu=\mu^{*} P
$$

Monge-Kantorovich Problem Wasserstein Metric
f, f^{*} probability densities on Ω

$$
\begin{aligned}
d\left(f, f^{*}\right)^{2}= & \min \int_{\Omega \times \Omega}|x-y|^{2} d p(x, y) \\
& =\int_{\Omega}|x-\phi(x)|^{2} f^{*}(x) d x
\end{aligned}
$$

p joint distribution with marginals f, f^{*}
ϕ Monge Kantorovich transfer function

Wasserstein metric induces weak* topology on measures ϕ is solution of Monge-Ampère Eq.

Extensive current literature recent books and notes
Villani, Rachev ;Ambrosio, Evans

Remarks

many paths $f(x, t), 0 \leq t \leq \tau$, from $f^{*}(x)$ to $f(x)$ Eulerian or $\quad \phi(x, t), 0 \leq t \leq \tau$, (transfer functions) Langrangian

$$
\begin{aligned}
& \int_{\Omega} \zeta(y) f(y, t) d y=\int_{\Omega} \zeta(\phi(x, t)) f^{*}(x) d x \\
& v(y, t)=\phi_{t}(x, t)
\end{aligned}
$$

$$
\frac{1}{2 \tau} d\left(f, f^{*}\right)^{2}=\frac{1}{2} \int_{0}^{\tau} \int_{\Omega} v^{2} f d x d t
$$

$$
\begin{array}{ll}
f_{t}+(v f)_{x}=0 & \text { continuity equation } \\
v_{t}+v v_{x}=0 & \text { optimality condition (Burgers) }
\end{array}
$$

$g(x, t, a)$ Green's function with pole at a for Neuman Problem:

$$
\begin{array}{cc}
g_{t}=\sigma g_{x x} \text { in } \Omega, t>0 & w(x, t)=\sum \mu_{i}^{*} g\left(x, t, a_{i}\right) \\
g_{x}=0 \text { on } \partial \Omega, t>0 & \mu_{i}^{*}=\int_{I_{i}} \rho_{i}^{\sharp}(x, 0) d x \\
g=\delta_{a} \text { in } \Omega, t=0 & P_{i j}=\int_{I_{j}} g\left(x, T_{d i f f}, a_{i}\right) d x \\
\mu_{j}=\int_{I_{j}} \sum \mu_{i}^{*} g\left(x, T_{d i f f}, a_{i}\right) d x & \rho=\rho^{\sharp}
\end{array}
$$

follow a period

$\rho\left(x, T_{t r}\right)$
μ^{*}

$\rho\left(x, T_{\text {diff }}+T_{t r}\right)=\rho(x, T)$ $w\left(x, T_{d i f f}\right)$

$\rho(x, T)$
$\mu=\mu^{*} P$

$\rho\left(x, T_{t r}\right)$
μ^{*}
$d\left(\left.\rho\right|_{T_{t r}}, \mu^{*}\right) \leq \epsilon$
transport phase
most difficult estimate
$d\left(\mu^{*}, \mu^{*} P\right)^{2} \leq 2 \epsilon$

$$
\begin{array}{rr}
\rho\left(x, T_{d i f f}+T_{t r}\right)=\rho(x, T) & \rho(x, T) \\
w\left(x, T_{d i f f}\right) & \mu=\mu^{*} P
\end{array}
$$

$$
d\left(\left.\rho\right|_{T},\left.w\right|_{T_{d i f f}}\right) \leq \epsilon
$$

$$
d\left(\left.\rho\right|_{T}, \mu\right) \leq \epsilon
$$

log-Sobolev + Talagrand or analogous: d of two solutions of diffusion equation decreases exponentially

estimate

know how to work with Wasserstein metric
iterates of a Markov chain close
can only happen if they are close to the stationary state $d\left(\rho, \mu^{\sharp}\right)^{2} \leq 4 \epsilon$ and then ρ is too.
investigate properties of $\mu^{\sharp}, \quad P$

Dissipation and Wasserstein

ensemble of small bodies (large proteins) motion in a highly viscous environment

$$
\begin{aligned}
m \frac{d^{2} \xi}{d t}+\gamma \frac{d \xi}{d t}+\psi^{\prime}(\xi) & =0 \\
\xi(0) & =x \\
\xi^{\prime}(0) & =0
\end{aligned}
$$

$$
-\gamma \int_{0}^{\tau}\left(\frac{d \xi}{d t}\right)^{2} d t+\psi(\xi(\tau))-\psi(x)=0
$$

kinetic dissipation
energy

$$
\begin{aligned}
& \operatorname{Re} \text { large yacht }=10^{6} \\
& \operatorname{Re}_{\text {auto }}=10^{7} \\
& \operatorname{Re}_{\text {kinesin }}=0.05 \\
& R e=\frac{\rho L v}{\eta}
\end{aligned}
$$

distribute over $\Omega=(0, I)$ with density f^{*}

$$
\begin{gathered}
\gamma \int_{0}^{\tau} \int_{\Omega}\left(\frac{d \xi}{d t}\right)^{2} f^{*} d x d t+\int_{\Omega}\left(\psi(\xi(\tau, x)) f^{*}+\sigma f^{*} \log f^{*}\right) d x \\
\xi(t, x)=\phi(x, t) f(y, t) \\
\frac{d \xi}{d t}=\phi_{t}(x, t)=v(y, t) \\
\qquad \int_{0}^{\tau} \int_{\Omega} v^{2} f d y d t+\int_{\Omega}(\psi f+\sigma f \log f) d y
\end{gathered}
$$

ensemble starts at f^{*}
assumes new configuration f

$$
\frac{1}{2 \tau} d\left(f, f^{*}\right)^{2}+\int_{\Omega}(\psi f+\sigma f \log f) d x=\min
$$

Can now evolve through many relaxation times τ
given f_{k-1} determine f_{k} from the variational principle with $f^{*}=f_{k-1}, f=f_{k}$

$$
\begin{aligned}
& \qquad f^{(\tau)}(x, t)=f_{k}(x),(k-1) \tau<t \leq k \tau \\
& \lim _{\tau \rightarrow 0} f^{(\tau)}(x, t)=? \\
& f^{(\tau)} \rightarrow f \quad \text { where } \\
& \frac{\partial f}{\partial t}=\sigma \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial}{\partial x}\left(\psi^{\prime} f\right) \quad \text { in } \Omega, \quad t>0, \\
& \sigma \frac{\partial}{\partial x} f+\psi^{\prime} f=0 \quad \text { on } \partial \Omega, \quad t>0 \quad \text { Fokker-Pla }
\end{aligned}
$$

Otto, Jordan,K,Otto many authors
Agueh, Petrelli,Tudorascu

multiple state motors: a look at conventional kinesin

cartoon of conformational change and response to potential

leading head binds undergoes conformational change

trailing head swings forward

new leading head binds

```
sort heads:
```

type I bind at even labled sites ρ_{1} density $-\nu_{1} \quad \nu_{2}$ rates
type 2 bind at odd labled sites ρ_{2} density $\nu_{1}-\nu_{2}$ rates

$$
P=\mathbf{1}+\tau\left(\begin{array}{cc}
-\nu_{1} & \nu_{2} \\
\nu_{1} & -\nu_{2}
\end{array}\right)
$$

$$
\rho^{*} \rightarrow \rho^{*} P \quad \rho^{*} P \rightarrow \rho
$$

apply ideas of dissipation to obtain a variational principle

$$
\begin{array}{r}
P=\mathbf{1}+\tau\left(\begin{array}{cc}
-\nu_{1} & \nu_{2} \\
\nu_{1} & -\nu_{2}
\end{array}\right) \\
\nu_{1}>0, \nu_{2} \notin 0 \\
\begin{array}{l}
\text { note thlat } \mathrm{P} \text { is a } \\
\text { probabllity matrix }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \sum_{i=1}^{2} \frac{1}{2 \tau} d\left(\rho_{i},\left(\rho^{*} P\right)_{i}\right)^{2}+\sum_{i=1}^{2} \int_{\Omega}\left(\psi_{i} \rho_{i}+\sigma \rho_{i} \log \rho_{i}\right) d x=\text { min } \\
& \int_{\Omega} \rho_{i} d x=\int_{\Omega}\left(\rho^{*} P\right)_{i} d x
\end{aligned} \quad \text { variational principle }
$$

variational principle/dissipation principle

- separates free energy, dissipation, and conformational change
- determines an implicit scheme
- always has a solution: functional is superlinear

Oster, Mogilner more detailed modeling from very different viewpoint
Elston
Analysis: embark on known path for existence (Jordan, K, Otto \& Otto \& others)
is the dissipation principle powerful enough to solve our problem? are Monge-Kantorovich transport methods sufficiently well developed?

- existence \& uniqueness
- existence \& uniqueness of stationary solution
- trend to equilibrium
- character of stationary solution
system of evolution equations obtained from implicit scheme:
recover familiar equations Adjari and Prost

$$
\begin{aligned}
& \frac{\partial \rho_{1}}{\partial t}=\frac{\partial}{\partial x}\left(\sigma \frac{\partial \rho_{1}}{\partial x}+\psi_{1}^{\prime} \rho_{1}\right)-\nu_{1} \rho_{1}+\nu_{2} \rho_{2} \\
& \frac{\partial \rho_{2}}{\partial t}=\frac{\partial}{\partial x}\left(\sigma \frac{\partial \rho_{2}}{\partial x}+\psi_{2}^{\prime} \rho_{2}\right)+\nu_{1} \rho_{1}-\nu_{2} \rho_{2} \\
& \sigma \frac{\partial \rho_{1}}{\partial x}+\psi_{1}^{\prime} \rho_{1}=0 \\
& \sigma \frac{\partial \rho_{2}}{\partial x}+\psi_{2}^{\prime} \rho_{2}=0 \\
& \rho_{i}(x, 0)=\rho_{i}^{0} \geq 0, \quad \text { in } \Omega, \quad i=1,2 \\
& \int_{\Omega}\left(\rho_{1}+\rho_{2}\right) d x=1
\end{aligned}
$$

Oster, Ermentrout, Peskin
note: can use conventional J.-L. Lions method as well to investigate system

Role of asymmetry
asymmetry of the potentials is thought to play an important role in motor processivity, similar to the flashing rachet
motors distributed about red well bottom; some change conformation from asymmetry, most move left to a green well bottom with probability P
some change conformation; most move left with probability P
corresponds to trials with a biased coin
stationary distribution is exponentially decaying
correct but does not translate to a proof

Character of stationary solution

Assume that

1. ψ_{i}, ν_{i} periodic of period $1 / N$ on Ω
2. $\psi_{1}^{\prime}>0$ on each interval where $\psi_{2}^{\prime} \leqq 0$ and $\psi_{2}^{\prime}>0$ on each interval where

$$
\psi_{1}^{\prime} \leqq 0
$$

3. $\nu_{i}>0$

Then

$$
\rho_{1}(x)+\rho_{2}(x) \leqq K e^{-\frac{c N}{\sigma}\left(x-\frac{1}{N}\right)}, x \geqq \frac{1}{N}
$$

proof based on studying system of ODE's

$$
\rho_{1} \quad \rho_{2} \quad \phi=\sigma \rho_{1}^{\prime}+\psi_{1} \rho_{1}^{\prime}
$$

$$
\begin{array}{r}
\sigma \rho_{1}^{\prime}=\phi-\psi_{1}^{\prime} \rho_{1} \\
\sigma \rho_{2}^{\prime}=-\phi-\psi_{2}^{\prime} \rho_{2} \\
\phi^{\prime}=\nu_{1} \rho_{1}-\nu_{2} \rho_{2} \\
\phi(0)=\phi(1)=0
\end{array}
$$

Transport in an eight well system

$$
\frac{d}{d x} \hat{\rho}=A \hat{\rho} \quad A=\frac{1}{\sigma}\left(\begin{array}{ccc}
-\psi_{1}^{\prime} & 0 & 1 \\
0 & -\psi_{2}^{\prime} & -1 \\
\sigma \nu_{1} & -\sigma \nu_{2} & 0
\end{array}\right)
$$

Mechanisms of diffusion mediated transport

basic notion: nonequilibrium fluctuations can be 'oriented' to alter the state of the system, for example, to exhibit transport; actual biological function extraordinarily complex
equations illustrate rich and diverse mechanisms to achieve this

Flashing rachet (Astumian et al.)
diffusion and transport in alternate
 potential is periodic and asymmetric in its period basin

$$
\begin{aligned}
\frac{\partial \rho}{\partial t} & =\frac{\partial}{\partial x}\left(\sigma \frac{\partial \rho}{\partial x}+\psi^{\prime} \rho\right) \\
\frac{\partial \rho}{\partial t} & =\sigma \frac{\partial^{2} \rho}{\partial x^{2}}
\end{aligned}
$$

alternates with
there is a periodic solution can estimate transport with Markov chain (K \& Kowalczyk)

Flashing Rachet: eight well system

Transport in an eight well system

Multiple state molecular motor (Adjari \& Prost; Oster, Ermentrout, Peskin, Doering and others)
diffusion and transport in several potentials with state changes among the wells like hand over hand motion (conventional kinesin).

$$
\frac{\partial \rho}{\partial t}=\frac{\partial}{\partial x}\left(\sigma \frac{\partial \rho}{\partial x}+\rho \psi^{\prime}\right)+\rho \nu \quad \rho=\left(\rho_{1}, \rho_{2}\right)
$$

potentials are asymmetric as before stationary state decays exponentially: like trials with a biased coin (Chipot, Hastings, K, Kowalczyk)

a-game
toss a fair coin

$$
\mathrm{Pa}=0.5
$$

$$
E_{a}=0
$$

b-game
coin played depends on present capital

3 divides present capital otherwise

$$
\mathrm{pb}=\epsilon
$$

$$
\mathrm{Eb}_{\mathrm{b}}=0 \quad \mathrm{~Pb}=0.75-\epsilon
$$

but playing according to the schedule a, b, a, b, a, b, \ldots is winning! essence of the game is an illusion: naive idea of fairness magic lies in maintaining that illusion as long as possible.
look at finite difference scheme b-game looks like random walk with piecewise constant drift

$$
\begin{gathered}
\circ \circ \rho_{k}^{i+1}-\rho_{k}^{i}=\frac{1}{2}\left(\rho_{k+1}^{i}-2 \rho_{k}^{i}+\rho_{k-1}^{i}\right)-\frac{1}{2}\left(\lambda_{k+1} \rho_{k+1}^{i}-\lambda_{k-1} \rho_{k-1}^{i}\right) \\
\text { where } \lambda_{k}=2 p_{b}-1 \text { or } 2 p_{b}^{\prime}-1 \text { depending on } \mathrm{k} \bmod 3
\end{gathered}
$$

alternating a-game/b-game looks like flashing rachet
potential plot enhances the illusion

frequency of coin play actually governed by a Markov chain $\mathrm{Pb}_{\mathrm{b}}(3 \times 3)$
fair coin game governed by Markov chain Pa_{a}
Parrondo game corresponds to periodic transition matrix, $\mathrm{Pa}_{\mathrm{a}}, \mathrm{Pb}_{\mathrm{b}}, \mathrm{P}_{\mathrm{a}}$, etc.
limit cycle near stationary state of product $\mathrm{P}_{\mathrm{b}} \mathrm{Pa}_{\mathrm{a}}$
for special game here, corresponds to b-game with tails replaced by heads original b-game losing means concatenated game winning
something more fascinating is true about game played with capital mod 4
$P_{b} P_{a}=P_{a}{ }^{2}$
means: starting from uniform distribution returns to uniform distribution after one a-game/b-game cycle for any b-game

winning or losing depends on
E_{b} (uniform distribution)

this is a new rachet mechanism like a screw with stripped threads: turning it always resets to the initial position

Parrondo game works on potential difference
Brownian rachet (what we have been studying) works on geometry of potential can find parameters so Parrondo wins and rachet moves to left also related to stochastic time?
in green triangle Parrondo is winning and rachet moves left

Alex Bogomolny
http://www.cut-the-knot.org/ctk/Parrondo.shtml

