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overview: diffusion mediated
transport

Feynman 1966 (room at the bottom) . Feynman's Ratchet
discussed possibility of a rachet and L
pawl device powered by fluctuations
concluded that it was impossible

] owrate = A exp(-AUKT)

i :":f 1 cowrate = A expl ﬁl_TfkTEj

in the meantime

Huxley 1957 offered an extensive analysis for myosin as a
motor responsible for muscle activity
myosin isolated from muscle ~ 1860

Vale et al. 1986  proposed kinesin molecular motors responsible
for intracellular transport (and analogues in all eukarya!)
energetics:ATP — ADP + Pi hydrolysis reaction
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Also suggested as mechanism for }\

electron tunneling, lipid bilayers, |

charged particles moving over interdigitated electrodes ... X

some surprises soee
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Doering, Ermentrout, Oster, Peskin
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K & Kowalczyk
Heath, K, & Kowalczyk
Chipot, K, & Kowalczyk

basic notion: equilibirum fluctuations do no work

nonequilibrium fluctuations can be 'oriented' to alter the state of the system,
for example, to exhibit transport



kinesin
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could be a motor molecule. Scale bar, 50 nm.

one of the groups attempting to
engineer motors

Hirokawa, Science, 1998



energy transduction

suggested mechanisms involve complicated
chemistry and conformational changes
scale where chemistry and mechanics coupled

operation of a kinesin
main interest: transduction mechanisms motor by ATP hydrolysis
shape memory & magnetostriction
began with J.L. Ericksen & R. James
cf. Ball & James, Fonseca, Chipot & K

ATP — ADP + Pi

shape memory NiTi
thermal/mechanical

ferromagnetic shape memory
TbDyFe2 —

(giant magnetostrictive)
electromagnetic/mechanical

Dooley & deGraef

this configuration was predicted

by our theory and first seen by
Dooley & deGraef



significant differences

design criteria for new active materials

require minimum power consumption:

transformation path as near equilibrium
as possible

biological systems like motors are very
far from equilibrium

CuAlINi shape memory mosaic

minimum energy ... absolute of lamellar twins is close to
metastable equilibrium. (Chu & James)
nonequilibrium .... how to assess!?

“all stable systems are alike; each metastable
system loses stability in its own way” Tolstoy

today's outline

* motion at small scales and Monge-Kantorovich problem
* flashing rachet

e dissipation and Wasserstein

* multiple state motors

* game time




- Flashing rachet

Astumian

diffusion interchanged with
transport in anisotropic potential
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Dirac masses of same height located
asymmetrically in period basin

* diffusion spreads mass

transport collects mass to special sites

each process taken separately does not
move density

asymmetric drift is a key for transport

* not the whole story

0p &%p 0, ,

e — —— - QO<t<T’r’7

ot Ua$2+6ib(¢p) s =

0

0%p+¢/p20 0n0ﬂ,0<t§Ttr

0p 0%p

EZO_@ ZnﬂaTtT<t§T:Tdiff+Ttry
0

c—p=0 ondQ T, <t<T

ox



Flashing rachet
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study (unique) periodic solution

use the transport/diffusion to construct a Markov chain paradigm
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there is a unique periodic solution pﬁ for each T T y.ee

it is stable: if Ois any solution of the Flashing Rachet problem then

/ |p—,0ﬁ]dx S C e—ct or d(p, pﬁ) S C G_Ct
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Markov Chain Paradigm for the Flashing Rachet

begin with density at Dirac masses
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accumulate density at Dirac masses

p= [10q, + 4204,

this is a Markov chain:




Monge-Kantorovich Problem
Wasserstein Metric

cost of mO\Jring histograms

f, f* probability densities on {2
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p joint distribution with marginals f, f*
¢ Monge Kantorovich transfer function

transfer function

/Q () (y)dy = / (@) f* (=

N——"

dx

Wasserstein metric induces weak™ topology on measures Extensive current literature

¢ is solution of Monge-Ampere Eq.

recent books and notes

Villani, Rachev ; Ambrosio, Evans




Remarks many paths f(x,t),0 <t <, from f*(x) to f(x) Eulerian

or d(x,t), 0 < t < 7, (transfer functions) Langrangian
/ )0y = [ (@) @) wrrr<d [ [ v
y,1) = bu(x,1) =
1 1 (7 ft +(vf)z =0 continuity equation
pdlfo 5 =5 [ [ o fdu
27 2 Jo Ja Ut + 00y =0 optimality condition (Burgers)

Brenier & Benamou



g(x,t,a) Green’s function with pole at a for Neuman Problem:
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transport phase
most difficult estimate

d(p*, p* P)? < 2¢
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log-Sobolev + Talagrand or analogous: estimate
d of two solutions of diffusion equation decreases know how to work with
exponentially Wasserstein metric

iterates of a Markov chain close 5
can only happen if they are close to the stationary state d(p7 luﬁ) < 4e
and then p is too.

investigate properties of ﬂ, P
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Dissipation and ensemble of small bodies (large proteins)
Wasserstein motion in a highly viscous environment

spring-mass-dashpot

m—r s Y€)= 0
§0)=a
§(0)=0

kinetic dissipation
energy )
Re Jarge yacht = 108
Re auto = |O7
Re Kinesin = 0.05
Lv
Re = =Y

Ui



distribute over Q = (0,1) with density f*

Q
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assumes new configuration f
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Can now evolve through many relaxation times 7

we know what this is:
minimum value is VWasserstein metric



given fj_; determine fj, from the variational principle with f* = f,_1, f = f&
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Fokker-Planck

Otto, Jordan,K,Otto
many authors
Agueh, Petrelli, Tudorascu



conventional kinesin

cartoon of conformational change and response to potential

new leading head binds

leading head binds trailing head swings
undergoes conformational change forward
sort heads:

type | bind at even labled sites 1 density —V1
type 2 bind at odd labled sites p, density 14

V2 rates
— Uy rates

o — p*P p P —p

apply ideas of dissipation to obtain a variational principle

note thhat P is a
probabflity matrix
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variational principle
/pzd / p* P); dx
Q

variational principle/dissipation principle

* separates free energy, dissipation, and conformational change
* determines an implicit scheme

* always has a solution: functional is superlinear

Oster, Mogilner

Elston more detailed modeling from very different viewpoint

Analysis: embark on known path for existence (Jordan, K, Otto & Otto
& others)

is the dissipation principle powerful enough to solve our problem?
are Monge-Kantorovich transport methods sufficiently well developed?

existence & uniqueness

existence & uniqueness of stationary solution
trend to equilibrium

character of stationary solution &



system of evolution equations obtained from implicit scheme:

recover familiar equations
Adjari and Prost

Op1 0 , Op , Oster, Ermentrout, Peskin
9t Or (U Oz + ¢1P1) — V1p1 + V22 |
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ot — 9 ( O -+ ¢2P2) + V1p1 — V202 J.-L. Lions method as well to
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pi(x,0) = p) > 0, in Q, 1= 1,2

/Q (p1 + p2) dz =



Role of asymmetry asymmetry of the potentials is thought to play an important
role in motor processivity, similar to the flashing rachet

motors distributed about red well bottom; some change
conformation from asymmetry, most move left to a green well
bottom with probability p

’
e some change conformation; most move left with probability p
606 corresponds to trials with a biased coin
606 stationary distribution is exponentially decaying

correct but does not translate to a proof
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Character of stationary solution

Assume that

1. 1;, v; periodic of period 1/N on 2

2. 9} > 0 on each interval where 5, < 0 and v;, > 0 on each inte*rvw

V=0
3. v;, >0
Then 1
pr(z) + po(z) £ Ke 7 %) o> —
N
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Mechanisms of diffusion mediated transport

basic notion: nonequilibrium fluctuations can be 'oriented' to alter the state of the system,
for example, to exhibit transport; actual biological function extraordinarily complex

;f,)_*: | — Flashing Rachet: eight well system
equations illustrate rich and diverse mechanisms ] Ftransport E=diffusion
to achieve this 06 5.0

0:4 4.5 +4
Flashing rachet (Astumian et al.) " 40

0.1 — 3.5
diffusion and tr’anspor’t in alternate 0‘00.12 014 016 018 020 02 024 06 - 3.0
potential is periodic and asymmetric in its period basin B 25
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(K & Kowalczyk) X
Transport in an eight well system

Multiple state molecular motor (Adjari & Prost; Oster, Ermentrout,

Peskin, Doering and others) :
7
diffusion and transport in several potentials with state changes among the wells .
like hand over hand motion (conventional kinesin). N
= L
EP 4, ﬂp f @ 4 P2
= o + pu + piv — 1s o 3
5 = 5,08, TAY) P p = (p1,p2) 3
2
1 =
potentials are asymmetric as before / /-

stationary state decays exponentially: like trials with a biased coin
(Chipot, Hastings, K, Kowalczyk)
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Harmer & Abbot
Nature 1999

b-game
coin played depends on present
capital
a-game

toss a fair coin 3 divides present capital ogherwise

pb = €

but playing according to the schedule g, b, g, b, g, b, ...is winning!
essence of the game is an illusion: naive idea of fairness

magic lies in maintaining that illusion as long as possible.



look at finite difference scheme
b-game looks like random walk with piecewise constant drift
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frequency of coin play actually governed by a Markov chain Pp (3 x 3)
fair coin game governed by Markov chain P,

Parrondo game corresponds to periodic transition matrix, Py, Pp, P3, etc.
limit cycle near stationary state of product PpP,

for special game here, corresponds to b-game with tails replaced by heads

original b-game losing means concatenated game winning



something more fascinating is true

Edetba=0 o8-
Euniform=0 .

about game played with capital mod 4

Ppb Py = Pa2 o

0.2—

means: starting from uniform distribution

returns to uniform distribution after one
a-game/b-game cycle for any b-game 055 loa o' los | oss os | o6

winning or losing depends on
Eb(uniform distribution)

this is a new rachet mechanism like a screw with

stripped threads:
turning it always resets to the initial position




Parrondo game works on potential difference

Brownian rachet (what we have been studying) works on geometry of potential

can find parameters so Parrondo wins and rachet moves to left

also related to stochastic time? 07
\
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- \ \
in green triangle Parrondo is winning § " "gl I'h
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Alex Bogomolny |
http://www.cut-the-knot.org/ctk/Parrondo.shtml
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