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Abstract
These presentations deal with mathematical problems of the liquid

crystal theory.
We label as liquid crystals those materials capable of showing differ-

ent degrees of molecular ordering, both, orientational and positional,
according to temperature and concentration. Such materials may flow
like fluids and experience deformations as elastic solids. One issue of
interest is the interaction with applied electric fields within the scope
of applications to devices, such as switches and artificial muscles.

We present a survey of static and flow theories of liquid crystals,
emphasizing mathematical studies of existence and properties of so-
lutions of the governing equations. The coupling between molecular
ordering and elastic deformation arises in connection with elastomer
polymer networks. Finally, the inclusion of fluid flow in elastic net-
works motivates us to introduce the problem of gel swelling.

Whereas some of the results presented here are classic, we also
emphasize new and open problems.

1 Modeling Survey and Phenomenology

Liquid crystals are phases intermediate between solid and liquid. Wheres
some liquid crystals consist of rigid and elongated molecules, liquid
crystal phases are also exhibited by more complicated molecules (e.g.,
with bent-shapes) and also by some polymeric networks. We use the
chemical structure of the molecule and the corresponding type of in-
teraction to motivate the continuum theory models of the phases. We
give a survey of the phenomenology for the different phases, from the
nematic (with orientational order of molecules, tending to follow pre-
ferred directions of alignment), through the smectic phases (with po-
sitional order of centers of mass, arranged in layers). We address the
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interaction of the molecules with electric fields, describing dielectric as
well as ferroelectric behaviors and their roles in applications such as to
switching devices. For bent-shape molecules, we discuss the effects of
the spontaneous polarization, and its role in the observed instabilities,
e.g., telephone cord shapes. For elastic networks, we discuss the cou-
pling between elastic deformation and electric polarization, and how
the principal directions of stretch relate to the polarization field.

• Liquid crystal molecules

• Liquid crystal phases

• Mean field theory of the nematic phase

• Uniaxial and biaxial symmetries

• The Oseen-Frank theory of nematics

• Chiral liquid crystals

• Smectic A* ([5])and Smectic C* phases and positional ordering

• Ferroelectricity ([28], [26], [8])

• Theories of de Gennes, Lubensky, Chen and Renn ([16],[13], [37])

• Electric energy

• Self-field interaction energy

• Polymeric networks and elastomers ([17], [40], [27], [35], [20])

2 Variational theory of nematics and the
Fredericks transition

We consider the problem of minimizing the total energy of a liquid
crystal occupying a domain Ω ∈ R3, and with prescribed boundary
conditions. The admissible set consist of fields, n ∈ H1(Ω,S2), and
the energy density is quadratic with respect to ∇n and invariant with
respect to the transformation n → −n. We consider the case that elec-
tric fields are applied in the material. We present the theory developed
in [24].

The Fredericks transition, which forms the theoretical basis of the
application to switching devices, consists on the exchange of stability
between two distinct minimizers as the value of the applied external
field reaches a critical value. We address the stability analysis associ-
ated with such a phenomenon ([14], [39].
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3 Composite liquid crystals and polymer
systems

We consider composite systems of liquid crystal and polymer network.
These are prototype models for switching devices where the inclusion of
a polymer matrix plays the role of remembering one state of alignment.
We assume that the polymer inclusions are periodically distributed
in the liquid crystal domain and provide a contact energy favoring a
special molecular alignment at the polymer-liquid crystal interface. We
analyze a relaxed problem where the constraint |n| = 1 is replace by
a new term in the bulk energy, penalizing deviations of the length n
from the value 1. With the application of the two-scale convergence
method, we obtain an effective liquid crystal material. The Fredericks
transition is analyzed in a two-dimensional geometry, corresponding to
the case that the polymeric inclusions are cylinder-like.

• Composite liquid crystals and polymeric systems ([15], [12])

• Weak surface anchoring

• Relaxed energy functional ([6], [7])

• A priori estimates

• Two-scale convergence ([3], [4], [25])

• Limiting problems and effective energies

• Cylindrical geometry

• Electric energy

• Stability and critical fields: Fredericks transition ([36])

4 Flow problems

Once the static theory of a physical system is well understood, the
issue often arises of deriving flow equations for such a system. We
present Leslie’s derivation of the governing equations of liquid crystal
flow, the Leslie-Ericksen equations, as a method capable of addressing
many complex material systems. Such a method is indeed an appli-
cation of the approach to obtaining conservation laws by postulating
a law of balance of energy together with invariance requirements. We
present a survey of the existence theory of such flow, and discuss flow
regimes with defects. The latter follows a generalization by Ericksen
of the governing equations including the uniaxial order parameter that
vanishes at defect locations.
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• Balance of energy and invariance under rigid body rotations and
translations [29]

• The second law of thermodynamics ([22], [23])

• Dissipation inequality (Ericksen) ([21]

• The Leslie-Ericksen system [29]

• Existence theory ([30], [31])

• Liquid crystals with variable degree of orientation ([23], [10])

• Defect surfaces and chevron pattern in flow ([34], [11], [9])

5 Liquid crystals and gels

We proceed with the flow problems of the previous section by pre-
senting the flow theory of smectic A as developed by Weinan E. We
mention an application to the study of formation of smectic filaments
from the isotropic phase. We derive the dissipation inequality and dis-
cuss the problem of existence of solutions to the governing equations
following the analysis of Liu.

The final part of this presentation deals with models of gels from the
point of view of two-component mixtures: Elastic solid and Newtonian
fluid. We discuss the role of electric ions in the swelling phenomena,
and conclude with the formulation of a Riemann problem proposed as
model to analyze and simulate the motion of the swelling front.

• Flow theory of smectic A [18]

• Filaments in the isotropic-smectic A transition [19]

• Existence results for the flow equations [32]

• Models of gels as mixtures of elastic networks and liquids [33]

• Modeling the ion effects of the system [1]

• Free energy: elastic, mixing and electrostatic contributions [1]

• The phenomena of gel swelling ([2], [38])

• Formulation of dynamic swelling in terms of Riemann problems
[33]
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