Non-Essential Uses of Probability in Analysis Part IV Efficient Markovian Couplings

Krzysztof Burdzy University of Washington

Review

See B and Kendall (2000) for more details. See also the unpublished monograph of Aldous and Fill (1999).

X — positive-recurrent Markov process symmetric with respect to some reference measure m,

p(t, x, y) — density relative to m,

$$p(t, x, y) = c + g(x, y)e^{-\mu_2 t} + R(t, x, y), \quad (1)$$

first eigenvalue = 0, first eigenfunction = c, μ_2 = second eigenvalue, $g(x, y) = \sum_{\varphi} \varphi(x) \varphi(y)$ where the φ are orthogonal eigenfunctions with eigenvalue μ_2 , $R(t, x, y) \to 0$ faster than $e^{-\mu_2 t}$ as $t \to \infty$ A "coupling" is a pair (X^1, X^2) of (typically dependent) copies of the Markov process X. "Good" couplings are characterized by small coupling time

$$\tau = \inf\{t \ge 0 : X_t^1 = X_t^2\}.$$

Typically, X^1 and X^2 are constructed so that $X_t^1 = X_t^2$ for all $t \ge \tau$.

Suppose that $(X_0^1, X_0^2) = (x_1, x_2).$

The eigenfunction representation (1) gives

$$p(t, x_1, y) - p(t, x_2, y)$$
(2)
= $(g(x_1, y) - g(x_2, y))e^{-\mu_2 t}$
+ $R(t, x_1, y) - R(t, x_2, y)$

while the coupling yields

$$|p(t, x_1, y)dy - p(t, x_2, y)dy|$$
(3)
= $|P(X_t^1 \in dy \mid X_0^1 = x_1)$
 $- P(X_t^2 \in dy \mid X_0^2 = x_2)|$
 $\leq P(X_t^1 \in dy, t < \tau \mid X_0^1 = x_1)$
 $+ P(X_t^2 \in dy, t < \tau \mid X_0^2 = x_2).$

Suppose that one can prove that

 $P(t < \tau \mid X_t^1 = x_1, X_t^2 = x_2) \approx e^{-\mu^* t}.$ (4) (2), (3) and (4) imply that $\mu^* \leq \mu_2.$ We will call μ^* the coupling exponent.

Informal Definition of Efficiency

We will call a coupling (X^1, X^2) an efficient Markovian coupling if (X^1, X^2) is a Markov process and $\mu^* = \mu_2$.

Informal Efficient Coupling Heuristic

A coupling (X^1, X^2) is efficient if and only if, for all t, and given $\{t < \tau\}$, the conditional distributions of (X_t^1, X_t^2) and (X_t^2, X_t^1) are singular with respect to each other.

The above heuristic is NOT true in a rigorous sense but it works in sufficiently many circumstances to make it "almost true."

Symmetric Markov chains with finite state space

 $X = \{X_t : t \ge 0\}$ — a continuous time symmetric Markov process with a finite state space D and transition probabilities

$$p(t, y, x) = p(t, x, y)$$
$$= P(X_{s+t} = y \mid X_s = x).$$

 (X^1, X^2) — a Markovian coupling for the process X: $\{(X_t^1, X_t^2) : t \ge 0\}, \{X_t^1 : t \ge 0\}$ and $\{X_t^2 : t \ge 0\}$ are Markov with respect to the filtration generated jointly by X^1 and X^2 , and X^1 and X^2 have the same transition probabilities as X.

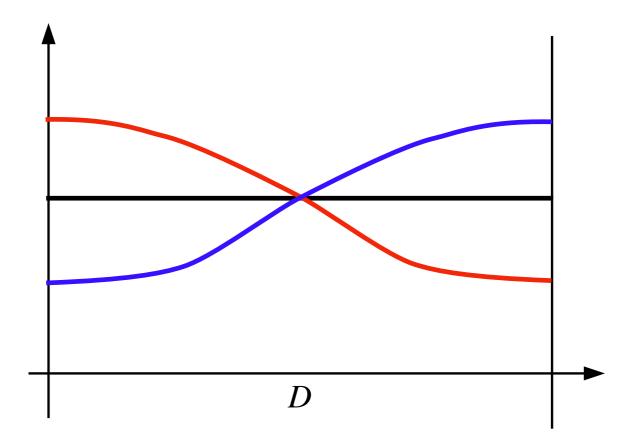
$$\tau = \inf\{t \ge 0 : X_t^1 = X_t^2\}$$
$$X_t^1 = X_t^2 \text{ for all } t \ge \tau.$$

We will say that D^2 is irreducible with respect to a given coupling if every state (y_1, y_2) with $y_1 \neq y_2$ is accessible from any other state (x_1, x_2) with $x_1 \neq x_2$.

Theorem (i) If D^2 is irreducible for a coupling then this coupling is not efficient. (ii) Suppose that for every pair of distinct points $x_1, x_2 \in D$ there exists a function $f: D \to \mathbf{R}$ with the property that

 $P^{(x_1,x_2)}(f(X_t^1) - f(X_t^2) > 0 \mid t < \tau) = 1$

Then the coupling is efficient.

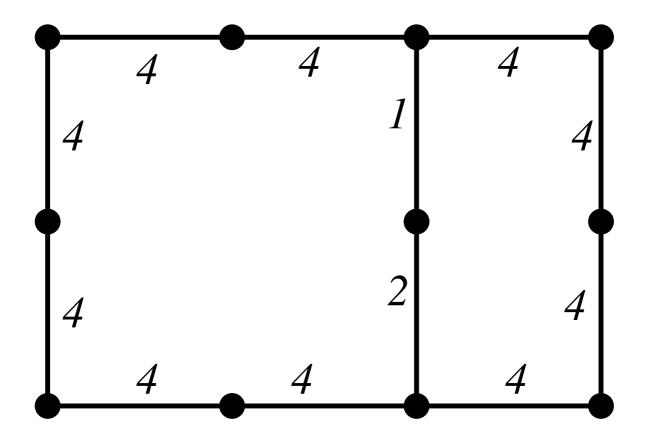


Example

Suppose the state space D is a finite subinterval of the integers \mathbf{Z} and X can jump from x only to x - 1 or x + 1, for every x. Assume that (X_t^1, X_t^2) almost surely never jumps to (X_{t-}^2, X_{t-}^1) . Then (X^1, X^2) is an efficient coupling. In particular, the coupling is efficient if X^1 and X^2 have independent jumps until the coupling time τ .

Example

Consider a Markov process with jump rates indicated in the figure. There are no efficient couplings for this process.



Example—"Ehrenfest model"

Consider two urns with n marked balls distributed among them. At every arrival time for a Poisson process, a ball is randomly chosen from among all balls in both urns and moved to the other urn.

$$D = \{(i_1, i_2, \dots, i_n) : i_k = 0 \text{ or } 1\}$$

$$U_k - \text{i.i.d. exponential, mean } 1$$

$$T_k = U_1 + \dots + U_k$$

$$N_k - \text{i.i.d. uniform on } \{1, 2, \dots, n\}$$

$$\{J_k\} - \text{i.i.d. with}$$

$$P(J_k = 0) = P(J_k = 1) = 1/2$$

$$X_{T_k} = (j_1, j_2, \dots, j_{N_k}, \dots, j_n)$$
$$\rightarrow X_{T_k} = (j_1, j_2, \dots, J_k, \dots, j_n)$$

 (X^1, X^2) : use one family $\{T_k, N_k, J_k\}_{k \ge 1}$

$$(X_{T_{k}-}^{1}, X_{T_{k}-}^{2}) = ((j_{1}^{1}, \dots, j_{N_{k}}^{1}, \dots, j_{n}^{1}), (j_{1}^{2}, \dots, j_{N_{k}}^{2}, \dots, j_{n}^{2}))$$

$$\downarrow$$

$$(X_{T_{k}}^{1}, X_{T_{k}}^{2}) = ((j_{1}^{1}, \dots, J_{k}^{1}, \dots, J_{n}^{1}), (j_{1}^{2}, \dots, J_{k}^{2}, \dots, j_{n}^{2}))$$

Suppose that $X_0^1 = (j_1^1, j_2^1, \dots, j_n^1)$. Let $f(i_1, i_2, \dots, i_n)$ be the number of k such that $i_k = j_k^1$. If $X_0^1 \neq X_0^2$ then $f(X_t^1) - f(X_t^2) > 0$ for all $t < \tau$. Hence the coupling is efficient.

Elementary estimates yield $\mu^* = 1/n$, so $\mu_2 = 1/n$.

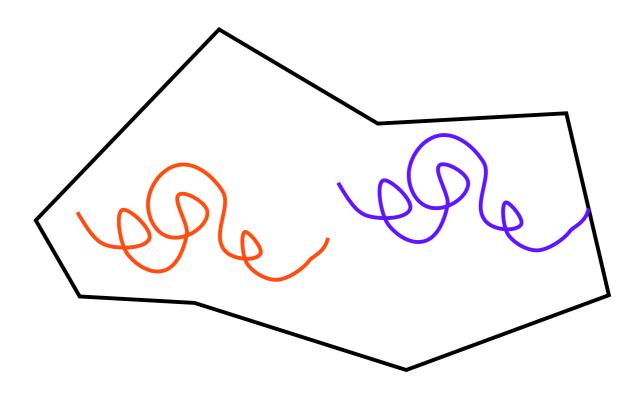
However, the mean time to coupling is not of order $1/\mu^* = n$. $E\tau \approx n \log n$.

See Liggett (1985) for the use of monotonicity in the context of particle system couplings.

Reflected Brownian motion Synchronous couplings

D — Lipschitz domain in the plane B — planar Brownian motion

$$X_t = x_0 + B_t + \int_0^t \mathbf{n}(X_s) dL_s^X,$$
$$Y_t = y_0 + B_t + \int_0^t \mathbf{n}(Y_s) dL_s^Y.$$



Cranston and Le Jan (1990): Synchronous couplings never meet in strictly convex domains.

"Generic" behavior:

$$\tau := \inf\{t \ge 0 : X_t = Y_t\} = \infty.$$

$$p(t, x, y) - \text{transition densities for } X,$$

$$p(t, x, y) = c_1 + \varphi_2(x)\varphi_2(y)e^{-\mu_2 t} + R(t, x, y),$$

$$R(t, x, y) \to 0 \text{ faster than } e^{-\mu_2 t} \text{ as } t \to \infty$$
Lemma Suppose that for some $\mu \ge 0$ and $x, y \in D,$

 $E^{(x,y)}|X_t - Y_t| \le c(x,y)e^{-\mu t}$ for $t \ge 0$. If $\varphi_2(x) \ne \varphi_2(y)$ then $\mu \le \mu_2$. **Proof** The function φ_2 is not identically equal to 0 so,

$$\int_D \exp(c_1 z^1 + c_2 z^2) \varphi_2(z^1, z^2) dz^1 dz^2 > 0,$$

for some $c_1, c_2 \neq 0$. Since *D* is bounded there exists $c_3 > 0$ such that c_3^{-1} is a Lipschitz constant for $\exp(c_1 x^1 + c_2 x^2)$, and so

$$E|X_t - Y_t| \geq c_3 \Big(E[\exp(c_1 X_t^1 + c_2 X_t^2)] - E[\exp(c_1 Y_t^1 + c_2 Y_t^2)] \Big).$$

Then,

$$\begin{split} c(x,y)e^{-\mu t} \\ &\geq E^{(x,y)}|X_t - Y_t| \\ &\geq c_3 \left(E \exp(c_1 X_t^1 + c_2 X_t^2) \right) \\ &- E \exp(c_1 Y_t^1 + c_2 Y_t^2) \right) \\ &= c_3 \int_D \exp(c_1 z_1 + c_2 z_2) p(t,x,z) dz \\ &- c_3 \int_D \exp(c_1 z_1 + c_2 z_2) p(t,y,z) dz \\ &= c_3 \int_D [\varphi_2(x) - \varphi_2(y)] \exp(c_1 z_1 + c_2 z_2) \times \\ &\times \varphi_2(z) e^{-\mu_2 t} dz + R(t,x,y) \\ &= c_4(x,y) e^{-\mu_2 t} + R(t,x,y). \end{split}$$

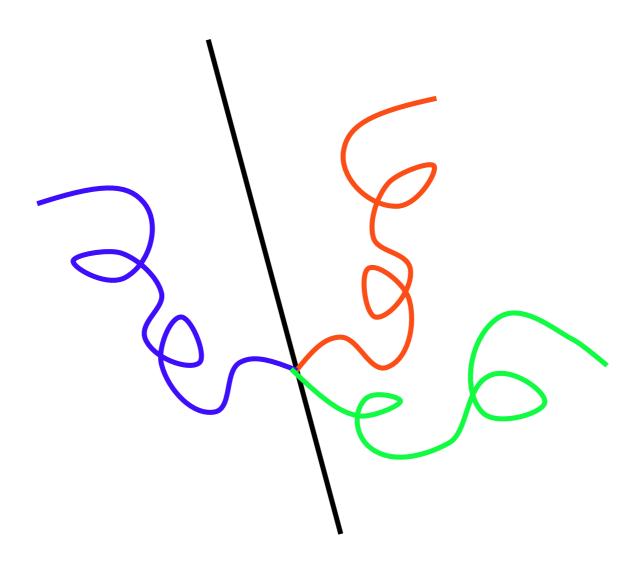
Hence $\mu \leq \mu_2$.

Definition We will call a synchronous coupling (X, Y) of reflected Brownian motions in D efficient if for some x and y with $\varphi_2(x) \neq \varphi_2(y)$, we have $\mu = \mu_2$.

Theorem If D is a triangle with an angle strictly greater than $\pi/2$ then the synchronous coupling for the reflected Brownian motion in D is efficient.

Conjecture Synchronous couplings are not efficient in triangles with all angles less than $\pi/2$.

Mirror couplings



"Generic" behavior:

$$\tau := \inf\{t \ge 0 : X_t = Y_t\} < \infty.$$

Lemma Suppose for some $x, y \in D$,

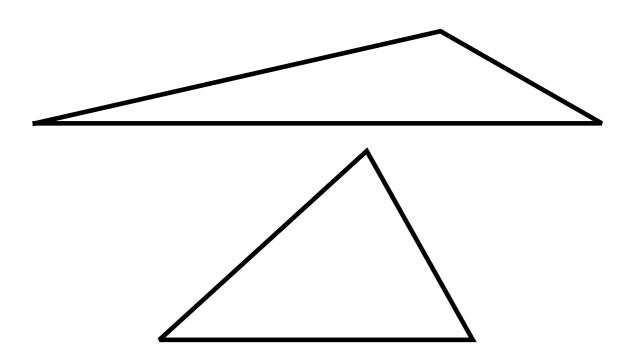
$$P^{(x,y)}(\tau > t) \le c(x,y)e^{-\mu t}$$

for $t \ge 0$. If $\varphi_2(x) \ne \varphi_2(y)$ then $\mu \le \mu_2$.

Definition A mirror coupling (X, Y) of reflected Brownian motions in D is said to be efficient if $\mu = \mu_2$ for some x and y with $\varphi_2(x) \neq \varphi_2(y)$.

Theorem (i) If D is a triangle with an angle strictly greater than $\pi/2$ then the mirror coupling for the reflected Brownian motion in D is efficient.

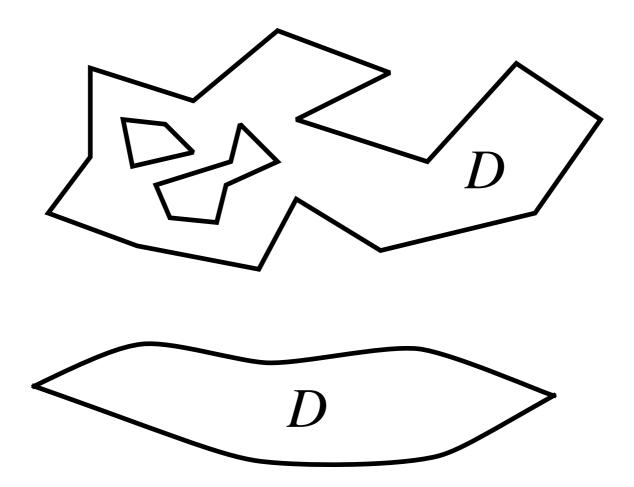
(ii) If all angles of the triangle D are distinct from each other and strictly less than $\pi/2$ then the mirror coupling for the reflected Brownian motion in D is not efficient. **Open problem** Does there exist an efficient coupling of reflected Brownian motions in a triangle with acute angles?



Convergence of synchronous couplings

(X, Y) — synchronous coupling of reflected Brownian motions in a planar domain D

Theorem (B and Chen 2002) $|X_t - Y_t| \to 0$ as $t \to \infty$ if (i) ∂D consists of polygonal lines or (ii) D is a lip domain.

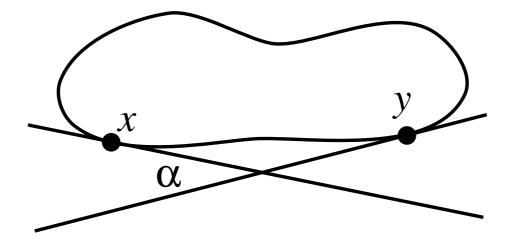


Theorem (B, Chen and Jones 2006) Suppose that D has smooth boundary. Let

$$\begin{split} \Lambda(D) &= \int_{\partial D} \nu(x) dx \\ &+ \int_{\partial D} \int_{\partial D} |\log \cos \alpha(x, y)| \omega_x(dy) dx \\ &= 2\pi (1 - \# \text{ of holes in } D) \\ &+ \int_{\partial D} \int_{\partial D} |\log \cos \alpha(x, y)| \omega_x(dy) dx. \end{split}$$

If $\Lambda(D) > 0$ then

$$\lim_{t \to \infty} \frac{\log |X_t - Y_t|}{t} = -\frac{\Lambda(D)}{2|D|}.$$



Corollary $|X_t - Y_t| \to 0$ as $t \to \infty$ if ∂D is smooth and D has at most one hole.

 $|X_t - Y_t| \approx e^{-t\Lambda(D)/(2|D|)}$

Open problems

(i) Does there exist a bounded planar domain D such that $|X_t - Y_t| \not\rightarrow 0$? (ii) If D is the *exterior* of an ellipse then $\Lambda(D) = 0$. Does there exist a closed curve such that if D is its exterior then $\Lambda(D) < 0$?

REFERENCES

- D. Aldous and J. Fill (1999) Reversible Markov Chains and Random Walks on Graphs (book in preparation, available online: http://www.stat.berkeley.edu /~aldous/RWG/book.html)
- K. Burdzy and Z. Chen (2002) Coalescence of synchronous couplings *Probab. Theory Rel. Fields* 123, 553–578.
- K. Burdzy, Z. Chen and P. Jones (2006) Synchronous couplings of reflected Brownian motions in smooth domains *Illinois*. J. Math., Doob Volume (to appear)
- 4. K. Burdzy and W. Kendall (2000) Efficient Markovian couplings: examples and counterexamples Ann. Appl. Probab. 10, 362– 409.

- M. Cranston and Y. Le Jan (1990) Noncoalescence for the Skorohod equation in a convex domain of R² Probability Theory and Related Fields 87, 241–252.
- 6. T.M. Liggett (1985) Interacting Particle Systems Springer-Verlag, New York.