Essential Uses of Probability in Analysis

Part III. Robin problem in fractal domains

Krzysztof Burdzy

University of Washington

Inspiration – physical phenomena

- physiology
- heterogeneous catalysis
- electrochemistry

Partial differential equation B $\begin{cases} \Delta u(x) = 0, & x \in D \setminus B, \\ \frac{\partial u}{\partial n}(x) = c u(x), & x \in \partial D, \\ u(x) = 1, & x \in \partial B. \end{cases}$ Robin boundary condition

Remarks

(i) Robin boundary condition is not Robin's (Gustafson and Abe (1998))

(ii) $u(x) > 0, x \in D \setminus B$

(iii) In the rest of the paper c = 1Robin condition:

$$\frac{\partial u}{\partial \boldsymbol{n}}(x) = u(x)$$

Is the whole surface active?

Definition. We say that the whole surface of D is active if

$$\inf_{x \in \partial D} \frac{\partial u}{\partial n}(x) > 0$$

$$\inf_{x \in D \setminus B} u(x) > 0$$

Problem. Give a geometric characterization of domains whose whole surface is active.

Simple observations

If ∂D is smooth or even Lipschitz then the whole surface is active.

If the area of the boundary of D is infinite then it is not the case that the whole surface is active.

Domains with infinite surfaces Suppose that $\inf_{x \in D \setminus B} u(x) > 0$ and $|\partial D| = \infty$ Then $\inf_{x \in \partial D} \frac{\partial u}{\partial n}(x) > 0$

and the flow outside the domain is

$$\int_{\partial D} \frac{\partial u}{\partial n}(x) \, d\sigma(x) = \infty$$

The flow inside the domain through ∂B is finite – a contradiction.

Is the whole surface active? $\alpha \in (1,2) \Rightarrow$ yes $\alpha \ge 2 \Rightarrow$ no

$$\beta > 1, \beta > \alpha$$

dim = 2 $\Rightarrow \alpha > 1$
dim $\ge 3 \Rightarrow \alpha > 0$

 $\frac{1}{2^{-k\alpha}} 2^{-k\beta}$

Is the whole surface active?

$$\beta < 2\alpha \Rightarrow$$
 yes
 $\beta \ge 2\alpha \Rightarrow$ no

Green function estimate m > kR $x \in \gamma_k$ $v \in \gamma_m$ r_n γ_n

G(x, y) - Green function with Neumann boundary conditions on ∂D and Dirichlet boundary conditions on ∂B

$$c_1 \sum_{j=1}^k r_j^{2-d} \le G(x, y) \le c_2 \sum_{j=1}^k r_j^{2-d}$$

G(x, y) - Green function with Neumann boundary conditions on ∂D and Dirichlet boundary conditions on ∂B

 $G(x, y) \approx \sum_{j=1}^{k} r_j^{2-d}$

 $\widetilde{G}(x, y)$ - Green function with Dirichlet boundary conditions on $\partial D \cup \partial B$

$$\log \tilde{G}(x, y) \approx f(x, y) \longleftarrow$$

Robin

- Neumann linear growth of G(x, y)
- Dirichlet, Robin exponential decay of $\tilde{G}(x, y)$

Feynman-Kac formula

Prownian motion reflected on ∂D and killed on ∂B at time $\tau_{\partial B}$

•
$$L(t)$$
 - Local time on ∂D

$$u(x) = E_x \exp(-L(\tau_{\partial B}))$$

Ma and Song (1990), Papanicolau (1990)

 $u(x) = E_x \exp(-L(\tau_{\partial B}))$ Problem: $\inf_{x \in D \setminus B} u(x) > 0$? u(x) = 0 ? $u(x) = 0 \iff P(L(\tau_{\partial B}) = \infty) = 1$ $E_{r}L(\tau_{\partial R}) < \infty \implies P_{r}(L(\tau_{\partial R}) = \infty) = 0$ $E_{r}L(\tau_{\partial B}) = \infty \quad \Rightarrow \quad P_{r}(L(\tau_{\partial B}) = \infty) = 1$

$$L = L_1 + L_2 + \ldots + L_n$$

The Law of Large Numbers and the Central Limit Theorem are applicable when $L_1, L_2, L_3, ...$ are "nearly" independent.

In fact,
$$L_{k+1} = L_k (1 + o(1))$$

Ray-Knight Theorem

 $x \rightarrow L_T^x$ is a diffusion with an explicit distribution.

The joint distribution of $L_1, L_2, L_3, ...$ is given (approximately) by the Ray-Knight Theorem.

Assume: $\omega_x(dz) < \omega_y(dz) \quad \forall z \in \gamma_2$ $\omega_x(dv) > \omega_y(dv) \quad \forall v \in \gamma_1$

Prove: $P^{x}(T_{A} < T_{B}) > P^{y}(T_{A} < T_{B})$

References

- Bass, B and Chen (2005) "On the Robin problem in fractal domains" (preprint)
- Gustafson and Abe (1998) "The third boundary condition-was it Robin's?" *Math. Intelligencer* **20**, 63-71.
- Ma and Song (1990) "Probabilistic methods in Schrodinger equations" Seminar on Stochastic Processes 1989, 135-164, Progr. Probab., 18, Birkhauser, Boston.
- Papanicolaou (1990) "The probabilistic solution of the third boundary value problem for second order elliptic equations" *Probab. Theory Rel. Fields* **87** 27-77.