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Abstract

To account for surface relaxation in ultra-thin films, we consider the simplest one-dimensional
discrete chain with harmonic interactions of up to second nearest neighbors.  We assume that the
springs, describing interactions of the nearest neighbors (NN) and next to nearest neighbors
(NNN) have incompatible reference lengths, which introduce a hyper-pre-stress and results in a
formation of the exponential surface boundary layers. For a finite body loaded by a system of
(double) forces at the boundary, we explicitly find the displacement field and compute the
energies of the inhomogeneous stressed and reference configurations.  We then obtain a simple
expression for the hyper-pre-stress related contribution to the surface energy and show an unusual
scaling of the total energy with the film thickness. For ultra-thin films we report an anomalous
stiffness increase due to the overlapping of the surface boundary layers.  Implications of the micro
level  hyper-pre-stress in fracture mechanics and in the theory of non-Bravais lattices are also
discussed.

Keywords: a)  surface effects, fracture  b) thin films c) discrete lattices

1. Introduction

The growing demands of modern industry require an understanding of the
mechanical behavior of nano-meter size objects. An extreme miniaturization of the
mechanical structures makes classical continuum models incomplete for their adequate
description mostly because the associated size effects can no longer be neglected. As an
example, one can mention new technologies utilizing ultra-small actuators and sensors,
where a satisfactory account for the microscopic surface boundary layers is essential.
Here we are using the term ultra-small to identify objects where the bulk and the surface
contributions to the elastic energy can not be considered independently.

As a first step in the direction of understanding the size effect in ultra-thin
mechanical structures, here we study a discrete model accounting for surface relaxation
in a linear solid. The relaxation is localized in the areas adjacent to the unloaded free
surfaces and is due to the presence of the broken bonds; the size of the corresponding
layers is measured in the units of a single atomic cell. Conventional discrete models
limited to the nearest neighbor (NN) interaction fail to capture these effects and we,
following some previous work, employ a model with the simplest next to nearest
neighbor (NNN) interaction.

The object we model can be viewed as an infinite crystalline plate. The relaxation of
the atomic layers parallel to the surface produces a nontrivial inhomogeneous
configuration: lattice spacing normal to the surface of the first few atomic layers differs
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from the spacing of the deep layers. The structural relaxation manifests itself through the
diffuse x-ray diffraction and broadened phonon scattering profiles (e.g. [GMH61,
HLS92]). To secure the presence of the boundary layers at the free surfaces, we assume
that the effective springs, describing NN and NNN interactions have incompatible
reference lengths which introduces a mismatch or pre-stress. As a result, the
macroscopically unloaded crystal in equilibrium will not be free of micro-stresses
generated by an effective system of self-equilibrated forces and self-equilibrated couples.
In view of the fact that the corresponding couples are “invisible” at the macroscopic
level, the resultant pre-stress does not fit the definition of a standard pre-stress of the
classical continuum elasticity theory and we use the term hyper-pre-stress to distinguish
the two. Our type of pre-stress plays an important role when the micro-scales are
important, for example when the crack opens inside the solid and the associated
relaxation layers appear in the areas adjacent to the newly formed free surfaces. For
sufficiently closely located  free surfaces, as in the case of an ultra-thin film or a tip of a
crack,  the relaxation strain fields will overlap, producing a nontrivial energy and
effective stiffness dependence on the external length scale. The goal of this study is to
make a simple quantitative model of these effects allowing one, for instance,  to study the
effective surface energy scaling with the size of the body.

Given that in our setting, the forces and displacements vary only in the direction
normal to the boundaries of the plate, the problem is essentially one-dimensional. In fact,
we assume tacitly that all relaxations are longitudinal in character, i.e. only interlayer
spacings change when we approach the surface of the body. The simplest 1D atomistic
model capturing these effects is a set of crystallographic planes joined by harmonic NN
and NNN springs with incompatible reference lengths and distinct stiffnesses. Actually,
the linear elastic constants of NN and NNN springs can even have opposite signs which
may be the case when the primary interatomic potential is non-convex. The introduction
of the NNN interaction in the one-dimensional theory may also be viewed as an attempt
to mimic long range effects of the simpler NN models in two and three dimensions (see
discussion in  [P91]).

Within the framework of a one-dimensional model with compatible reference states,
discrete chains with NNN interactions have already been investigated in the literature,
originally, in the context of validating continuum theories with couple-stresses. Thus,
Toupin and Gazis  [TG64] were probably the first to study surface puckering in finite
crystals with NNN interactions produced by a self-equilibrated system of surface couples.
In order to describe more adequately large relative displacements of the particles near the
free boundary, Gazis and Willis [GW65] considered a semi-infinite NNN chain with an-
harmonic forces localized in a few atomic layers near the free surfaces. Mindlin [M65]
extended the above approach to the case of third nearest neighbors although in much less
detail. Conditions of linear stability for an infinite crystal with NNN interaction were
obtained in [GW62, GW65, K82]. More recently, [HLS92] re-derived some of these
results and extended the analysis of stability to the infinite chains with third nearest
neighbor interactions. Without a reference to the boundary layers, an infinite chain with
non-linear NN and NNN interactions (and zero pre-stress) was studied in [JT82, J91] as a
prototypical model of stable incommensurate crystal phases; two dimensional models of
this type were considered in [CMV96]. Some numerical results for a finite nonlinear
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NNN chain were obtained in [TB93] where the emphasis was on fracture and phase
transitions while surface relaxation was artificially suppressed.

  A mismatch between the reference lengths of the NN and NNN springs has been
recently introduced in Lee et al. [LSD99]. Their analysis is similar in focus to ours, albeit
the fact that instead of dealing directly with the discrete model, the authors studied a long
wave quasi-continuum approximation with higher strain gradients. The main price of the
simplicity associated with such an approximation is that important effects carried by the
discreteness of the original problem are left out. Thus, one can show that the approximate
formula for the surface energy obtained in [LSD99] is valid only in the narrow range of
spring stiffnesses and outside this range may differ considerably from the exact result
obtained in the present paper. Another drawback of the quasi-continuum approach is that
such a description is inherently non-unique.  For example, a quite different quasi-
continuum model with higher gradients and surface boundary layers was studied earlier
by Mindlin [M65] who derived it from a discrete theory involving interaction of third
neighbors. Mindlin’s model was employed by Wu [W92] who computed an apparent
Young’s modulus for an ultra-thin plate and showed that it may be much higher than the
one obtained for a continuum 3D body of the same geometry. We notice that the surface
boundary layers have also been studied in the context of purely phenomenological
theories with higher gradients (e.g. [C61, T63, VS99]) as well as in the framework of
strongly non-local continuum models with integral spatial “memory” (e.g. [E92, K82,
FM96]).

In the present paper, by assuming that the effective springs describing NN and
NNN interactions have arbitrary reference lengths and arbitrary bulk moduli, we study a
general discrete problem for a finite chain loaded by generic forces. Depending on the
magnitude of the ratio of the elastic moduli, we obtain three types of solutions to the
“bulk” equations: homogenous with monotone exponential boundary layers at the free
surfaces, homogenous with oscillations superimposed on exponential boundary layers,
and inhomogeneous (periodic), which describe commensurate and incommensurate non-
Bravais lattices. The solutions are simple enough and as an example we present the
detailed calculations for a finite body in a soft device. Using our equilibrium solutions,
we explicitly compute the surface energy and identify a contribution due to hyper-pre-
stress. In the case when the exponential envelopes of the boundary layers overlap and the
surface cannot be naturally separated from the bulk, we observe a strong dependence of
the effective elastic stiffness on the external dimension of the object. In the concluding
part of the paper, we argue that the consequences of the localized relaxation may also be
significant outside the thin film theory; for instance, in fracture mechanics where the
radius of curvature of the free surface at the tip of the crack is typically of the order of the
thickness of our boundary layers. Other relevant physical phenomena include phase
transitions and twinning, where the long-range interactions contribute to the formation of
the boundary layers near the internal surfaces. The exponential interaction of these
boundary layers plays an important role in the selection of the scale of the microstructure.

The paper is organized as follows. In Section 2, we formulate our discrete model
and introduce the notion of hyper-pre-stress. In Section 3, we classify equilibrium
solutions for the infinite chains and distinguish homogeneous configurations with
boundary layers type growth from the periodic regimes describing multi-lattices. In
Section 4, we explicitly solve the “boundary equations” for a finite chain in a
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(generalized) soft device. In Sections 5-8, we describe the inhomogeneous reference
configuration, compute the effective surface energy, and study its dependence on the
hyper-pre-stress and the ratio of the NN and NNN elastic moduli. In Sections 9-10, we
study the size dependence of the surface energy and effective elastic moduli for the ultra-
thin objects.  In the final Section, we summarize our findings and mention some open
questions. The more technical stability analysis is left for the Appendix.

2. The model

Consider a one-dimensional lattice with N +1 identical material particles connected
by N elastic springs. We label the x-coordinate of the kth particle by xk, where 0 ≤ k ≤ N .
We then denote by o

kx , the value of the coordinate xk, at rest (in the unloaded chain), and
introduce elastic displacements from the reference configuration

o
kkk xxu −= .

We notice that the reference (rest) configuration o
kx  may not be homogeneous.

Suppose that each particle in the interior of the chain interacts symmetrically with
four other particles. Two of them are its nearest neighbors and the other two are its next
to nearest neighbors (see Fig. 1).
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Fig.1  One-dimensional chain with next to nearest neighbor (NNN) interactions in a soft device represented by the four
forces: 43,2,1 , ffff .

The  elastic energy of the chain is defined as a sum of two terms
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In order to be able to obtain analytical results we suppose that both functions 1w  and 2w
are quadratic. Specifically, we introduce
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 as the energy of the NN interaction and
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as the energy of the NNN interaction. In the formulas (2.2), (2.3) the constants α , γ are
elastic stiffnesses of the springs; ξ 1 , 2ξ 2 are the natural spring lengths, and 0

1w , 0
2w  are the

corresponding reference energies. In the generic case when ξ 1 ≠ ξ 2 the two interactions
compete and the springs are pre-stressed even in the absence of the applied loads.

The energy (2.1) can be viewed as a harmonic approximation for a Lennard-Jones
chain; the constants α , γ , 1ξ , 2ξ , 0

1w , and 0
2w  can then be considered as adjustable

parameters (see Section 11 for an explicit identification). In what follows, we will present
the most general case and assume that the elastic moduli α and γ may take arbitrary
values, including the situations when they may be of different signs.

 Contrary to the case of an NN chain, where only two boundary conditions are
necessary, the NNN model requires four boundary conditions. In fact, the two missing
bonds on a free surface on each side have to be replaced by either given forces or by the
prescribed displacements. The following three loading devices will be relevant for our
analysis:

1. Soft device.  The external work takes the form

                       12113411 ),,,( ufufufufxxxxQ oNNNNo −−+= −− (2.4)

where we assume that  fp, p=1,..,4 are given constants satisfying the overall equilibrium
condition

f4 + f3 = f1 + f2 : =  f.     (2.5)

2. Hard device.  The particle positions xo , x1 , xN − 1 , and xN  are prescribed.

3. Mixed device.  Only the positions of the boundary particles x0 and xN  are prescribed.
The  “non-local” interaction with the loading device is modeled by the given forces f2

and f3  applied to the 2nd and the N − 1st atoms, producing the work term

121311 ),( ufufxxQ NN −= −− . (2.6)

After the work of the loading device is specified, the total energy can be written as
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QWP −= ,       (2.7)

and the equilibrium equations can be obtained from the conditions 0/ =∂∂ kxP .  In the
case of a soft device this yields the system of N + 1 equations which can be divided into
two parts. First, we obtain the "bulk" equations

                             )2()2(0 2211 kkkkkk xxxxxx −++−+= −+−+ γα  (2.8)

where 2 ≤ k ≤ N − 2. These equations must hold for the N−3 inner atoms that interact with
their two NN and two NNN neighbors.

The four boundary atoms will also interact through forces with the loading device,
providing four "boundary equations”

                       )2()()(0 21121 ξγξαγα ++−−+−= fxxxx oo  (2.9)

                         )2()()2(0 221312 ξγγα +−−+−+= fxxxxx o  (2.10)

                      )2()()2(0 231312 ξγγα ++−+−+= −−−− fxxxxx NNNNN  (2.11)

                       )2()()(0 21421 ξγξαγα +++−+−= −− fxxxx NNNN  (2.12)

Equations (2.8-12) show that the global equilibrium condition (2.5) is necessary and that
the pre-stress can be interpreted as a self-equilibrated system of applied “forces”. The
appearance of boundary layers in the case 21 ξξ ≠  can be attributed to the fact that these
internal “forces” are compatible with the homogeneous distribution of spring lengths only
if ξ 1 = ξ 2. Finally we remark that the system of equations (2.8) can be formally
“integrated” to give

               fxxxxxx kkkkkk =−−+−−+−− −+++ )2()2()( 2112211 ξγξγξα ,                    (2.13)

which is a statement that the total force (2.5) is constant throughout the length of the
chain.

For the case of a hard device, equations (2. 8) will still hold, while instead of
(2. 9-12) one has to prescribe the boundary displacements u0, u1, uN−1, and uN . In the case of
a mixed device, two displacements must be prescribed and two “ boundary” equations are
to be solved.

3.            Solution of the “bulk” equations

Since our linear system (2.8) has constant coefficients, we can use standard methods
(e.g. [LL59]) to obtain an explicit solution in the form
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        ρρρρ kkkk
k kkkkx 44332211 )()()()( Ψ+Ψ+Ψ+Ψ= . (3.1)

Here ρq, q =1,..,4, are complex roots of the characteristic equation

         ( ) 02234 =+++−+ γραργαραργ . (3.2)

If the root ρq has multiplicity nq ≥ 1, with 4=� qn , then )(kqΨ  is the associated complex
polynomial of the order nq−1.

The characteristic equation (3.2) has a special structure and one double root is
straightforward

                12,1 =ρ . (3.3)

The associated position field is linear

            kk sBAx +=                                                (3.4)

with A and B arbitrary constants.  Here we introduced a new (centered) labeling of the
springs

2
N

k ks −= .

so that A in (3.4) may be associated with the rigid displacement of the center of the chain.
The latter may or may not coincide with the location of a particle.

The displacement field (3.4) describes a uniform distribution of particles in
accordance with the Cauchy-Born hypothesis and provides a general solution for the NN
chain  ( 0=γ ). With NNN interaction added, the characteristic equation (3.2) has two
other roots, which can also be found in an explicit form. First, introduce the ratio of the
elastic moduli describing NN and NNN interactions

              
γ

αµ
4

= . (3.5)

Then

,)1(2)12(4,3 +±+−= µµµρ (3.6a)

for µ ≤ −1 and µ ≥ 0, and

,)1(2)12(4,3 +−±+−= µµµρ i (3.6b)

for −1 ≤ µ ≤ 0. Notice that in both cases, ρ 3 = 1
4
−ρ  . The location of the roots ρ 3  andρ 4  on

the complex plane and their dependence on µ is illustrated in Fig.2 .
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Fig. 2 − The location of the nontrivial complex roots ρ 3 and ρ 4 of the characteristic equation (3.2) at different values of
the parameter µ . The arrows indicate variation of the roots as µ  increases from −∞ to +∞ .

As it follows from Fig.2 we have specified parameter ρ 3 by the additional conditions
0Im 3 ≥ρ ,   ρ 3≥ 1.  It will also be convenient to introduce two other real parameters,

λ1 ≥ 0 and λ2∈ [ 0, π ], by the formula

ρ 3 = exp(λ1 + iλ2).

Notice that λ1 , describes exponential variations of the atomic position field while λ2 is
responsible for the bounded periodic modulations.

In the representation of the general solution of the bulk equations different
possibilities arise depending on the value of µ, including three generic cases and two
limiting cases, µ = 0 and µ = −1, corresponding to the situations with a double root ρ 3, 4 = −1
and a fourfold root ρ1, 2, 3, 4 = 1, accordingly.  Below, we give a complete list of solutions.
Let C and D be two arbitrary real constants. Then, for the generic cases we obtain:

•   −∞ < µ < −1 (Case I)

                             )sinh()cosh( 11 kkkk sDsCsBAx λλ +++= (3.7)

where

                             ( ))1(2)12(ln1 +++−= µµµλ  ,  λ2 = 0. (3.8)

(To establish relation between (3.7) and  (3.1) we notice that (3.7) can also be written as

                             ( ) ( ) ( ) kNDCkNDCN
k kBAx 4323422 ρρρρ −+ ++−+= ,

 
 and use the identities )12(cosh 1 +−= µλ  and ( )12sinh 1 += µµλ );
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•    −1< µ < 0 (Case II)

                            )sin()cos( 22 kkkk sDsCBsAx λλ +++= (3.9)

where

                     λ1 = 0 , ( ))1(2)12(arg2 +−++−= µµµλ i ∈ ( 0, π ), (3.10)

 which can also be written as )12(cos 2 +−= µλ  and  ( )12sin 2 +−= µµλ ;
 
•   0 <µ < +∞  (Case III)

                        [ ])sinh()cosh()1( 11 kkkk sDsCksBAx λλ +−++= (3.11)
 

where

                                       ( ))1(212ln1 +++= µµµλ , λ2 = π (3.12)

which can also be written as 12cosh 1 += µλ  and  ( )12sinh 1 += µµλ .

In the non-generic cases we obtain

 
•   µ  = −1

                                   32
kkkk sDsCsBAx +++= (3.13)

where  λ1 = λ2 = 0,
 
•   µ  = 0

                                      [ ]k
k

kk sDCsBAx +−++= )1( (3.14)
 where λ1 = 0 , λ2 = π .
 
 
     Each of the above position fields is a sum of a uniform particle distribution and an
 inhomogeneous component. The character of the inhomogeneous part of the solutions in
Cases I and III is different from the one in Case II.
        As it follows from (3.7), (3.11), in the generic Cases I  (µ < −1) and III (µ > 0) the
inhomogeneous component of kx  is exponential, which suggests formation of the
boundary layers in a finite chain: the exponential "tails" will be localized near the
boundaries (surface relaxations) with the "interior" particles distributed almost
homogeneously. The number of springs in the boundary layers is of the order n = 1/λ1 ; for
the notion of a boundary layer to be adequate, we  need N >> n. As we show in Fig. 3, n tends to
zero as ±∞→µ  (NN model) and tends to infinity in the special cases when 1−→µ  and 0→µ ,
meaning that the boundary layers spread throughout the chain.
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Fig.3.  The number of springs n  inside the boundary layers as a function of  µ   in the Cases I and III.

 In Case III the boundary layers will contain oscillations at the scale of the lattice
modulated by an exponential envelope.  By rearranging the terms in (3.11) we can rewrite
the corresponding solution as
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(3.15)

 
which reveals a superposition of two structures each analogous to (3.7).

In the generic Case II (−1 < µ < 0),  the solution behaves quite differently and
instead of exponential boundary layers, we obtain periodic configurations which may be
described as a succession of stretched and compressed zones (see Fig. 4).

        

x k
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Fig. 4 A typical modulated equilibrium configuration in the Case II (−1 < µ < 0) representing  a non-simple lattice.
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 Spatial modulations of the particle density in Case II result from the presence of
competing interactions1; the “frustrated” system produces non-simple (or non-Bravais)
lattice which may be either commensurate or incommensurate with the periodic reference
state. If the period of the inhomogeneous component of the displacement field
n = 2π/λ2=p/q   is a rational number, which takes place at  µ = −

2
1 [1 + cos( pq /2π )],  the

minimal unit cell is formed of q particles. If the period is irrational, the long-range
periodic order is incommensurate with an imaginary periodic lattice.
             The µ - dependence of the number of springs comprising a period of modulations 
is shown in Fig. 5.  As we see, around µ = −1 only very long chains can exhibit sub-
lattices. On the contrary, around  µ = 0 the period approaches 2 atomic distances. In the
former case the sub-cell is infinite, while in the latter case it is formed exactly of 2 atoms.
The last observation is in agreement with the behavior of the transitional non-generic
solution. Thus, at µ = 0, in spite of the degeneration of the exponential "tail", the
decomposition analogous to (3.15) is available
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� −−++++�
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� −+= (3.16)

 
The position field (3.16) can be viewed as a superposition of two displaced homogeneous
lattices, forming an elementary non- Bravais lattice (2-lattice).
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 Fig. 5.  A number of springs inside the period n = 2π/λ2 as a function of µ  in Case II (−1 < µ < 0).

                                                          
1  In continuum mechanical framework systems with long range competing (antiferromagnetic) interactions
have been previously considered in the context of gradient models with alternating signs of higher
derivatives [MPT98] and in the fully non-local integral models with sign-indeterminate kernels [RT01]. In
both cases modulated structures have been obtained.
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4. Finite lattice

As we have seen in the previous section, the general solution of the “bulk”
equations (2.8) is defined up to four arbitrary real constants A, B, C and D. To specify
these constants, one should use four "boundary equations” (2.9-12), which play a role of
the boundary conditions. Below we show how the “boundary equations” can be applied
in the case of a generic soft device.

First notice that since the four applied forces satisfy the constraint of a global
equilibrium (2.5) the number of loading force parameters can be reduced to three and
simultaneously one can always eliminate the overall rigid displacement of the chain by
choosing A = 0.  A “natural” reduction of an arbitrary force system (f1, f2, f3, f4), to the triple
of independent components must respect the constraint of the overall equilibrium and be
able to distinguish between the self-equilibrated contributions and the overall applied
force. The application of the above constraints leads to the following result

f1 = (2µ + 1) F − F ′ − F ′′ ;   f2 = F+ F ′ + F ′′  ;   f3 = F − F ′  + F ′′  ;     f4 = (2µ + 1) F + F ′  − F ′′ .  (4.1)

 
This decomposition, which generalizes a construction from [TG64], is illustrated in Fig.
6. One can see that F ′ and F ′′  represent symmetric and anti-symmetric components of the
self-equilibrated loading device, while F is proportional to the total force.  As we show
below, the forces F, F' and F'' are directly associated with the coefficients B, C and D in the
representation of the general displacement field for the infinite chain.
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Fig. 6.  Elementary force systems responsible for the homogeneous component of the strain field and for symmetric
and anti-symmetric components of the boundary layers.
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We begin with the observation that the homogenous part of the position field can
be presented in the form

        ξξ
µ
µ

γ
~

1
1

2
+��

�

�
��
�

�

+
−+= FB , (4.2)

where

        
2

21 ξξ
ξ

−
= , (4.3)

is a characteristic of  the hyper-pre-stress and

         
2

~ 21 ξξξ
+

= , (4.4)

is the average of the two reference spring lengths. In the case of zero pre-stress ( 0=ξ ),
parameter ξ~ from (4.4) describes the lattice unit of an unloaded lattice.
                  From (4.2), we conclude that neither F ′  nor F ′′  affects the homogeneous part
of the position field. Instead, these two components of a generic loading device are
responsible for the formation of the boundary layers and internal modulations. Since,
according to (2.9-2.12), the hyper-pre-stress is equivalent to a symmetric self-equilibrated
system of applied forces, its presence will be felt outside the bulk deformation through
the renormalized of F ′′  only. More specifically in each of the main cases we obtain

•   µ < −1

                           
)2/cosh()1(4

~

1 N
FD

λµµγ +
′′

= (4.5)

    
)2/sinh()1(4 1 N

FC
λµµγ +

′
−= (4.6)

•   µ > 0

                                          
)2/cosh()1(2

2

~

2
)1(1

22
1)1(

1 N

FF

D

NN

λµµ
γγ

+

′′
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� −+−
′

�
�
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� −−

= (4.7)

                                         
)2/sinh()1(2
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2
)1(1

22
)1(1
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λµµ

γγ

+

′′
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= (4.8)
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•  −1 <µ < 0

                             
)2/cos()1(4

~

2 N
FD

λµµγ +−
′′

= (4.9)

                                                   ( ))cos(1 12
(

2
1 πµ N

m−+−≠  ,  1≤ m ≤
2
N ),

                               
)2/sin()1(4 2 N

FC
λµµγ +−

′
= (4.10)

                                                     ( ))cos(1 2
(

2
1 πµ N

m+−≠  , 1≤ m < 
2
N ).

 In the above formulas we introduced a renormalized force F~ ′′  which depends on the pre-
stress through the parameter ξ
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 In order to rewrite the expressions (4.2), (4.5-10) in terms of the original force
components, one needs to invert the force decomposition relations (4.1)
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 From these relations it is clear that F is responsible for the overall force 2143 ffff +=+

acting on the system. One can also notice that in the limiting case of large µ the NN
model with  f1 = f4  is recovered.

The equilibrium displacement fields for all three generic Cases I, II, and III are
illustrated in Fig. 7 where we present the simplest example of a body with zero external
forces and non zero hyper-pre-stress. More specifically, we assume that

                                              F=0, F ′ =0, ξ
µ

γµ
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�
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�

+
−=′′

1
4~F . (4.13)

The first two graphs exhibit monotone and oscillatory boundary layers, while the third
graph demonstrates the formation of an incommensurate sub lattice.



15

 0 10 20 30
k

-1

-0.5

0

0.5

1

xk
o

Case I

 
 (a)

 
 

 0 10 20 30
k

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

xk
o

Case III

 
 (b)

 

 0 10 20 30
k

-0.5

0

0.5

xk
o

Case II

 
 (c)

Fig. 7 Examples of the atomic positions for a hyper-pre-stressed finite chain in a reference configuration.  Here ξ = −5
×.10-3 and: (a) µ = −1.065 , Bo = 5 ×.10-2 ; (b) µ = 0.1, Bo = 4 ×.10-3 ; (c.) µ = −0.65, Bo = 5 ×.10-2 .



16

Localized boundary layers in the Cases I and III, can be observed for sufficiently
long chains when Nλ1 >>1. At fixed N , and µ approaching 0 or –1, the inhomogeneous
boundary layers broaden and propagate inside the chain. Thus, the Taylor expansion of
the solution around µ = −1 takes the form
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Here we dropped the term of the order  µ +1 −1, which corresponds to the overall
translation of the chain. As expected, the rest of the expansion matches exactly our
solution at µ = −1 (see (3.13).  Similarly, around µ = 0 we obtain
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Here we preserved the singular term of the order  µ  −1, which describes the
disintegration of our lattice into two sub-lattices.  This phenomenon reflects the fact that
for µ = 0, the NNN chain can be represented as two non-interacting NN sub-chains. As a
result it is unstable unless the loading is special ( meaning  f4 = f1  for even N or f3 = f1 for
odd N).  Up to this rigid motion, the displacement field accurately reproduces our special
solution (3.14).

As we have already indicated above, in Case II (−1 <µ ≤  0 ) the expressions for D
in (4.9) and C in (4.10) diverge at N critical (bifurcational) points

 
             ( ))cos(1)(

2
1 πµ N

q
c q +−=  (4.14)

 
 
where q is an integer,  1≤ q ≤ N . For q odd, the coefficient D diverges at )(qcµµ →  when
the chain is hyper- pre-stressed or if the loading is a symmetric; for q even, the coefficient
C diverges only when the chain is loaded asymmetrically. These special values of µ mark
the onset of the instability associated with the bifurcations of the periodic and
quasiperiodic equilibrium configurations; the exact nature of these bifurcations depends
on the nonlinear part of the model which we do not specify in the present study. The
distribution of the critical points on the plane (N, µ ) is illustrated in Fig. 8. Each point in
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this figure corresponds to an under-determined equilibrium configuration with the
number of atoms inside a “macro-cell” equal to qNc //2 2 =λπ . As ∞→N , the
distribution of the critical points µ 

c becomes dense in  (−1,0].
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N

µ

q = 1→

q = 2→

q = 3→

Fig. 8 − Distribution of the critical points µc  (4.14) as a function of N, and q. Configurations with  odd q are indicated
by the zeros,  configurations with even q - by the crosses.

 Due to the fact that the bifurcation points of the equilibrium problem correspond to the
points of degeneracy of the  Hessian matrix (in our case the matrix of elastic stiffnesses),
it is not surprising that the parameters cµ  play a prominent role in the analysis of stability
of the equilibrium solutions. Because of the rather technical nature of this analysis, it is
presented in the Appendix.
 
 
 5.  Reference configuration
 
 

 As an application of the general formulas obtained in the previous section, here
we consider a special case of an unloaded, self-equilibrated lattice with 01 =f , 02 =f ,

03 =f and 04 =f . This case is particularly interesting since it describes a reference
configuration of the chain, which is in general nontrivial (see Fig. 7).

 First notice that in the reference configuration
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 which is the limiting value of the lattice parameter away from the free surfaces. Other
coefficients 00 , DC  can be readily obtained from (4.5-10). Thus, for the non oscillatory
Case I (µ <−1), we obtain
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 The reference strains can now be computed explicitly
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 From (5.2) one can see that at large N  the particle spacing approaches the constant value

0B . One can also notice that if ξ > 0 (ξ < 0) the length of the springs is necessarily shorter
(longer) near the surface than inside the chain.

 Although such simple conclusions can not be reached for the oscillatory Case III
(µ >0), we can still estimate the deviation of the spring lengths from their homogeneous
value Bo. We obtain
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 for N even and
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 for  N odd. As it follows from (5.3, 5.4), these deviations are necessarily larger near the
free surfaces than inside the lattice.

Now, for the total length of the chain in the reference configuration we obtain
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at µ < −1 and
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at µ > 0. One can see, that for µ < −1 and ξ > 0 (ξ < 0), the relaxed chain is shorter (longer)
than the equivalent homogeneous lattice without the boundary layers. When µ > 0, the
chain with boundary layers is longer (shorter) for ξ > 0 (ξ < 0).  Now, since for 11 >>Nλ  we
can approximate
 

 tanh(λ1 N/2) ≈ 1−2 exp(− 2λ1N/2),
 
  the difference between the two lengths, mentioned above, behaves asymptotically as
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 for µ > 0. As ∞→N  or ∞→µ  the right hand sides of these expressions tend to a constant,
which means that for sufficiently large N,
 
 
                                                                    oo NBL ≈ .
 
 This, of course, agrees with the classical continuum theory, which characteristically
assumes that the reference configuration is homogeneous.
 

6.   The total energy

In this section, we calculate the total elastic energy of the equilibrium chain and specify
the contribution associated with the surface energy. We use the definition
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This expression can be rewritten as

                                                         W = Wo+W1 + W2 (6.2)

where
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is the energy of the reference state;
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is the linear coupling term and finally
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is the quadratic energy of the elastic deformation due to the external loading. To compute
the energy of a given equilibrium configuration we must substitute in (6.1) the values of
the equilibrium displacements kx . For determinacy, in what follows we consider the
chain in a soft device and use our explicit solution (4.2-10). According to the Clapeyron’s
theorem,

22WQ =

and therefore, whenever the elastic energy (6.2) is known, the calculation of the total
energy is straightforward.

We first notice that due to the condition of equilibrium, our linear coupling term
in the energy is equal to zero
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To compute two other terms -- the reference energy 0W  and the elastic energy 2W -- it is
convenient to make some changes in the representation of the general solution of the
equilibrium equations. For simplicity, we shall illustrate the method for the Case II ( −1<µ
< 0).

Let us rewrite the expressions for the reference particle configuration and for the
displacement field due to the applied forces in the common form

xk° = Bo sk + Xo sin(k λ2 + ϕo), (6.7)
uk   = B' sk + X'  sin(k λ2 + ϕ). (6.8)

Here X' , B' and ϕ are real constants satisfying

                                               B' = B − Bo, (6.9)

                                               C' = C − Co = X sin( ϕλ +22
N ), (6.10)

                                               D' = D − Do = X' cos( ϕλ +22
N ). (6.11)

The constants  Xo, and ϕo  characterizing the reference state can be obtained from

0)sin( 22 =+= o
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In order to obtain analogous representation for the equilibrium solutions in the other two
Cases I and III, we do not need to do additional computations. In Case I, it is sufficient to
replace in the final formulas

      12 λλ i→ ,
       ϕϕ i→ ,
       CC → ,
      iDD −→ .

In Case III, the replacement formulas are as follows

        12 λπλ i+→ ,
         ϕϕ i→ ,

      )2/sin()2/cos( NiDNCC ππ −→ ,
       )2/cos()2/sin( NiDNCD ππ −−→ .
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For simplicity in we provide the detailed calculations in Case II only. For the other two
main cases, the final expressions can be easily obtained by the above substitutions.

7.   The reference energy

In order to calculate the reference elastic energy Wo  in the Case II (  −1 <µ < 0), we
substitute  (6.7) into (6.3) to obtain
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Due to the mutual cancellations, the trigonometric sums in (7.1) can be computed
explicitly
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By rewriting (7.2) in terms of the original constants  00 , DC , we obtain
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Finally, after replacing Bo , Co and Do   by the corresponding expressions (5.1, 6.13, 6.13),
we obtain
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This is a desired formula for the reference energy. Notice that the first two terms
characterize the ground-state cohesive energy while the last term represents the
contribution due to the pre-stress.

                By using the replacement rules formulated in the end of Section 6, we can obtain

formulas for the reference energy in Cases I and III. Thus, for µ < −1 we get
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For µ > 0 we obtain

                    
�
�

�

�

�
�

�

�

�
�
�

�

�
�
�

�

�
�

�

	






�

� −−
+

�
�

�

	






�

� −+
+

−��
�

	



�

�

+
+

−+=

−
2

1
2

2

21

11 tanh
2

)1(1tanh
2

)1(1
11

12

)1()(

λλ

µ
µ

µ
ξα N

N
N

N

oo
o

N

wNwNNW

. (7.6)

At large N the energy in Cases I and III approaches a linear function. On the contrary, at
small N the deviations from the linearity are substantial, pointing towards a characteristic
size effect due to the overlapping of the boundary layers. In Case II the energy at large N
oscillates periodically around a linear function, exhibiting singularities near the
bifurcational points N (µc) (see (4.14)).

8.   Surface and fracture energies

In this section by subtracting from the reference energy of a finite body 0W  the
“bulk” part bW0 , we compute the surface energy of a chain with NNN interaction.  It is
natural to interpret the bulk energy bW0 as the energy of the uniform distribution of
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particles with the lattice parameter equal to 0B  (see (5.1)). To compute the bulk energy for
a finite chain we should take the energy of the shared bonds into account. We obtain
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By substituting the definitions of 1w , 2w  and using our ansatz ko
o
k sBx =  for the uniform

reference displacement field, we obtain
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Now the surface energy associated with each of the free surfaces can be computed from
the formula
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By using expressions for 0W  from the previous Section, and introducing the notation
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we obtain
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at µ < −1 and
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at µ > 0. The typical graphs of the hyper-pre-stress related part of the surface energy
o

sss EEE −=ξ  versus the number of particles N are presented in Fig. 9 at different values
of µ . For determinacy, here and in what follows we assumed that 0>α . One can see that
the short chains exhibit size effect. For sufficiently long chains sE  approaches a constant
value which would commonly be associated with the surface energy.
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Fig. 9 The dependence of the prestress-related part of the surface energy of a finite chain on the number of particles N.
(a) µ = −1.005 , (b) µ = 0.005 .

Specifically, in the limit Nλ1 ∞→  for both Cases I and III we obtain
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This expression can be interpreted as (one half of ) the total energy of fracture associated
with breaking the bond between the two adjacent half-spaces. This energy consists of two
contributions
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The first term o
sE  (see (8.4)) is the standard “pre-stress-free” surface energy. One can

expect this term to be positive.  The second term

                                       
�
�
�

�

�
�
�

�

+
+��

�

	



�

�

+
−=

µ
µ

µ
ξαξ

1
1

1
1~ 2

sE , (8.9)

which is entirely due to the pre-stress, is plotted in Fig. 10 as a function of µ . One can
see that it is positive in the non-oscillatory Case I ( 1−<µ ) and is negative in the
oscillatory Case III ( 0>µ ).
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Fig.10  The µ  dependence of the normalized surface energy for an infinite chain.

Let us consider the process of the creation of new free surfaces in more detail.
When the material on one side of the fracture plane is removed, the internal forces on that
surface are no longer balanced. The new equilibrium configuration has a region close to
the surface which is strained with respect to the bulk. To avoid this relaxation, one can
impose a system of forces preventing boundary layers from forming.  The net force must
be zero so this system of forces must be self-equilibrating. By using (5.1), it is not hard to
show that it amounts to applying a couple
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In terms of the generalized force components (4.1), we obtain
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The energy of a “free” surface with the forces (8.10) applied is equal to
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This energy has a cohesive contribution o
sE and another term due to the hyper-pre-stress

interaction with the deformation in the bulk. Now, if we remove forces (8.10), the
relaxation near the surface will follow, leading to the formation of the boundary layers.
The corresponding energy change can be computed by subtracting (8.12) from (8.7). We
obtain
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The right hand side of this expression represents the surface energy contribution
due solely to the boundary layers. Intuitively, one can expect that the presence of a
surface allows the system to lower its free energy by changing its configuration in a
region near the surface from its bulk configuration; as a result, free energy change
associated with the surface relaxation must be negative. Analysis of the formula (8.13)
shows that this is in fact what is happening in both Cases I and III.

9.  The elastic energy

Now we consider the elastic energy W2 which is entirely due to the external loading.
The computations here are exactly analogous to the ones in Section 7 with parameters ξ1,
ξ2, ow1 , ow2  dropped, and the constants (Bo ,Co , Do) replaced by ( B ′ , C ′ , D ′ ). Starting as
before with Case II ( 01 <<− µ ) we obtain
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For the other generic cases the formulas for 2W are analogous. Thus, in Case I (µ < −1)
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and  in Case III (µ > 0)
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The explicit value of the energy depends on the coefficients B ′ , C ′ , D ′  , which in turn
depend on the specifics of the loading device. As an example, consider a (particular) hard
device providing overall strain ε
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For these boundary conditions, the equilibrium problem can be solved explicitly (for
details see [C00]). In Case I  ( 01 <<− µ ) we obtain
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To calculate the energy 2W  we substitute the values of the coefficients B ′ , C ′ , D ′  , from
(9.5-7) into (9.2). After straightforward calculation we obtain
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Here we introduced the overall bulk modulus of an infinite chain

                                   E = 4γ (µ + 1) Bo = (α + 4γ) Bo (9.9)
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For other generic Cases II (−1<µ < 0)  and III (µ > 0)  the expressions for the energy are
similar. The dependence of the energy 2W  from (9.8) on the number of particles is
illustrated in Fig. 11. One can see that at large N, the energy is proportional to the number
of particles as in a conventional continuum theory; this assumption leads to a classical
scaling for the energy of a thin plate. However, at sufficiently small N, there is a
pronounced size effect characterized by a nonlinear and non-monotone dependence of the
energy on N.  This observation suggests that for ultra-thin plates with the thickness of the
order of internal length scale (several atomic distances in our case), the classical scaling
assumption neglecting interaction of the boundary layers needs to be reconsidered.
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Fig. 11 The elastic part of energy of a chain as a function of the number of particles. Here µ = −2 , Bo = 10-4.

The loading device (9.4) is not the only non-local generalization of what is
conventionally called hard device in the local theories. Thus, one can consider a special
mixed device with the imposed overall strain ε  and zero “long range” forces f1 and f2

             εo
N

oN Buu 2=−= ,            f1 = f2 =0. (9.10)

For the boundary conditions (9.10) the constants B ′ , C ′ , D ′ . in Case I take the form (see
[C00] for details)
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After tedious but straightforward calculations we obtain the expression
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Notice that (9.14) has the same limit as (9.8) at large N but behaves differently at small N.
These non-Saint Venant’s deviations which we study in more details in the next section
are characteristic of the theories exhibiting size effect.

10.   Elastic moduli

To illustrate the difference between the loading devices (9.4) and (9.10) in this
section, we compute the dependence of the corresponding effective overall elastic moduli
of the chain on the number of particles.  To define the modulus, we first introduce the
elastic energy density
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Then, the elastic modulus can be defined as
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The final expression can be written in the form

                                                            ))(1( NEE δ+= . (10.3)

Here E  is given by (9.9) and correction factor )(Nδ  depends on the specifics of the
loading device  disappearing in the limit ∞→N . It the case of the hard device (9.4) and
µ < −1 , we obtain
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Similarly, for the hard device (9.10), the computations give
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The behavior of the function )(1 Nδ and )(2 Nδ  is illustrated in Fig.12. At small N we again
observe a characteristic size effect: the dependence of overall elastic modulus on the
length of the chain. We notice that the qualitative behavior of the functions )(1 Nδ and

)(2 Nδ  is similar with both expressions overestimating at small N  the value of the elastic
modulus for the infinite chain.
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Fig.12. Behavior of the function )(1 Nδ and  )(2 Nδ  in the Case I (with µ  = −2) .

The fact that the modulus gets higher as the specimen thickness tends to zero is in
agreement with the findings of [W92] and seems to be supported by the experimental
observations (e.g. [L99]). The results of this section suggest that the elasticity of the
ultra-thin objects may deviate substantially from the bulk elasticity of the material. This
is a natural consequence of the fact that at the atomic sizes surface effects dominate bulk
properties.
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11. Concluding remarks

In this paper we constructed a complete set of static equilibrium solutions for a
finite discrete chain with generic linear interactions of both nearest and next to nearest
neighbors. The behavior of a linear chain with the interaction of the nearest neighbors
only is trivial: the particles are always equidistant. By introducing the NNN interaction,
we were able to capture some of the non-locality of the non-one-dimensional discrete
models. The main focus, however, was on the effects of the hyper-pre-stress. Hyper-pre-
stress appears in the model if NN and NNN springs have incompatible reference lengths.
In this case the two interactions, favoring different spacings compete, producing
configurations, which are internally stressed even in the absence of the applied forces.

The two main effects of the nonzero hyper-pre-stress are the surface relaxations
and the internal modulations, which may be commensurate or non-commensurate with
the reference lattice. Contrary to most of the previous work, our emphasis was on a
description of a finite chain with the interacting boundaries.  In particular, we studied
effects of non-local loading and gave a detailed solution of the equilibrium problem for
the case of a generic soft device. As a part of the solution, we singled out combinations of
applied forces responsible for bulk deformation and specified self-equilibrated force
systems contributing to the boundary layers only.

When the chain contains sufficiently large number of particles, the boundary
layers around the free surfaces become autonomous and one can define the corresponding
excess energy. Our model allows one to compute this energy explicitly and to separate
the conventional contribution, due to the background cohesion from the contribution due
to the hyper-pre-stress. We show, that the cohesive part of the surface energy is always
positive, while the hyper-pre-stress related contribution may have different signs
depending on the ratio of elastic moduli characterizing NN and NNN interactions. One of
the important conclusions is that for an object with the size of the order of the internal
length scale, the effective surface energy can no longer be considered independent of the
size and the shape of the body; one can expect the internal length to be on the order of 10
lattice spacings. Our analysis of the size dependence of the elastic modulus suggests, that
due to the interaction of the boundary layers, the ultra-thin bodies will exhibit anomalous
stiffness, in tension, torsion and bending.

One important question, which could not be fully addressed in harmonic
approximation concerns with the stability of the equilibrium configurations. Previous
analyses of the linear stability for the infinite chain with NNN interactions have lead to
the well known instability conditions { 04,0 <+< γαα } (e.g. [GW62, 65, K82]). It is not
hard to see that the application of these inequalities results in the instability of all
configurations associated with our Case II ( 01 <<− µ ). For a finite chain, the
computations presented in the Appendix show that the domain of instability is strictly
inside the above intervals which means that some of the Case II solutions are stable (the
ones with 0)(max4,0)(min4 >−>− qq c

q
cq

µγαµγα ).  On the other hand since the

instability can not be judged based on the linear part of the model only, the precise
conditions of stability will depend on the nonlinear terms neglected in the present study.
In fact, by adding to our energy in Case II quartic terms (guaranteeing sufficient growth
of the energy at infinity), one can obtain stable periodic microstructures even in the
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infinite domain (e.g. [J88]). Stable two-dimensional quasi-periodic microstructures in the
infinite nonlinear lattices have also been studied in the literature (see for instance
[CMV96]).

Another interesting question, which has not been addressed in this paper is related
to the derivation of an adequate continuum approximation for the NNN model with the
hyper-pre-stress. The standard long wave approximation will work only in the range of
parameters where the boundary layers are sufficiently wide and the oscillations on the
scale of the lattice are absent; this means our Case I with µ  close to –1. The main
difficulty arises from the necessity of adding to the bulk energy appropriate null-
Lagrangians responsible for the formation of the boundary layers. This issue deserves a
separate analysis and will be considered elsewhere.

Our results may have some bearing on the criteria of failure in solids. Thus we
show that when a chain with a hyper-pre-stress is being broken, two quite different
phenomena are taking place simultaneously.  First, the boundary layers are created with
the corresponding energy expenditure solely due to the hyper-pre-stress. Second, the two
freshly formed surfaces need to be separated and now the corresponding work has
basically nothing to do with the hyper-pre-stress. The above two-stage scenario suggests
an idea that the dependence of the surface energy on the separation of the crack surfaces
may be bi-modal with two plateaus: the smaller one corresponding to the energy of the
boundary layers and bigger one corresponding to the energy of the ultimate de-cohesion.
This idea, formulated as an assumption of the non-concavity of the surface energy, has
been recently used in [DT01] to simulate fractured configurations where several micro-
cracks (or pre-cracks)  coexist with a developed  macro-crack.

In the context of fracture mechanics, it is also of interest to study directly the
behavior of a discrete model with the nonlinear interaction of the Lennard-Jones type:

)()()( 21 zwzwzw == . For close to homogeneous equilibrium configurations, our linear
analysis can provide a good approximation to the nonlinear solution. To insure the
agreement between the two models, the parameters of the harmonic approximation α , γ ,

1ξ , 2ξ , 0
1w , 0

2w  must be chosen compatible with the nonlinear potential )(zw . By cutting
a chain sufficiently far away from the external surfaces one can see that the quasi-
homogeneous particle spacing B can be found from the equation fBwBw =′+′ )(2)( , where

4321 fffff +=+=  (cf. 2.13).  Then by linearizing the nonlinear potential around the
homogeneous states with the spacings )( fB  and )(2 fB , one obtains the following
parameters of the “tangential” model

).2(),(

,
)2(2

)2(
,

)(
)(

,
)2(2
)2(

)2(,
)(2
)(

)(

21

2
0
2

2
0
1

BwBw

Bw
Bw

a
Bw
Bw

a

Bw
Bw

aww
Bw
Bw

Bww

′′=′′=

′′

′
−=

′′

′
−=

′′

′
−=

′′

′
−=

γα

ξξ

In particular the non-dimensional parameter
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can clearly be in any of the three generic domains. Notice also that in the present setting,
the hyper-pre-stress ξ  is generically different from zero
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The linear approximation obviously fails when one approaches the bifurcation points
(4.14) indicating the onset of instability. The analysis of the associate nonlinear model
can reveal the structure of the bifurcated branches leading to fractured lattice
configurations. Partial theoretical results concerning the behavior of an infinite NNN
system with Lennard-Jones potential can be found in [BG00]; selected numerical
computations for a finite chain were reported in [TB96]. In spite of these efforts and the
fact that the associated NN problem is thoroughly studied (e.g. [T96, BGD99]), the
general bifurcational diagram for the Lennard-Jones NNN problem is far from being
known.

In a slightly different but related context of the discrete theory of phase
transitions, the introduction of the NNN interaction has been shown to eliminate the
degeneracy of the simpler NN model through effective introduction of the interface
energy (e.g. [RT97, PT00]). The origin of this interface energy is the structural relaxation
around the internal surfaces (phase or twin boundaries). Based on the analogy with the
present work, one can speculate that at sufficiently small scales the effective interface
energy will strongly depend on the separation of the interfaces. This may explain, for
example, why nano-scale particles of smart materials do not exhibit a characteristic
microstructure.
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Appendix

The  equilibrium configurations of a chain in a soft device, studied in the main body of the paper, satisfy
the equilibrium and boundary conditions 0/ =∂∂ ixP , where P is the total energy of the system (see
Sections 3, 4). To study the linear stability of the equilibrium solutions one needs to analyze the positive
definiteness of the corresponding Hessian matrix ji xxP ∂∂∂ /2 .  In terms of the moduli α  and γ  this

)1()1( +×+ NN  matrix takes the form
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The principal minors of this matrix satisfy the following  equations (see a related case in [WG65])
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It is not hard to see that the first two equations provide “initial conditions” for the main recurrent relation
for k∆ ; the value of N∆  can be computed after all other principal minors are known. The fact that the
minor of rank N+1 is equal to zero can be linked to the translational invariance of the chain in the soft
device (and related arbitrariness of the constant A from Section 3).
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A general solution of the main difference relation for the minors can be written as a combination
of  the monomials  z k , with  z  being a root of the following  characteristic equation

0)2( 22 =++− γγα zz .

If 0≠γ  (NNN interactions are present) the two roots of  the characteristic equations can be written in the
form 4,32,1 ργ=z , with 4,3ρ    given by  (3.6). Now, by substituting the “initial data” for the minors of
rank one and two into the general solution one obtains the following explicit relations

•   −∞ < µ < −1 (Case I)
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•    −1< µ < 0 (Case II)
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•   0 <µ < +∞  (Case III)
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Here parameters λ1 > 0 and λ2∈ ( 0, π ) are the same as in Section 3. From these expressions for the
principal minors we observe that the stability conditions depend on both material parameters α  and γ ; we
recall that the equilibrium configurations depend only on their non-dimensional ratio µ .

The analysis of Cases I and III is rather straightforward. Thus, in Case I all minors are positive if
and only if 0<γ .  This generates stability domain { 0<γ , 04 >+ γα } and instability domain { 0>γ ,

04 <+ γα }. Similarly, in Case III all minors are positive if and only if 0<γ . This produces { 0>γ ,
0>α } as stability domain and { 0<γ , 0<α } as  instability domain. The situation is more subtle in Case

II, which, for infinite chains turns out to be completely unstable.
In Case II one has to consider two possibilities: 0>γ  and 0<γ . If  0>γ  the principal minors

are positive if and only if
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Here for every 1≤ k ≤ N,  parameters qk span all positive integers compatible with the constraint λ2∈ ( 0, π ).
One can show that the above admissible intervals are incompatible which means that the corresponding
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equilibrium states are unstable. As a result we obtain another instability domain { 04 >+ γα , 0<α }. If
0<γ ,  the principal minors are positive if and only if

πλπ

πλπ

N
q

N
q

Nk
k

q
k

q

NN

kk

122

11,
2/1
12

2/1
2

2

2

+
≤≤

−≤≤
+

+
≤≤

+

where again for each 1≤ k ≤ N the positive integers  qk  must be compatible with the constraint  λ2∈ ( 0, π ).
The largest admissible domain in this case is: N/0 2 πλ << which in terms of µ  is equivalent to the
following stability conditions
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Here the function )(qcµ  is given by (4.14). By rewriting above conditions in terms of α  and γ  we obtain
{ 0)(min4 >− qcq

µγα ,  0>α } as a stability domain and { 0)(min4 <− qcq
µγα , 0>α } as an instability

domain.
The complete characterization of the stability domains requires consideration of the limiting cases

µ = −1 and µ = 0. In the first case (µ = −1 ) we obtain
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which means that for stability it is necessary to have 0<γ  . In the second case (µ = 0), we get
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 meaning instability if 0>γ  and  neutral stability if 0<γ . The case 0=γ  (NN chain) has to be treated

separately; in this case k
k α=∆  for Nk ≤≤1 and stability requires 0>α .

 By collecting all stability intervals indicated above, we obtain the following combined conditions
of stability

                                  { 0)(min4 >− qcq
µγα , 0<γ } and { 0>α , 0>γ }.

If we now recall that 0)(max =qc
q

µ , we can rewrite these conditions in the following form

                                            { 0max4,0min4 >−>− cc µγαµγα }.                                                    (*)

We remark that in particular this means that the chain is unstable for )(max)(min qq c
q

cq
µµµ << .

Conditions (*) can be compared to the corresponding conditions for the infinite chain

                                                                { 0,04 >>+ αγα }                                                                   (**)
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Since 0)(max)(min1 ≤<≤− qq c
q

cq
µµ , one can see that domain (*) is larger than domain (**), which

reflects the obvious fact that a finite subsystem is more stable than the whole infinite system. By using the
explicit relation for )(qcµ  (4.14) we can compute stability limits for the chain of arbitrary length. In
particular, for the shortest NNN chain with N=3, conditions of stability (*) reduce to 0,03 >>+ αγα .
The substantial stretching of the stability domain in this case comparing to (**) illustrates the enhanced
stability of ultra-thin objects.

It is not hard to see that due to the broadening of the class of admissible variations, the stability
conditions for the soft device will also be sufficient for the cases of hard and mixed devices. What is more
interesting, conditions (*) are also sufficient for those devices if parameters µ c are taken to be bifurcational
points associated with the hard or mixed devices, accordingly. The fact that )(min qcq

µ  and )(max qc
q

µ

give the lower and upper boundaries for the domain of instability in the µ -space follows from the
observation that in both points the minimal eigenvalue of the Hessian matrix becomes negative. To prove
that (*)  represent exact stability conditions in those cases one  needs to use the fact that additional
constraints can only increase the value of the minimal eigenvalue and that its dependence on elastic moduli
α  and γ  is continuous and monotone. All these statements can be checked without difficulty.


