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Abstract

To account for surface relaxation in ultra-thin films, we consider the simplest one-dimensional
discrete chain with harmonic interactions of up to second nearest neighbors. We assume that the
springs, describing interactions of the nearest neighbors (NN) and next to nearest neighbors
(NNN) have incompatible reference lengths, which introduce a hyper-pre-stress and results in a
formation of the exponential surface boundary layers. For a finite body loaded by a system of
(double) forces at the boundary, we explicitly find the displacement field and compute the
energies of the inhomogeneous stressed and reference configurations. We then obtain a simple
expression for the hyper-pre-stress related contribution to the surface energy and show an unusual
scaling of the total energy with the film thickness. For ultra-thin films we report an anomalous
stiffness increase due to the overlapping of the surface boundary layers. Implications of the micro
level hyper-pre-stress in fracture mechanics and in the theory of non-Bravais lattices are also
discussed.
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1. Introduction

The growing demands of modern industry require an understanding of the
mechanical behavior of nano-meter size objects. An extreme miniaturization of the
mechanical structures makes classical continuum models incomplete for their adequate
description mostly because the associated size effects can no longer be neglected. As an
example, one can mention new technologies utilizing ultra-small actuators and sensors,
where a satisfactory account for the microscopic surface boundary layers is essential.
Here we are using the term ultra-small to identify objects where the bulk and the surface
contributions to the elastic energy can not be considered independently.

As a first step in the direction of understanding the size effect in ultra-thin
mechanical structures, here we study a discrete model accounting for surface relaxation
in a linear solid. The relaxation is localized in the areas adjacent to the unloaded free
surfaces and is due to the presence of the broken bonds; the size of the corresponding
layers is measured in the units of a single atomic cell. Conventional discrete models
limited to the nearest neighbor (NN) interaction fall to capture these effects and we,
following some previous work, employ a model with the simplest next to nearest
neighbor (NNN) interaction.

The object we model can be viewed as an infinite crystalline plate. The relaxation of
the atomic layers paralel to the surface produces a nontrivial inhomogeneous
configuration: lattice spacing normal to the surface of the first few atomic layers differs



from the spacing of the deep layers. The structural relaxation manifests itself through the
diffuse x-ray diffraction and broadened phonon scattering profiles (e.g. [GMHG6L,
HLS92]). To secure the presence of the boundary layers at the free surfaces, we assume
that the effective springs, describing NN and NNN interactions have incompatible
reference lengths which introduces a mismatch or pre-stress. As a result, the
macroscopicaly unloaded crystal in equilibrium will not be free of micro-stresses
generated by an effective system of self-equilibrated forces and self-equilibrated couples.
In view of the fact that the corresponding couples are “invisible’ at the macroscopic
level, the resultant pre-stress does not fit the definition of a standard pre-stress of the
classical continuum elasticity theory and we use the term hyper-pre-stress to distinguish
the two. Our type of pre-stress plays an important role when the micro-scales are
important, for example when the crack opens inside the solid and the associated
relaxation layers appear in the areas adjacent to the newly formed free surfaces. For
sufficiently closely located free surfaces, as in the case of an ultra-thin film or atip of a
crack, the relaxation strain fields will overlap, producing a nontrivia energy and
effective stiffness dependence on the external length scale. The goa of this study is to
make a simple quantitative model of these effects allowing one, for instance, to study the
effective surface energy scaling with the size of the body.

Given that in our setting, the forces and displacements vary only in the direction
normal to the boundaries of the plate, the problem is essentially one-dimensional. In fact,
we assume tacitly that all relaxations are longitudinal in character, i.e. only interlayer
spacings change when we approach the surface of the body. The simplest 1D atomistic
model capturing these effects is a set of crystallographic planes joined by harmonic NN
and NNN springs with incompatible reference lengths and distinct stiffnesses. Actualy,
the linear elastic constants of NN and NNN springs can even have opposite signs which
may be the case when the primary interatomic potential is non-convex. The introduction
of the NNN interaction in the one-dimensional theory may also be viewed as an attempt
to mimic long range effects of the simpler NN models in two and three dimensions (see
discussion in [P91]).

Within the framework of a one-dimensional model with compatible reference states,
discrete chains with NNN interactions have already been investigated in the literature,
originally, in the context of validating continuum theories with couple-stresses. Thus,
Toupin and Gazis [TG64] were probably the first to study surface puckering in finite
crystals with NNN interactions produced by a self-equilibrated system of surface couples.
In order to describe more adequately large relative displacements of the particles near the
free boundary, Gazis and Willis [GW65] considered a semi-infinite NNN chain with an-
harmonic forces localized in a few atomic layers near the free surfaces. Mindlin [M65]
extended the above approach to the case of third nearest neighbors athough in much less
detail. Conditions of linear stability for an infinite crystal with NNN interaction were
obtained in [GW62, GW65, K82]. More recently, [HLS92] re-derived some of these
results and extended the anaysis of stability to the infinite chains with third nearest
neighbor interactions. Without a reference to the boundary layers, an infinite chain with
non-linear NN and NNN interactions (and zero pre-stress) was studied in [JT82, J91] asa
prototypical model of stable incommensurate crystal phases; two dimensional models of
this type were considered in [CMV96]. Some numerical results for a finite nonlinear



NNN chain were obtained in [TB93] where the emphasis was on fracture and phase
transitions while surface relaxation was artificially suppressed.

A mismatch between the reference lengths of the NN and NNN springs has been
recently introduced in Lee et al. [LSD99]. Their analysisis similar in focus to ours, albeit
the fact that instead of dealing directly with the discrete model, the authors studied along
wave quasi-continuum approximation with higher strain gradients. The main price of the
simplicity associated with such an approximation is that important effects carried by the
discreteness of the original problem are left out. Thus, one can show that the approximate
formula for the surface energy obtained in [LSD99] is valid only in the narrow range of
spring stiffnesses and outside this range may differ considerably from the exact result
obtained in the present paper. Another drawback of the quasi-continuum approach is that
such a description is inherently non-unique. For example, a quite different quasi-
continuum model with higher gradients and surface boundary layers was studied earlier
by Mindlin [M65] who derived it from a discrete theory involving interaction of third
neighbors. Mindlin’s model was employed by Wu [W92] who computed an apparent
Young's modulus for an ultra-thin plate and showed that it may be much higher than the
one obtained for a continuum 3D body of the same geometry. We notice that the surface
boundary layers have also been studied in the context of purely phenomenological
theories with higher gradients (e.g. [C61, T63, VS99]) as well as in the framework of
strongly non-local continuum models with integral spatial “memory” (e.g. [E92, K82,
FM9g]).

In the present paper, by assuming that the effective springs describing NN and
NNN interactions have arbitrary reference lengths and arbitrary bulk moduli, we study a
genera discrete problem for a finite chain loaded by generic forces. Depending on the
magnitude of the ratio of the elastic moduli, we obtain three types of solutions to the
“bulk” equations: homogenous with monotone exponential boundary layers at the free
surfaces, homogenous with oscillations superimposed on exponential boundary layers,
and inhomogeneous (periodic), which describe commensurate and incommensurate non-
Bravais lattices. The solutions are simple enough and as an example we present the
detailed calculations for a finite body in a soft device. Using our equilibrium solutions,
we explicitly compute the surface energy and identify a contribution due to hyper-pre-
stress. In the case when the exponential envelopes of the boundary layers overlap and the
surface cannot be naturally separated from the bulk, we observe a strong dependence of
the effective eastic stiffness on the external dimension of the object. In the concluding
part of the paper, we argue that the consequences of the localized relaxation may also be
significant outside the thin film theory; for instance, in fracture mechanics where the
radius of curvature of the free surface at the tip of the crack istypically of the order of the
thickness of our boundary layers. Other relevant physical phenomena include phase
transitions and twinning, where the long-range interactions contribute to the formation of
the boundary layers near the internal surfaces. The exponential interaction of these
boundary layers plays an important role in the selection of the scale of the microstructure.

The paper is organized as follows. In Section 2, we formulate our discrete model
and introduce the notion of hyper-pre-stress. In Section 3, we classify equilibrium
solutions for the infinite chains and distinguish homogeneous configurations with
boundary layers type growth from the periodic regimes describing multi-lattices. In
Section 4, we explicitly solve the “boundary equations’ for a finite chan in a



(generalized) soft device. In Sections 5-8, we describe the inhomogeneous reference
configuration, compute the effective surface energy, and study its dependence on the
hyper-pre-stress and the ratio of the NN and NNN elastic moduli. In Sections 9-10, we
study the size dependence of the surface energy and effective elastic moduli for the ultra-
thin objects. In the final Section, we summarize our findings and mention some open
guestions. The more technical stability analysisisleft for the Appendix.

2. Themodd

Consider a one-dimensional lattice with N +1 identical material particles connected
by N elastic springs. We label the x-coordinate of the k™ particle by X, where 0 <k<N.
We then denote by x;, the value of the coordinate X, at rest (in the unloaded chain), and

introduce el astic displacements from the reference configuration

We notice that the reference (rest) configuration x? may not be homogeneous.

Suppose that each particle in the interior of the chain interacts symmetrically with
four other particles. Two of them are its nearest neighbors and the other two are its next
to nearest neighbors (see Fig. 1).

Fig.1 One-dimensiona chain with next to nearest neighbor (NNN) interactions in a soft device represented by the four

forces: 1, f,, 15, 14.

The elastic energy of the chain is defined as a sum of two terms

N -

N 1
W(Xp-- Xn) = kzlel(Xk ~Xg-1) * kzzlwz(xk+1_xk—1)' (2.1)

In order to be able to obtain analytical results we suppose that both functions w, and w,
are quadratic. Specifically, we introduce



w(z) = %(z— £ )2+ WP (2.2)
asthe energy of the NN interaction and
wo(z) = L(z- 26,)°+ w3 (23)

as the energy of the NNN interaction. In the formulas (2.2), (2.3) the constants a , y are
elagtic stiffnesses of the springs; ¢, , 2&, are the natural spring lengths, andw,°, w,° are the

corresponding reference energies. In the generic case when &, # &, the two interactions
compete and the springs are pre-stressed even in the absence of the applied |oads.
The energy (2.1) can be viewed as a harmonic approximation for a Lennard-Jones

chain; the constants o, y, &, &, w°, and w,° can then be considered as adjustable

parameters (see Section 11 for an explicit identification). In what follows, we will present
the most genera case and assume that the elastic moduli o and y may take arbitrary
values, including the situations when they may be of different signs.

Contrary to the case of an NN chain, where only two boundary conditions are
necessary, the NNN model requires four boundary conditions. In fact, the two missing
bonds on a free surface on each side have to be replaced by either given forces or by the
prescribed displacements. The following three loading devices will be relevant for our
anaysis.

1. Soft device. The external work takes the form

Q(Xos X1, Xy -1y Xn) = fauy + fauy o1 = fruy = fou (2.4)

where we assumethat f,, p=1....4 are given constants satisfying the overall equilibrium
condition

f4+f3:f1+f2:: f. (25)
2. Hard device. The particle positionsx,, x;, xy-1, and xy are prescribed.
3. Mixed device. Only the positions of the boundary particles x, and x, are prescribed.

The “non-local” interaction with the loading device is modeled by the given forcesf,
and f; applied to the 2™ and the N - 1% atoms, producing the work term

QX Xy-1)=fauy_1 — fou. (2.6)

After the work of the loading device is specified, the total energy can be written as



P=W-Q, 2.7)

and the equilibrium equations can be obtained from the conditions oP/adx, =0. Inthe

case of a soft device thisyields the system of N + 1 equations which can be divided into
two parts. First, we obtain the "bulk" equations

0= (X1 + X-17"2X% )+ ¥V (Xeuo + X2 = 2% ) (2-8)

where 2 <k< N -2. These equations must hold for the N-3 inner atoms that interact with
their two NN and two NNN neighbors.

The four boundary atoms will also interact through forces with the loading device,
providing four "boundary equations”

0=a(X; = Xo) + y(X, = Xo) = (fy+aé+2y¢,) (2.9)

0= a(Xy+Xo=2X%;) + y(Xg=X1) = (f,+2y&,) (2.10)
0= a(Xy+Xyn_p—=2Xyn_1) + Y(Xnyog =X nog) + (f3+2)E&5) (2.11)
0=a(Xy_g = Xn) + V(Xnoo = Xy) + (fa+aé+2y &) (2.12)

Equations (2.8-12) show that the global equilibrium condition (2.5) is necessary and that
the pre-stress can be interpreted as a self-equilibrated system of applied “forces’. The
appearance of boundary layers in the case ¢, # ¢, can be attributed to the fact that these
internal “forces” are compatible with the homogeneous distribution of spring lengths only
if &, =2¢&, Findly we remark that the system of equations (2.8) can be formally
“integrated” to give

(X1~ % =6) TV (Xa2 =% —25)+Y (X1 X1~ 2)=1, (2-13)

which is a statement that the total force (2.5) is constant throughout the length of the
chain.

For the case of a hard device, equations (2. 8) will still hold, while instead of
(2. 9-12) one has to prescribe the boundary displacements ug, uy, uy4, and uy . In the case of
amixed device, two displacements must be prescribed and two “ boundary” equations are
to be solved.

3. Solution of the " bulk” equations

Since our linear system (2.8) has constant coefficients, we can use standard methods
(e.g. [LL59]) to obtain an explicit solution in the form



X = Wi(k) prf+ Wo(k) ps+Wi(k) ps+W,(k) ph. (3.1)

Here p,, q=1...4, are complex roots of the characteristic equation

ypt + apd —2(a+y)p2+ap+y:0. (3.2

If the root p, has multiplicity n, > 1, with 3'n, =4, then W, (k) is the associated complex

polynomial of the order n,-1.
The characteristic equation (3.2) has a specia structure and one double root is
straightforward

P12 = 1. (3.3

The associated position field is linear
X, = A+ Bs, (3.4

with A and B arbitrary constants. Here we introduced a new (centered) labeling of the
springs

Sk = k - % .
so that A in (3.4) may be associated with the rigid displacement of the center of the chain.
The latter may or may not coincide with the location of a particle.
The displacement field (3.4) describes a uniform distribution of particles in
accordance with the Cauchy-Born hypothesis and provides a general solution for the NN

chain (y=0). With NNN interaction added, the characteristic equation (3.2) has two

other roots, which can aso be found in an explicit form. First, introduce the ratio of the
elastic moduli describing NN and NNN interactions

_a
p L (3.5)
Then
P3a=—(2u+1) = 2\ u(u+1), (3.68)
for y<-1and x>0, and
P3a=—(2u+D) £ 20 J-p(u+D), (3.6b)

for -1 < u<0. Notice that in both cases, p;= p,* . Thelocation of the roots p; andp, on
the complex plane and their dependence on pisillustrated in Fig.2 .



Fig. 2 — Thelocation of the nontrivial complex roots p3; and p,4 of the characteristic equation (3.2) at different values of
the parameter (. The arrows indicate variation of the roots as i increases from —co to +oo .

Asit follows from Fig.2 we have specified parameter p, by the additional conditions
Imp, 20, Cos2 1. It will aso be convenient to introduce two other real parameters,

A1 =0 and A,0[ 0, 1], by the formula
P3=exp(A +iAy).

Notice that A;, describes exponential variations of the atomic position field while A, is
responsible for the bounded periodic modulations.

In the representation of the general solution of the bulk equations different
possibilities arise depending on the value of x, including three generic cases and two
limiting cases, =0 and u= -1, corresponding to the situations with a double root ps 4= -1
and a fourfold root p, , 5 4=1, accordingly. Below, we give a complete list of solutions.
Let Cc and D be two arbitrary real constants. Then, for the generic cases we obtain:

e —w<u<-1(Casel)

X, = A+Bs, +Ccosh( A;s, )+ Dsinh(A;s, ) (3.7)
where
A =in(-@u+1) + 2D ), r=0. (3.8)

(To establish relation between (3.7) and (3.1) we notice that (3.7) can also be written as
x = A+Blk -1 )+ (SN ol ot + (2N of o}

and use the identities coshA, = —(2u+1) andsinh A, = 2\/u(u+1));



e -1<u<0(Casell)

X, = A+Bs, +Ccos( A,s, ) +Dsin( A,s, ) (3.9
where
M=0, A, =ag(-(u+1) + 2 = u(u+1) |o(0, m), (3.10)

which can aso be written as cosA, =-(2u+1) and sinA, =2,/-ulu+1);

e O<u<+n (Caselll)

%, = A+B's, +(-D)¥[Ccosh( A;s, )+ Dsinh(A,s, )] (3.11)
where
/11=In(2/.1+1 + 21/y(u+1)),A2=n (3.12)

which can also be written as cosh A, =2u+1 and sinh A, = 2,/u(u+1).

In the non-generic cases we obtain

° 'U :—1
X =A+Bs, +Cs +Ds’ (3.13)
where 1;=1,=0,
. y :O
X = A+Bs +(-)¥[C+D s,] (3.14)

Wha’eAlzo,Azzn.

Each of the above position fieldsis a sum of a uniform particle distribution and an
inhomogeneous component. The character of the inhomogeneous part of the solutions in
Cases| and Il isdifferent from the onein Case 1.

As it follows from (3.7), (3.11), in the generic Cases | (u<-1) and Ill (u>0) the
inhomogeneous component of x, is exponential, which suggests formation of the
boundary layers in a finite chain: the exponential "tails" will be localized near the
boundaries (surface relaxations) with the “interior" particles distributed amost
homogeneously. The number of springs in the boundary layersis of the order n=1/1; ; for
the notion of a boundary layer to be adequate, we need N >>n. Aswe show in Fig. 3, n tends to
zeroas u — o (NN model) and tends to infinity in the special caseswhen ¢ - -1 and u - 0,
meaning that the boundary |ayers spread throughout the chain.



Case Il

10

Fig.3. The number of springsn inside the boundary layers as afunction of x4 inthe Cases| and Ill.

In Case Il the boundary layers will contain oscillations at the scale of the lattice
modulated by an exponential envelope. By rearranging the termsin (3.11) we can rewrite
the corresponding solution as

k
X, :{“(;1) 1[A+ B s +Ccosh( A, s) +Dsinh( A, s,)]
(3.15)

k
{%1 [A+Bs, —Ccosh( A, s.)-Dsinh( A;s, )|

which reveals a superposition of two structures each analogous to (3.7).

In the generic Case Il (-1 < u <0), the solution behaves quite differently and
instead of exponential boundary layers, we obtain periodic configurations which may be
described as a succession of stretched and compressed zones (see Fig. 4).

k2 k1l k  k+t1 k+2 +3  k+4 k+5 k+6 +7
| | | | | | | | | -

o o o o o o o o o o >
I er I er I er I er I er I er I \H I \H I \H I \H I
i .
|
|
|
|

x
x~

o o a AN o o o o >
O N\ N\ R4 O U N\ I =
- - . — . - - - > —

Fig. 4 A typica modulated equilibrium configuration in the Case Il (-1 < <0) representing anon-simple lattice.
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Spatial modulations of the particle density in Case Il result from the presence of
competing interactions'; the “frustrated” system produces non-simple (or non-Bravais)
lattice which may be either commensurate or incommensurate with the periodic reference
state. If the period of the inhomogeneous component of the displacement field
n=21A=plq is a rationa number, which takes place at u= ~1[1+ co(2q/ p)], the

minimal unit cell is formed of g particles. If the period is irrationa, the long-range
periodic order isincommensurate with an imaginary periodic lattice.

The u - dependence of the number of springs comprising a period of modulations
is shown in Fig. 5. As we see, around px=-1 only very long chains can exhibit sub-
lattices. On the contrary, around =0 the period approaches 2 atomic distances. In the
former case the sub-cell isinfinite, while in the latter case it is formed exactly of 2 atoms.
The last observation is in agreement with the behavior of the transitional non-generic
solution. Thus, a p=0, in spite of the degeneration of the exponential "tail", the
decomposition analogousto (3.15) is available

. =[1+(2_1)kJ[A+C+(B+D) o] + [1'(;1)kJ[A-c+(B—D) 5 (3.16)

The position field (3.16) can be viewed as a superposition of two displaced homogeneous
lattices, forming an elementary non- Bravais lattice (2-lattice).

50

45 B

40 B

35 B

30 B

20 Case Il B

Fig. 5. A number of springsinside the period n = 2774, asafunction of i in Casell (-1 < u <0).

! In continuum mechanical framework systems with long range competing (antiferromagnetic) interactions
have been previously considered in the context of gradient models with aternating signs of higher
derivatives [MPT98] and in the fully non-local integral models with sign-indeterminate kernels [RTO1]. In
both cases modulated structures have been obtained.
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4. Finitelattice

As we have seen in the previous section, the general solution of the “bulk”
equations (2.8) is defined up to four arbitrary real constants A, B, C and D. To specify
these constants, one should use four "boundary equations’ (2.9-12), which play a role of
the boundary conditions. Below we show how the “boundary equations’ can be applied
in the case of a generic soft device.

First notice that since the four applied forces satisfy the constraint of a global
equilibrium (2.5) the number of loading force parameters can be reduced to three and
simultaneously one can always eliminate the overal rigid displacement of the chain by
choosing A=0. A “natural” reduction of an arbitrary force system (f,, f, fs, f;), to the triple
of independent components must respect the constraint of the overall equilibrium and be
able to distinguish between the self-equilibrated contributions and the overall applied
force. The application of the above constraints leads to the following result

fi=Qu+1)F-F' - F";, f,=F+ F'+F"; f3=F-F' +F"; f,=Qu+1)F+F -F". (41

This decomposition, which generalizes a construction from [TG64], is illustrated in Fig.
6. One can seethat F'and F" represent symmetric and anti-Ssymmetric components of the
self-equilibrated loading device, while F is proportional to the total force. As we show
below, the forcesF, F* and F" are directly associated with the coefficients B, C and D in the
representation of the general displacement field for the infinite chain.

eu+t1) F F F @u+1) F
iy we
@O N@ - @-©®
X X X X
0 1 N-1 N

(@)
F/ F/ F/ F/
] sy
@ @@
X X X X
0 1 N-1 N
(b)

F/ ! F/ ! F/ ! F/ !
ey 7]
N@ - @--©

X X X X
0 1 N-1 N

C)
Fig. 6. Elementary force systems responsible for the homogeneous component of the strain field and for symmetric
and anti-symmetric components of the boundary layers.
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We begin with the observation that the homogenous part of the position field can
be presented in the form

_F L (u1 3
B= 2 + (#ﬂ]g + &, (4.2
where
g‘:iL%iL, (4.3)

F=fitds (4.4)

is the average of the two reference spring lengths. In the case of zero pre-stress (¢ =0),
parameter & from (4.4) describes the lattice unit of an unloaded lattice.

From (4.2), we conclude that neither F' nor F" affects the homogeneous part
of the position field. Instead, these two components of a generic loading device are
responsible for the formation of the boundary layers and internal modulations. Since,
according to (2.9-2.12), the hyper-pre-stress is equivalent to a symmetric self-equilibrated
system of applied forces, its presence will be felt outside the bulk deformation through
the renormalized of F" only. More specifically in each of the main cases we obtain

. u<-1 )
P= — (4.5)
4y Ju (+1) cosh(A, N/ 2)
-
©=- 4.6
4y Ju (u+1) sinh(A; N/ 2) (4.6)
[ ] #>0

{(—1)N —1}!3' B {1+(—1)N}E"
p=L 2 J¥ 2 _Jo (4.7)
2./ (u+1) cosh(4 N/ 2)

()N [P (1D | F
c- 2 2y 2 2y

2.Jp (u+1) sinh(A, N/2)

(4.8)
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e -1<u<0

E"
= 4.9
P 4y \J- p (u+1) cos(A, N/ 2) (49)

(u#-3a+cosZ5tm) , 1xms),

FI
= 4.10
¢ 4y /- (u+1) sin(A, N/ 2) (4.10)

(pz —%(1+cos(2err)) , Ism< %)

In the above formulas we introduced a renormalized force F” which depends on the pre-
stress through the parameter ¢

o | A
Fr=F [WJ{. (4.11)

In order to rewrite the expressions (4.2), (4.5-10) in terms of the original force
components, one needs to invert the force decomposition relations (4.1)

fatfa _ (4.12)
2(u+))
u = F',
2
(u+1) f3- 1, + f,-f —F" .
2(u+1) 2

From these relations it is clear that F is responsible for the overall force f,+f, = f, +f,
acting on the system. One can aso notice that in the limiting case of large|y|the NN

model with f, =1, isrecovered.

The equilibrium displacement fields for all three generic Cases|, I, and 111 are
illustrated in Fig. 7 where we present the ssmplest example of a body with zero external
forces and non zero hyper-pre-stress. More specifically, we assume that

_0 E'=0. Fr=_| 2
F=0, F'=0, F"= (wl}f. (4.13)

The first two graphs exhibit monotone and oscillatory boundary layers, while the third
graph demonstrates the formation of an incommensurate sub lattice.
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Case |11
0.04}

-0.02

-0.04+

-0.06

(b)

(©)
Fig. 7 Examples of the atomic positions for a hyper-pre-stressed finite chain in areference configuration. Here {= -5
x.10° and: (a) = -1.065, B, =5 x.102; (b) £=0.1, B, = 4 x.10°; (c.) = —0.65, B, = 5 x.10°2 .
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Localized boundary layersin the Cases| and |11, can be observed for sufficiently
long chains when NA; >>1. At fixed N, and u approaching o or -1, the inhomogeneous
boundary layers broaden and propagate inside the chain. Thus, the Taylor expansion of
the solution around x = -1 takes the form

- _ 2 —
. = s f1+€1+(f4+f3_2{J 2-3N Sk+(fl ujskz
4y 4y 6 4y N

+3(—f“ "l —ij 58 +0(u+D)
&

3

Here we dropped the term of the order Ou+10*, which corresponds to the overal
trandation of the chain. As expected, the rest of the expansion matches exactly our
solution at x=-1 (see (3.13). Similarly, around x=0 we obtain

O ES CRES O

+(-1)¥s, [ f14‘}/f4 +£1+ (;1)N J[ f44‘yf3J

+O(u)

Here we preserved the singular term of the order Ou ', which describes the
disintegration of our lattice into two sub-lattices. This phenomenon reflects the fact that
for =0, the NNN chain can be represented as two non-interacting NN sub-chains. As a
result it is unstable unless the loading is special ( meaning f,=f, for even N or ;= f, for
odd N). Up to thisrigid motion, the displacement field accurately reproduces our special
solution (3.14).
Aswe have aready indicated above, in Case Il (-1<u < 0) the expressions for D

in (4.9) and cin (4.10) diverge at N critical (bifurcational) points

Ho@ =~ {1+ cos( ) ) (4.14)

where gis an integer, 1<q<N. For q odd, the coefficient D diverges at ¢ - u.(gq) when
the chain is hyper- pre-stressed or if the loading is a symmetric; for g even, the coefficient
C diverges only when the chain is loaded asymmetrically. These special values of x mark
the onset of the instability associated with the bifurcations of the periodic and
quasiperiodic equilibrium configurations; the exact nature of these bifurcations depends
on the nonlinear part of the model which we do not specify in the present study. The
distribution of the critical points on the plane (N, i) isillustrated in Fig. 8. Each point in
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this figure corresponds to an under-determined equilibrium configuration with the
number of atoms inside a “macro-cell” equal to 2m/1,°=N/q. AS N - », the
distribution of the critical points uc becomes densein (-1,0].
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Fig. 8 — Distribution of the critical points 14 (4.14) as afunction of N and g. Configurationswith odd q are indicated
by the zeros, configurations with even q - by the crosses.

Due to the fact that the bifurcation points of the equilibrium problem correspond to the
points of degeneracy of the Hessian matrix (in our case the matrix of elastic stiffnesses),
it is not surprising that the parameters x, play a prominent role in the analysis of stability

of the equilibrium solutions. Because of the rather technical nature of this analysis, it is
presented in the Appendix.

5. Reference configuration

As an application of the general formulas obtained in the previous section, here
we consider a specia case of an unloaded, self-equilibrated lattice with f, =0, f, =0,

fy=0and f, =0. This case is particularly interesting since it describes a reference

configuration of the chain, which isin general nontrivial (see Fig. 7).
First notice that in the reference configuration

B, = E+(”'1J5, (5.1)
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which is the limiting value of the lattice parameter away from the free surfaces. Other
coefficients C,,D, can be readily obtained from (4.5-10). Thus, for the non oscillatory

Casel (u<-1), weobtain

Co =0, Dy =- K

1/,ufl+ ,uj(1+ ,u) cosh(/\lN /2)

The reference strains can now be computed explicitly

u cosh(%%)
e = b2 _ 5.2
X =X + 5(1+yJ{HCOSh(/‘1N/2) ( )

From (5.2) one can see that at large N the particle spacing approaches the constant value
B,. One can also notice that if >0 (&< 0) the length of the springs is necessarily shorter
(longer) near the surface than inside the chain.

Although such ssimple conclusions can not be reached for the oscillatory Case 111
(¢ >0), we can still estimate the deviation of the spring lengths from their homogeneous
value B, We obtain

o w _ml- U COSh(ZSkz_l/‘l)
X=X = Bl = 2|€|(1+#J{\/ﬁsinh()llN/2) ’ ®3)
for N even and
s‘nh( ‘23“1‘ /11)
Iu 2
° =X, 4 - B| = 2 , 5.4
|Xk X k-1 | |£|(1+,UJ \/ICOSh(/\lNIZ) (5.4)

for N odd. Asit follows from (5.3, 5.4), these deviations are necessarily larger near the
free surfaces than inside the lattice.
Now, for thetotal length of the chain in the reference configuration we obtain

(5.5)

U T tanh(A, N/ 2)

o T N 25(#+1 H

at y<-1and
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% N N
2 - -(- )
» = NB, +_‘((/J/1J [(“(21) Jtanh()ll N/2) +[1 (21) Jtanh Ay NIZ)J (5.6)

at x> 0. One can seg, that for < -1 and £> 0 (£<0), the relaxed chain is shorter (longer)
than the equivalent homogeneous lattice without the boundary layers. When u> 0, the
chain with boundary layersis longer (shorter) for £>0(é<0). Now, sincefor A;N >>1 we

can approximate
tanh(A; N/2) =1-2 exp(-2A:N/2),

the difference between the two lengths, mentioned above, behaves asymptotically as

L, - NB, = 2¢&|-# #(1-200(-A N) (5.7)
0 o L+l L .
for u<-1and
p Y (1-2(-)N exp(-4, N)
LO—NBO=2{( j[ L J (5.8)
p+1 [

for u>0. AS N - o Or u - o theright hand sides of these expressions tend to a constant,
which means that for sufficiently large N,

L, =NB,.

This, of course, agrees with the classical continuum theory, which characteristically
assumes that the reference configuration is homogeneous.

6. Thetotal energy

In this section, we calculate the total elastic energy of the equilibrium chain and specify
the contribution associated with the surface energy. We use the definition

N 2 N-1 2
W= Nw + (N-Dw +% Z(Xk_ %™ ) F LZ/ Z(Xk+1_ X1~ 285,) (6.)
k=1 k=1
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This expression can be rewritten as

W= W0+ Wl + W2 (62)

where

a (o o 2 = kel %k-1
V%:N‘/\f+(N‘J)\'\§+§I;(xk—xk_l—fl) ra 3 | e | (6.3)

isthe energy of the reference stete;

N N-1
W= @Y M U 06~ K= E0F 1 D (U= U (= 1= 26 (64)
k=1 k=1
isthe linear coupling term and finaly
2
a< 2 o | YT Y
W= Ekz:l(uk - uk—l) Ty é 2 ’ (6.5)

isthe quadratic energy of the elastic deformation due to the external loading. To compute
the energy of a given equilibrium configuration we must substitute in (6.1) the values of
the equilibrium displacements x,. For determinacy, in what follows we consider the

chain in asoft device and use our explicit solution (4.2-10). According to the Clapeyron’s
theorem,

Q=2W,

and therefore, whenever the elastic energy (6.2) is known, the calculation of the total
energy is straightforward.

We first notice that due to the condition of equilibrium, our linear coupling term
in the energy is equal to zero

N
W=, "Z (X ) =0- (6.6)

k=0
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To compute two other terms -- the reference energy W, and the elastic energy w,-- itis

convenient to make some changes in the representation of the general solution of the
equilibrium equations. For ssmplicity, we shall illustrate the method for the Case Il ( -1<u
<0).

Let us rewrite the expressions for the reference particle configuration and for the
displacement field due to the applied forces in the common form

XS =By S+ Xo Sin(k Az + @), (6.7)
U« =B's+ X sink A, + ¢). (6.8

Here X', B' and ¢ are real constants satisfying

B =B - B, (6.9)
C‘=C—CO=XSin(%,12+¢), (6.10)
D'=D -Dy=X cos(%;lz + ). (6.12)

The constants X,, and ¢, characterizing the reference state can be obtained from

Co = Xosin( A, +4,) =0, (6.12)
- N —_ (2 < . 1
D, = X,c08(5 A, +¢,) (AHJ cos("1,) sin (6.13)

In order to obtain analogous representation for the equilibrium solutions in the other two
Cases| and 111, we do not need to do additional computations. In Case I, it is sufficient to
replace in the final formulas

Ay =iy,

o -ig,
c-C,
D—>_iD.

In Case |11, the replacement formulas are as follows

Ay = Hidy,
6 id,

C - Ccos(7N/2) -iDsin(7N /2),

D - —Csin(7iN/2)—iD cos(7N / 2) .
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For ssimplicity in we provide the detailed calculationsin Case Il only. For the other two
main cases, the final expressions can be easily obtained by the above substitutions.

7. Thereference energy

In order to calculate the reference elastic energy W, inthe Casell ( -1<u<0), we
substitute (6.7) into (6.3) to obtain

o N NI g, -7 + (N-D @ -
Y 2y

_ N
+><{—(B°251j2(sin(¢<+m2+¢0)—s'n(4<—m2+¢o)+s'noaz+¢o)—s‘n(«—zuzwo))
k=1
(7.1)

N-1
+(B,~§) Z(s‘n(w%+¢o)—sn(4<—m2+¢o))}
k=1

; fgm{-g% -3 (s‘nzaaz+¢o>—si2n2«k—m2+¢o)j+ Nf(s:n(emmﬁz%);s:n(ek—%wo)ﬂ
k=1 k=1

Due to the mutual cancellations, the trigonometric sumsin (7.1) can be computed
explicitly

Yo o Nb * (NDVE N (607 + (N-D) (B, £
2y 2y

+ (1008%,) (€1 Xo [0V + ) -] + (B, €7 72)
- 1B &t XS, +4) SN — (B, =&+ Xosing, siny

2
_ %gmm% +4,)-sin2,].

By rewriting (7.2) in terms of the original constants C,,D,, we obtain

o N DY N[t -6 + -6 - e D,

B,-&, + Docos(’“f)sin/\212 ~ (u+1) D2 snNA, sin, (7.3)

2
+ C—; sink, (SiNNA, —sin(N +1)A, +sin,))
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Finally, after replacing B, , C, and D, by the corresponding expressions (5.1, 6.13, 6.13),
we obtain

_ o o 1 “H 2
WO(N)_Nwl+(N—1)w2+2a52(mJ(N— 'u+ltan NQJ (7.4)

This is a desired formula for the reference energy. Notice that the first two terms
characterize the ground-state cohesive energy while the last term represents the
contribution due to the pre-stress.

By using the replacement rules formulated in the end of Section 6, we can obtain
formulas for the reference energy in Cases | and I11. Thus, for x< -1 we get

0 o] 1 )
WO:Nwl+(N—1)w2+2a52[ﬂ+J[N— £ tanh%]. (7.5)

For x>0 we obtain

W, (N) = Nw +(N-1)w)

2 1 _|_H 1+ (=" w, L [ 1= - NA

At large N the energy in Cases | and 111 approaches alinear function. On the contrary, at
small N the deviations from the linearity are substantial, pointing towards a characteristic
size effect due to the overlapping of the boundary layers. In Case Il the energy at large N
oscillates periodically around alinear function, exhibiting singularities near the
bifurcationa pointsN (1) (see (4.14)).

8. Surfaceand fractureenergies

In this section by subtracting from the reference energy of a finite body w, the
“bulk” part w,”, we compute the surface energy of a chain with NNN interaction. It is
natural to interpret the bulk energy w,”as the energy of the uniform distribution of
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particles with the lattice parameter equal toB, (see(5.1)). To compute the bulk energy for
afinite chain we should take the energy of the shared bonds into account. We obtain

N N -1
b _
W, _kglw.l.(xk_xk—l) +kZ_1W2(Xk+1‘Xk—1)

+%WL(X0_X—1)+%W2(X1_X—1)+%W2( Xo = X-2) (8.1)

+%W.I.(XN+1_XN )+%W2(XN+1 _XN—1)+%W2(XN+2 —Xn)

By substituting the definitions of w;,w, and using our ansatz x¢ =B, s, for the uniform
reference displacement field, we obtain

WP =(N +])[v\f +w + m(llil}ﬂ] (8.2

Now the surface energy associated with each of the free surfaces can be computed from
the formula

_\wb
E =N Wo (8.3)
2
By using expressions for W, from the previous Section, and introducing the notation
ES =-2w) - w) (8.4)
we obtain
_po_ g2l L |_H anh™
E=E’-af (1+ﬂJ[1+ ,u+1tanhTJ (8.5
at y<-1and

oo 2 N, [ | (1+CDN oy (1) N
Es =Eg —aé (1”1)[“ l”{( 5 Jtanh2+( 5 Jtanh ZH (8.6)

a u > 0. The typical graphs of the hyper-pre-stress related part of the surface energy
E. = E, -E.° versus the number of particles N are presented in Fig. 9 at different values
of u . For determinacy, here and in what follows we assumed that a >0. One can see that
the short chains exhibit size effect. For sufficiently long chains E, approaches a constant
value which would commonly be associated with the surface energy.
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Fig. 9 The dependence of the prestress-related part of the surface energy of a finite chain on the number of particles N.
(@ u=-1.005, (b) £=0.005.

Specificaly, inthelimit NA, - « for both Cases| and |11 we obtain

E=-lvp - w8 - afz(ljuj{u \/E} (8.7)

This expression can be interpreted as (one half of ) the total energy of fracture associated
with breaking the bond between the two adjacent half-spaces. This energy consists of two
contributions

E.=ES°+ESf. (8.8)
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Thefirst term E.° (see (8.4)) isthe standard “pre-stress-free” surface energy. One can
expect thisterm to be positive. The second term

= __ 2 1 H
ES=-af (1*'/1){14- 1+,U:l’ (8.9)

which is entirely due to the pre-stress, is plotted in Fig. 10 as afunction of x. One can
seethat it is positive in the non-oscillatory Case | (x4 <-1) and is negative in the
oscillatory Case Il (u>0).

Fig.10 The i dependence of the normalized surface energy for an infinite chain.

Let us consider the process of the creation of new free surfaces in more detail.
When the material on one side of the fracture plane is removed, the internal forces on that
surface are no longer balanced. The new equilibrium configuration has a region close to
the surface which is strained with respect to the bulk. To avoid this relaxation, one can
impose a system of forces preventing boundary layers from forming. The net force must
be zero so this system of forces must be self-equilibrating. By using (5.1), it is not hard to
show that it amounts to applying a couple

__Ayg _Aypé
f, = o f, Ty (8.10)

In terms of the generalized force components (4.1), we obtain
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F=0F =0,F"= W (8.11)
1+u

The energy of a*“free” surface with the forces (8.10) applied is equal to

= 2 1+2u

E°=EC°- . 8.12
aé e ) (8.12)

This energy has a cohesive contribution E.°and another term due to the hyper-pre-stress
interaction with the deformation in the bulk. Now, if we remove forces (8.10), the
relaxation near the surface will follow, leading to the formation of the boundary layers.
The corresponding energy change can be computed by subtracting (8.12) from (8.7). We

obtain
E.El=qe?_ L | H (/ H —1} (8.13)
1+pu 1+,u( 1+pu

The right hand side of this expression represents the surface energy contribution
due solely to the boundary layers. Intuitively, one can expect that the presence of a
surface allows the system to lower its free energy by changing its configuration in a
region near the surface from its bulk configuration; as a result, free energy change
associated with the surface relaxation must be negative. Analysis of the formula (8.13)
shows that thisisin fact what is happening in both Cases | and I11.

9. Theelastic energy

Now we consider the elastic energy W, which is entirely due to the external loading.
The computations here are exactly analogous to the ones in Section 7 with parameters &,
&, w, wd dropped, and the constants (B,,C,, D) replaced by (B', C', D'). Starting as
before with Case Il (-1< ¢ <0) we obtain

W, =2y (u+1) (N B? - D?sinNA, sinky) - 2y (B +D'cos™a2 sin,)? (9.1)

+ 2yC'? sinNT’]2 sinA, [cosNT’]2 ~cos(¥ -1)4,].

For the other generic cases the formulas for W, are analogous. Thus, in Case | (u<-1)
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W, =2y (u+1) (N B? - D'?sinhNA, sinhA,) - 2y(B’+D’coshNT/]1 sinhA;)?

~ 2y C' sinh ™ sinh.A [cosh ™2 - cosh(Y — 1)y,

(9.2)

and inCaselll (u>0)
\/\/2:2y(/,1+])[N B2 + (D’2+C'2)sinhN/llsinhA1]— y[B’—(—])N(D’CoskNFf +C'sinh%)sinm1]2_ 9.3)

-y|B —(D’cosh% —C’sinh%)sinh/h] 2

The explicit value of the energy depends on the coefficients B, C', D' , whichin turn
depend on the specifics of the loading device. As an example, consider a (particular) hard
device providing overal strain £

Uy SUyg = —Up=-U, = B (9.4)

For these boundary conditions, the equilibrium problem can be solved explicitly (for
details see [COQ]). InCasel ( -1<u<0) weobtain

. N . NA
sinh( ~)A, —sthl

B'= NB,E (9.5)
N sinh(N 1)1, (N - 2)sinh L
2 2
N B,&
D' = o 9.6
Nsinh( =14, - (N -2)sinh " (96)
c'=0 (9.7)

To calculate the energy W, we substitute the values of the coefficients B', C', D' , from
(9.5-7) into (9.2). After straightforward cal culation we obtain

NA
- 2tanh—1
2 an >

Ee” 1y (9.8)

W, (€) = NB, N
2[N (;1+1)—1]tanh71+ Nsinh A,

Here we introduced the overall bulk modulus of an infinite chain

E=4y(u+1)B,=(a+4) B, (9.9)
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For other generic Cases Il (-1<u<0) and Ill (u> 0) the expressions for the energy are
similar. The dependence of the energy w, from (9.8) on the number of particles is
illustrated in Fig. 11. One can seethat at large N, the energy is proportional to the number
of particles as in a conventional continuum theory; this assumption leads to a classical
scaling for the energy of a thin plate. However, at sufficiently small N, there is a
pronounced size effect characterized by a nonlinear and non-monotone dependence of the
energy on N. This observation suggests that for ultra-thin plates with the thickness of the
order of internal length scale (several atomic distances in our case), the classical scaling
assumption neglecting interaction of the boundary layers needs to be reconsidered.

x10°

35

25

151

0.5
0

Fig. 11 The elastic part of energy of achain as afunction of the number of particles. Here 1= -2 , B, = 10,

The loading device (9.4) is not the only non-local generaization of what is
conventionally called hard device in the local theories. Thus, one can consider a special
mixed device with the imposed overall strain £ and zero “long range” forcesf, and f,

Uy =-Uy = % BOE y f]_ = f2 =0. (910)

For the boundary conditions (9.10) the constants B', C', D'. in Case | take the form (see
[COQ] for details)

N B,& cosh NA sinh A,
B = 2 (9.11)

NA, . .. NA
N cosths:mh/l1 —ZsunhT1
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N B,&

D'= - (9.12)
N coshN—/11 snhA; - ZsinhN—/11

2 2

C'=0 (9.13)
After tedious but straightforward cal cul ations we obtain the expression
E 52 2tanh N—Al

W () = NBg—— |1+ 2 — |- (9.14)

Nsinh A, —2tanhTl

Notice that (9.14) has the same limit as (9.8) at large N but behaves differently at small N.
These non-Saint Venant’'s deviations which we study in more details in the next section
are characteristic of the theories exhibiting size effect.

10. Elastic moduli

To illustrate the difference between the loading devices (9.4) and (9.10) in this
section, we compute the dependence of the corresponding effective overall elastic moduli
of the chain on the number of particles. To define the modulus, we first introduce the
elastic energy density

w(8) =) (10.2)
0

Then, the élastic modulus can be defined as

2
dw,

E-=
dg?

ey
=(@+dy) — - (10.2)

The final expression can be written in the form
E =E@+d(N)). (10.3)

Here E is given by (9.9) and correction factor &(N) depends on the specifics of the

loading device disappearing in the limit N - « . It the case of the hard device (9.4) and
u<-1,weobtan
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tanh M
5, (N) = 2 . 10.4
(M) [N (u+1) -1 tach s + N u(p +1) (104)

Similarly, for the hard device (9.10), the computations give

h N
J,(N) = il ; (10.5)

Ny e+l —tanhNT/11 ’

The behavior of the function &;(N)and J,(N) isillustrated in Fig.12. At small N we again

observe a characteristic size effect: the dependence of overall elastic modulus on the
length of the chain. We notice that the qualitative behavior of the functions &,(N)and

J,(N) issimilar with both expressions overestimating at small N the value of the elastic
modulus for the infinite chain.

351

251

15F

0.5

60 70 80

Fig.12. Behavior of the function d;(N) and J,(N) inthe Casel (with i = -2) .

The fact that the modulus gets higher as the specimen thickness tends to zero is in
agreement with the findings of [W92] and seems to be supported by the experimental
observations (e.g. [L99]). The results of this section suggest that the elasticity of the
ultra-thin objects may deviate substantially from the bulk elasticity of the material. This
isanatural consequence of the fact that at the atomic sizes surface effects dominate bulk
properties.
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11. Concluding remarks

In this paper we constructed a complete set of static equilibrium solutions for a
finite discrete chain with generic linear interactions of both nearest and next to nearest
neighbors. The behavior of a linear chain with the interaction of the nearest neighbors
only is trivial: the particles are always equidistant. By introducing the NNN interaction,
we were able to capture some of the non-locality of the non-one-dimensional discrete
models. The main focus, however, was on the effects of the hyper-pre-stress. Hyper-pre-
stress appears in the model if NN and NNN springs have incompatible reference lengths.
In this case the two interactions, favoring different spacings compete, producing
configurations, which are internally stressed even in the absence of the applied forces.

The two main effects of the nonzero hyper-pre-stress are the surface relaxations
and the internal modulations, which may be commensurate or non-commensurate with
the reference lattice. Contrary to most of the previous work, our emphasis was on a
description of a finite chain with the interacting boundaries. In particular, we studied
effects of non-local loading and gave a detailed solution of the equilibrium problem for
the case of a generic soft device. As a part of the solution, we singled out combinations of
applied forces responsible for bulk deformation and specified self-equilibrated force
systems contributing to the boundary layers only.

When the chain contains sufficiently large number of particles, the boundary
layers around the free surfaces become autonomous and one can define the corresponding
excess energy. Our model allows one to compute this energy explicitly and to separate
the conventional contribution, due to the background cohesion from the contribution due
to the hyper-pre-stress. We show, that the cohesive part of the surface energy is aways
positive, while the hyper-pre-stress related contribution may have different signs
depending on the ratio of elastic moduli characterizing NN and NNN interactions. One of
the important conclusions is that for an object with the size of the order of the internal
length scale, the effective surface energy can no longer be considered independent of the
size and the shape of the body; one can expect the internal length to be on the order of 10
lattice spacings. Our analysis of the size dependence of the elastic modulus suggests, that
due to the interaction of the boundary layers, the ultra-thin bodies will exhibit anomalous
stiffness, in tension, torsion and bending.

One important question, which could not be fully addressed in harmonic
approximation concerns with the stability of the equilibrium configurations. Previous
analyses of the linear stability for the infinite chain with NNN interactions have lead to
the well known instability conditions{ a <0,a +4y <0} (e.g. [GW62, 65, K82]). It is not
hard to see that the application of these inequalities results in the instability of all
configurations associated with our Case Il (-1<u<o0). For a finite chain, the
computations presented in the Appendix show that the domain of instability is strictly
inside the above intervals which means that some of the Case Il solutions are stable (the
ones with a—4quin,uc(q) >0, a—4yméax,uc(q) >0). On the other hand since the

instability can not be judged based on the linear part of the model only, the precise
conditions of stability will depend on the nonlinear terms neglected in the present study.
In fact, by adding to our energy in Case |l quartic terms (guaranteeing sufficient growth
of the energy at infinity), one can obtain stable periodic microstructures even in the
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infinite domain (e.g. [J88]). Stable two-dimensional quasi-periodic microstructures in the
infinite nonlinear lattices have also been studied in the literature (see for instance
[CMV96]).

Another interesting question, which has not been addressed in this paper is related
to the derivation of an adequate continuum approximation for the NNN model with the
hyper-pre-stress. The standard long wave approximation will work only in the range of
parameters where the boundary layers are sufficiently wide and the oscillations on the
scale of the lattice are absent; this means our Case | with x close to —1. The main
difficulty arises from the necessity of adding to the bulk energy appropriate null-
Lagrangians responsible for the formation of the boundary layers. This issue deserves a
separate analysis and will be considered elsewhere.

Our results may have some bearing on the criteria of failure in solids. Thus we
show that when a chain with a hyper-pre-stress is being broken, two quite different
phenomena are taking place smultaneously. First, the boundary layers are created with
the corresponding energy expenditure solely due to the hyper-pre-stress. Second, the two
freshly formed surfaces need to be separated and now the corresponding work has
basically nothing to do with the hyper-pre-stress. The above two-stage scenario suggests
an idea that the dependence of the surface energy on the separation of the crack surfaces
may be bi-modal with two plateaus. the smaller one corresponding to the energy of the
boundary layers and bigger one corresponding to the energy of the ultimate de-cohesion.
This idea, formulated as an assumption of the non-concavity of the surface energy, has
been recently used in [DTO01] to simulate fractured configurations where several micro-
cracks (or pre-cracks) coexist with adeveloped macro-crack.

In the context of fracture mechanics, it is also of interest to study directly the
behavior of a discrete model with the nonlinear interaction of the Lennard-Jones type:
w,(2) =w,(2) =w(2). For close to homogeneous equilibrium configurations, our linear

analysis can provide a good approximation to the nonlinear solution. To insure the
agreement between the two models, the parameters of the harmonic approximation a, y,
&, &, w’, w,’ must be chosen compatible with the nonlinear potential w(z). By cutting

a chain sufficiently far away from the external surfaces one can see that the quasi-
homogeneous particle spacing B can be found from the equation w'(B) +2w'(B) = f , where

f=f+f,=f;+f, (cf. 213). Then by linearizing the nonlinear potential around the
homogeneous states with the spacings B(f) and 2B(f), one obtains the following
parameters of the “tangential” model

'2(B '2(2B
w£’=w(B)—;VW—,((B)), w8=w(2a)—;vw,,((28)),
w (B) W (2 B)
178w e 2T wes)
a=w"(B), y=w"(2B).

In particular the non-dimensional parameter
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_ wW'(B)
K= aweB)

can clearly be in any of the three generic domains. Notice also that in the present setting,
the hyper-pre-stress ¢ is generically different from zero

£- w(B)  W(2B)
" 2w'(B) 4w'(2B)’

The linear approximation obvioudy fails when one approaches the bifurcation points
(4.14) indicating the onset of instability. The analysis of the associate nonlinear model
can reved the structure of the bifurcated branches leading to fractured lattice
configurations. Partial theoretical results concerning the behavior of an infinite NNN
system with Lennard-Jones potential can be found in [BGOO]; selected numerical
computations for a finite chain were reported in [TB96]. In spite of these efforts and the
fact that the associated NN problem is thoroughly studied (e.g. [T96, BGD99]), the
genera bifurcational diagram for the Lennard-Jones NNN problem is far from being
known.

In a dightly different but related context of the discrete theory of phase
transitions, the introduction of the NNN interaction has been shown to eliminate the
degeneracy of the simpler NN model through effective introduction of the interface
energy (e.g. [RT97, PT0Q]). The origin of this interface energy is the structural relaxation
around the internal surfaces (phase or twin boundaries). Based on the analogy with the
present work, one can speculate that at sufficiently small scales the effective interface
energy will strongly depend on the separation of the interfaces. This may explain, for
example, why nano-scale particles of smart materials do not exhibit a characteristic
microstructure.
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Appendix

The equilibrium configurations of a chain in a soft device, studied in the main body of the paper, satisfy
the equilibrium and boundary conditions 0P/ dx; =0, where P isthe total energy of the system (see

Sections 3, 4). To study the linear stability of the equilibrium solutions one needs to analyze the positive
definiteness of the corresponding Hessian matrix aZP/axi 0x; . Intermsof themoduli a and y this

(N+1)x(N+2) matrix takesthe form

[a+y -a -y 0 e 0 ]
-a 20+y -a -y :
-y -a  2a+y) -a 0
0 -y -a 2a+y)

: 0 0

: -a 2a+y) -a -y

: .-y -a 2a+y -a
L O e e 0 -y -a  a+ty|

The principal minors of this matrix satisfy the following equations (see arelated casein [WG65])

A=a+y
Dy =(@+2p)(a+y)-y?
A =(@+20)Dyy -y?Dy, . 3<k<N-1

Ay :(0'+V)AN—1_V2AN—2

It is not hard to see that the first two equations provide “initial conditions’ for the main recurrent relation
for A, ; the value of A, can be computed after all other principal minors are known. The fact that the

minor of rank N+1 is equal to zero can be linked to the translational invariance of the chain in the soft
device (and related arbitrariness of the constant A from Section 3).
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A general solution of the main difference relation for the minors can be written as a combination
of themonomials z¥, with z being aroot of the following characteristic equation

22 —(a+2y)z+y*=0.

If y#0 (NNN interactions are present) the two roots of the characteristic equations can be written in the
form z, ,=y p 34, With p3, given by (3.6). Now, by substituting the “initial data’ for the minors of
rank one and two into the general solution one obtains the following explicit relations

e —w<pu<-1(Casel)

« sinh[(k+1/2)A]
sinh(A,/2)

Ay =2(-p)N coth(; /2) sinh(NA,;)

Ay =(-p) , 1sksN-1

. -1< u<0(Casell)

« SiN[(k+1/2)A,]
sin(A, /2)

Ay =2(-p)N cot(A, /2) sin(NA,)

A =(-y) , 1<sksN-1

e  O<u<+o (Caselll)

_ coshl(k+1/2)A,]
cosh(A;,/2)

Ay =2y" tanh(A; / 2) sinh(NA,)

Ay , 1sksN-1

Here parameters A; >0 and A,00( O, 1) are the same as in Section 3. From these expressions for the
principal minors we observe that the stability conditions depend on both material parameters a and y ; we

recall that the equilibrium configurations depend only on their non-dimensional ratio i .

The analysis of Cases | and Il is rather straightforward. Thus, in Case | al minors are positive if
and only if y<0. This generates stability domain { y <0, a+4y >0} and instability domain { y >0,

a+4y<0}. Similarly, in Case Il al minors are positive if and only if y<0. This produces { y >0,
a >0} asstability domainand { y <0, a <0} as instability domain. The situation is more subtle in Case

I1, which, for infinite chains turns out to be completely unstable.
In Case Il one has to consider two possibilities: y >0 and y <0.If y >0 the principal minors

are positive if and only if

2qk_k]'[</‘ < 2qk +1_k]T

<A, < , 1sksN-1
k+1/2 k+1/2
2N g <2 N
N N

Herefor every 1< k <N, parameters g span all positive integers compatible with the constraint A,[1( 0, 11).
One can show that the above admissible intervals are incompatible which means that the corresponding
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equilibrium states are unstable. As a result we obtain another instability domain { a +4y >0, a <0}. If
y <0, the principal minors are positiveif and only if

20 < < 2q, +1

<, m o, 1sksN-1

k+1/2 T k+1/2
ZqTNﬂsAz P T

where again for each 1<k <N the positive integers qc must be compatible with the constraint A,( O, T1).
The largest admissible domain in this case is: 0< A, <77/ N which in terms of u is equivaent to the

following stability conditions
1 T .
-l<u< ——{1+cos(—)} =minu.(Q) .
2 N q

Here the function . (q) isgiven by (4.14). By rewriting above conditionsin terms of a and y we obtain

{a—-4yminu.(g)>0, a>0} asastability domain and { & —4y min 1. (q) <0, a >0} asan instability
q q

domain.

The compl ete characterization of the stability domains requires consideration of the limiting cases
p{=-1and y=0.Inthefirst case (u=—-1) we obtain

A, =(-P)*(2k+1) , 1sk<N-1
Ay =4-p"N

which means that for stability it is necessary to have y <0 . In the second case (1= 0), we get

A, =(-p)*¢ , 1sksN-1

meaning instability if y >0 and neutral stability if y<0. Thecase y =0 (NN chain) has to be treated

separately; inthiscase A, = a* for 1<sk<Nand stability requires a > 0.
By collecting all stability intervals indicated above, we obtain the following combined conditions
of stability

{a-4yminyu.(q)>0, y<0} and{a >0, y>0}.
q
If we now recall that max 4. (q) = 0, we can rewrite these conditionsin the following form
q

{a-4yminu. >0, a-4ymaxyu, >0}. *)

We remark that in particular this means that the chain is unstable for min (. (q) < ¢ <max . (q) .
q q

Conditions (*) can be compared to the corresponding conditions for the infinite chain

{a+4y>0, a>0} (**)
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Since —1<min u.(q) <max . (q) <0, one can see that domain (*) is larger than domain (**), which
q q

reflects the obvious fact that a finite subsystem is more stable than the whole infinite system. By using the
explicit relation for . (q) (4.14) we can compute stability limits for the chain of arbitrary length. In

particular, for the shortest NNN chain with N=3, conditions of stability (*) reduceto a+3y >0, a >0.

The substantial stretching of the stability domain in this case comparing to (**) illustrates the enhanced
stability of ultra-thin objects.

It is not hard to see that due to the broadening of the class of admissible variations, the stability
conditions for the soft device will also be sufficient for the cases of hard and mixed devices. What is more
interesting, conditions (*) are also sufficient for those devices if parameters (. are taken to be bifurcational
points associated with the hard or mixed devices, accordingly. The fact that min . (gq) and max u.(q)

q q

give the lower and upper boundaries for the domain of instability in the u -space follows from the

observation that in both points the minimal eigenvalue of the Hessian matrix becomes negative. To prove
that (*) represent exact stability conditions in those cases one needs to use the fact that additional
congtraints can only increase the value of the minimal eigenvalue and that its dependence on elastic moduli
a and y iscontinuous and monotone. All these statements can be checked without difficulty.
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