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Abstract

In spite of recent progress in our understanding of the absolute stability of elastic phases under
loads, the generic presence of metastable configurations and the possibility of their dynamic
breakdown remains a major problem in the mechanical theory of phase transitions in solids.  In
this paper, by considering the simplest one-dimensional model, we study the interplay between
inertial and thermal effects associated with nucleation of a new phase, and address the crucial
question concerning the size of a perturbation breaking metastability. We begin by reformulating
the nucleation problem as a degenerate Riemann problem. By choosing a specific kinetic relation,
originating from thermo-visco-capillary (TVC) regularization, we solve a self-similar problem
analytically and demonstrate the existence of two types of solutions: with nucleation and without
it. We then show that in the presence of a nonzero latent heat, solution with nucleation may by
itself be non-unique. To understand the domain of attraction of different self-similar solutions with
and without nucleation, we regularize the model and study numerically the full scale initial value
problem with locally perturbed data. Through numerical experiments we present evidence that the
TVC regularization is successful in removing deficiencies of the classical thermo-elastic model
and is sufficient in specifying the limits of metastability.

1. Introduction

Recent interest in the dynamical response of multiphase solids has been
stimulated by the broadening use of materials exhibiting ”smart” or  "active" behavior in
various high frequency devices. As it is well known, the enhanced mechanical properties
of these materials are due to martensitic phase transitions (see Otsuka and Wayman
(1998) for a recent review). Although there has been considerable progress in recent
years in the understanding of the equilibrium or quasi-static properties of transforming
solids, the dynamical picture remains mostly unclear and the foremost open problems in
the mathematical structure of the theory concern the mechanisms of rate sensitivity. It is
then not surprising that both kinetics and dynamics of phase transformations have
recently been the subjects of intense interest (see for instance Abeyaratne et al.(1996),
Rosakis and Knowles (1997), Truskinovsky (1997), Shield et al. (1997),  Lin and Pence
(1998), Ngan and Truskinovsky (1999), Vainchtein (1999), Slepyan (2001)). Most of the
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unresolved questions in this area of research have their roots in the problems of
metastability and nucleation.

In this paper we focus on the thermo-elasto-dynamical aspects of the nucleation
phenomenon. Radiation of sound accompanying martensitic phase transitions together
with a high mobility of phase boundaries unambiguously point towards fully dynamical
treatment of the transformation process. On the other hand, the presence of nonzero heat
effects and the pronounced influence of heat release on the size and the structure of the
hysteresis loops suggest that the adequate treatment of the problem must be fully
thermodynamical. In the realistic case when the transformation process is sufficiently fast
and thermal boundary layers are sufficiently narrow, the processes in the bulk can be
considered adiabatic. This will be our main assumption in the rest of the paper.

To emphasize the ideas we employ the most elementary one-dimensional model
of an elastic bar with non-convex elastic energy (Ericksen, 1975). By using this rather
simplified framework we study a general scenario of homogeneous nucleation leading to
an explosive decomposition of a metastable state. The mathematical problem reduces to
the analysis of a degenerate Riemann problem with identical data on both sides of the
nucleation site; the dynamics of the initial stage of the nucleation process and the
associated generation of shock waves can then be modeled by the corresponding self-
similar solutions. When the initial state is metastable, this degenerate Riemann problem is
ill posed, exhibiting severe non-uniqueness associated with the ambiguity in the
continuum description of both nucleation of the new phase and its growth. A non-
uniqueness of this type was first noticed in the isothermal context by James (1980).

The growth aspect of this non-uniqueness is now well understood and is known to
be remedied by assigning to the moving phase boundaries an additional admissibility
condition often called a kinetic relation. Phenomenological (or ad hoc) kinetic relations
were long known to physicists (e.g. “normal growth” condition) and have started to
appear in the solid mechanics literature since the mid 70’s (e.g. Dafermos (1973),
Truskinovsky (1982, 1987), Shearer (1983), Abeyaratne and Knowles (1991a), Gurtin
(1993)). As an alternative to specifying kinetics of growth phenomenologically, one can
directly regularize the model and obtain an admissibility condition from the study of the
fine structure of a transformation front. Here again several alternative regularization
schemes have been suggested, including different variants of visco-elasticity and gradient
elasticity, various phase field extensions and an assortment of discretizations  (e.g.
(Harten at al.(1976), Slepyan and Troiankina (1984), Slemrod and Flaherty (1986),
Truskinovsky (1987, 1993b), Mihailescu and Suliciu (1992), Vainchtein and Rosakis
(1999), Slepyan (2000, 2001)). One of the most widely used approaches of this kind is
the visco-capillary (VC) or thermo-visco-capillary (TVC) model introduced by
Truskinovsky (1982, 1985) and Slemrod (1983, 1984a) and further studied by Shearer
(1986), Abeyaratne and Knowles (1991b), Truskinovsky (1993a,b, 1994,1997), Shearer
and Yang (1995), Cockburn and Gao (1996), Rybka and Hoffmann (1998), Ngan and
Truskinovsky (1999), LeFloch and Rohde (2000), Vainchtein (2001), and  Chalons and
LeFloch (2001) among others.

The nucleation aspect of the non-uniqueness, arising in the non-regularized
degenerate Riemann problem, manifests itself through the presence of two types of
solutions: a non-trivial one, describing nucleation and growth, and the trivial one,
describing a system remaining in the metastable phase (e.g. James (1980), Shearer
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(1986), Truskinovsky (1994, 1997)). To remedy this non-uniqueness one can again
follow two paths: phenomenology or regularization. Along the phenomenological path,
Abeyaratne and Knowles (1991) suggested that the choice between the trivial and the
non-trivial solutions should be based on a postulate, which formally divides the
metastable region into two parts: one, where the trivial solution is preferred, and another,
where the dynamic continuation must be chosen. Combined with an appropriate
phenomenological kinetic relation, this nucleation criterion was shown to guarantee
uniqueness of solutions for a generic Riemann problem in a tri-linear thermo-elastic
material.

In the present paper we argue that the non-uniqueness associated with nucleation
can also be resolved through the regularization leading to more detailed description of the
process at the micro-level. From the perspective of the regularized model one can reason
that the two solutions of the degenerate Riemann problem, trivial and non-trivial, actually
correspond to different initial data, even though at the level of resolution of the non-
regularized problem, the initial data seem to be identical1. To illustrate this idea, we use
the TVC regularization and augment the system of equations of adiabatic thermo-
elasticity by adding thermal conductivity, viscosity and gradient elasticity (weak
nonlocality). In this regularized framework we demonstrate numerically that a localized
perturbation of the original metastable state can generate two distinct dynamic regimes:
one describing explosive nucleation and the other one exhibiting the decay of the
perturbation. Contrary to the self-similar case, in the regularized setting the two regimes
correspond to slightly different initial data. The analysis of the continuous dependence of
these solutions on the initial data allows one to relate the nucleation phenomenon to the
size of the domain of attraction of the regime producing new phase. As we show, a direct
comparison of the classical and regularized approaches leads naturally to the nucleation
criterion which is compatible with the kinetic relation in the sense that both originate
from the same micro-mechanical model. Similar analysis of the nucleation in the discrete
setting (lattice model) can be found in Balk et al. (2001a,b); the issue of direct nucleation
of phase mixtures have been recently addressed in Ren and Truskinovsky (2000).

The outline of the paper is as follows.  In Section 2, we provide a brief summary
of results concerning governing equations and jump conditions in the non-regularized
adiabatic problem. The failure of this theory to produce a unique solution of the
nucleation problem is then established and the physical phenomena leading to the non-
uniqueness are analyzed. To fix the deficiency of the classical approach, in Section 3 we
regularize the problem and formulate the new system of equations containing higher
derivatives of the main variables. Furthermore, to facilitate numerical studies in the latter
parts of the paper, we specify a particular material model with cubic stress strain relation
and maximally simplified temperature dependence. In Section 4, we discuss the traveling
wave solutions of the regularized system and identify the associated kinetic relation.  This
kinetic relation is then used in Section 5, which contains a detailed analysis of the self-
similar nucleation in the non-regularized problem. In Section 6 we formulate a numerical
scheme which is then used to simulate dynamics in the regularized problem. A series of
numerical experiments aimed at finding a critical perturbation is first discussed in the
context of a simpler isothermal problem. We then simulate full scale adiabatic nucleation
                                                          
1 Observations in Truskinovsky (1994) that sufficiently fast moving phase boundaries are unstable with
respect to highly localized finite perturbations illustrate the same idea.
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and discover that only one of the variety of self-similar solutions discussed in Section 5
plays a role of an attractor in the regularized initial value problem with locally perturbed
data. Our main conclusions are summarized in the final section of the paper.

2. Preliminaries

In this section we recall some results concerning elasto-dynamics of phase
transitions in one dimension and reformulate the nucleation problem as a degenerate
Riemann problem.  We refer the reader to Truskinovsky (1993a, b, 1994, 1997), Nhan
and Truskinovsky (1999) and the references cited therein for additional background and
details.

2.1 Equations and jump conditions

 Consider a time-dependent longitudinal deformation of a homogeneous thermo-
elastic bar with a unit cross section.  Assume for simplicity that the referential density is
equal to unity, and let ),( txu  be displacement of a reference point x  at time t . Our main
variables will be the strain xuw ∂∂=  and the particle velocity tuv ∂∂= .

Adiabatic model. Suppose that heat conductivity can be neglected outside the
narrow transition zones. Then, the standard balances of mass, linear momentum and
energy yield

                
x
v

t
w

∂
∂=

∂
∂ , 

xt
v

∂
∂=

∂
∂ σ , 

x
v

t
e

∂
∂=

∂
∂ σ (2.1.1)

where ),( swe  is specific internal energy, s  is entropy, and we ∂∂= /σ  is stress. On the
shocks and phase discontinuities, the system (2.1.1) must be supplemented by the
Rankine-Hugoniot jump conditions

                [ ] [ ] 0=+ vwD , [ ] [ ] 0=+ σvD , 0][][ 2
2

1 =++ vveD σ . (2.1.2)

Here, D  is the Lagrangian velocity of the discontinuity; for the jump, we use a standard
notation: [ ] ( ) ( )−−+= , where “+” corresponds to the state ahead of the discontinuity.
A convenient form of (2.1.2) can be obtained if the particle velocity v  is eliminated.
Then, for 0≠D , we get

[ ] [ ] 02 =− wDσ ,  [ ] { } [ ] 0=− we σ , (2.1.3)

where )( )(( )2
1

−+ +=}{  denotes the average of the two limiting values. The entropy
inequality can now be written as

0: ≥=ℜ DG (2.1.4)
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where
      [ ] { } [ ] [ ]{ }sTwfG +−= σ ,             (2.1.5)

is the configurational force conjugate to the velocity of the discontinuity, seT ∂∂=  is
temperature, and Tsef −=  is specific free energy; an alternative expression

{ } [ ]sTG = (2.1.6)

emphasizes the entropic nature of this parameter.
Isothermal model.  Parallel to the adiabatic model, a simpler isothermal model

with constTT =≡ 0  will be considered as prototypical. In the isothermal case the main
system of equations takes the form

x
v

t
w

∂
∂=

∂
∂ , 

xt
v

∂
∂=

∂
∂ σ (2.1.7)

where now wTwf ∂∂= ),(σ .  The Rankine-Hugoniot jump conditions for the isothermal
case read

    [ ] [ ] 0=+ vwD , [ ] [ ] 0=+ σvD . (2.1.8)
.

The entropy inequality takes the form

0≥=ℜ DG            (2.1.9)

where the  expression for the configurational force

          [ ] { } [ ]wfG σ−=             (2.1.10)

follows from (2.1.5) under the assumption that [ ] 0=T .

          
2.2  Constitutive assumptions

Our main interest concerns materials that can support two phases. We begin with
the isothermal constitutive model and following the original idea of Ericksen (1975),
assume that the free energy at a constant temperature ),( 0Twf  is a non-convex function
of w . In particular, suppose that 0)( >′′ wf  for α<w  (phase 1) and β>w  (phase 2)
and 0)( <′′ wf  for βα << w  (spinodal region). The corresponding stress-strain relation

),( 0Twf ′=σ  is non-monotone (see Fig. 1), and one can formally define the equilibrium
(Maxwell) stress Mσ  and the equilibrium strains at and bt in such a way that

     Mbtat TbTa σσσ == ),(),(
          ))(,(),(),( ttatbtat baTaTbfTaf −=− σ              (2.2.1)
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                                                                 0TTT ba ==

By definition, the boundaries of the spinodal region α  and β  mark the states with zero
isothermal sound velocity

w
Twct ∂

∂= ),(2 σ . (2.2.2)

The two regions α<< wat  (in phase 1) and tbw <<β  (in phase 2) are known as the
domains of metastability (e.g. Ericksen (1975)). Finding a quantitative measure of the
reserve of stability for the system in the metastable states constitutes the main subject of
the present paper.

To extend the model to the adiabatic case, we must specify the non-isothermal
part of the constitutive model. Consider first the Rankine-Hugoniot conditions (2.1.3) and
suppose that the stress and strain ),( ++ wσ  in front of the discontinuity are prescribed.
Then equations (2.1.3) describe two sets of points on the ),( wσ  plane: Rayleigh line,
given by (2.1.31) and Hugoniot adiabat, given by (2.1.32).  The two curves intersect at

),( ++ wσ  and possibly at one or several other points. To characterize the material, we
assume that the Rayleigh line and the Hugoniot adiabat have up to three intersections, as
it is schematically shown in Fig. 2.  It is not hard to see that if specific heat at constant
strain TTweCV ∂∂= /),(  is sufficiently large, this behavior is a direct consequence of the
non-convexity of the free energy at constant temperature.

 In the adiabatic context, conditions of phase equilibrium analogous to (2.2.1) can
be written as

),(),( bsas TbTa σσ = ,
))(,(),(),( ssasbsas baTaTbeTae −=− σ ,              (2.2.3)

),(),( asbs TasTbs = .

Stability analysis of the homogeneous configurations suggests that the adiabatic analog of
the spinodal region should contain configurations with

0),(2 <
∂

∂≡
w

swcS
σ . (2.2.4)

The adiabatic metastability regions are then located between the adiabatic Maxwell states
defined by (2.2.3) and the limits of the adiabatic spinodal region, specified by the
condition Sc =0.
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2.3 Degenerate Riemann problem

Adiabatic case. Consider a bar of infinite extent in a homogeneous configuration
with constant strain 0w , constant temperature 0T  and zero velocity 00 =v . This
prescribes the following set of initial data for the system (2.1.1, 2.1.2, 2.1.4)

  ( ) ( )0,,)0,(),0,(),0,( 00 TwxvxTxw = . (2.3.1)

The initial value problem has a trivial solution

0),(,),(,),( 00 ≡≡≡ txvTtxTwtxw . (2.3.2)

Now, to model a nucleation event, we choose an arbitrary point x = x0  and prescribe the
same initial data everywhere except for this point. In other words,

( ) ( )
( )�
�
�

<
>

=
000

000

for   ,0
for  , 0

)0()0()0(
xx,T,w
xx,T,w

,xv,,xT,,xw , (2.3.3)

which agrees with (2.3.1) everywhere outside x = x0 . We note that the configuration at
point 0x  is left unspecified.

The initial value problem (2.3.3) belongs to a class of Riemann problems with
piecewise constant initial data. Our particular Riemann problem is degenerate because the
initial data on both sides of the discontinuity point are identical. If a non-trivial solution
to this problem exists, it must be of the form

)(ςww = , )(ςTT = , )(ςvv = (2.3.4)

where txx /)( 0−=ς . As it is well known, such a solution can be represented by a
combination of the homogeneous states separated by jump discontinuities and/or centered
Riemann waves.

Isothermal case. For the corresponding isothermal problem (2.1.7, 2.1.8, 2.1.9),
the Riemann data, analogous to (2.3.3), take the form

�
�
�

<
>

=
00

00

for  , )0(
for  , )0(

))0()0((
xx,w
xx,w

,xv,,xw  . (2.3.5)

The isothermal problem is simpler than the adiabatic one and we shall proceed by first
constructing an explicit solution for this case. The analysis shows that if the initial state is
in a metastable region within the phase 1, the Riemann problem (2.3.5) has a non-trivial
self-similar solution, which corresponds to the nucleation and growth of the phase 2
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�
�
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�
�
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�

−<

<−<±

<−

= ++

−

00

0

0

,0,

,

,0,

),(),,(

xxtDw

tDxxtDvw

tDxxw

txvtxw

s

sp

p

. (2.3.6)

These formulas describe the emission of two symmetric shock waves followed by the two
symmetric subsonic phase boundaries. The situation is illustrated in Fig. 3.

To specify the solution, one has to solve for the five parameters +w , −w , +v , sD
and pD . Since the constant states satisfy balance equations automatically, the only
restrictions are provided by the four jump conditions (2.1.8). The entropy inequality
(2.1.9) is necessarily satisfied for the shock wave precursors (moving with the speed

sD± ) and is satisfied for the phase boundaries (moving with speeds pD± ) if the area 1A
in Fig. 3 is smaller than the area 2A . The only restriction imposed by the Rankine-
Hugoniot conditions is that the areas of the rectangle abcd and aefg in Fig. 3 are equal.
One can see that the information contained in (2.1.7, 2.1.8 and 2.1.9) is not sufficient to
find the unknowns uniquely and instead, we obtain a one-parameter family of solutions.
By taking into account the arbitrariness of x0, the family of admissible solutions becomes
two-parametric.

Adiabatic case.  Now, we can return to the adiabatic problem (2.3.3). Given the
structure of the Hugoniot adiabat, a non-trivial solution describing the explosive
nucleation can be written in the form  (see Fig. 4):

�
�

�

�
�

�

�

−<

<−<±

<−

= +++

−−

000

0

0

,0,,

,,

,0,,

),(),,(),,(

xxtDTw

tDxxtDvTw

tDxxTw

txvtxTtxw

s

sp

p

. (2.3.7)

To specify this solution one has to solve for the seven parameters +w , −w , +v , +T , −T , sD
and pD and the only restrictions are those provided by the six jump conditions (2.1.2).
Again, one can show that these constraints are not sufficient to find all the unknowns
which leaves us with a two-parameter family of solutions.

2.4  Growth

Assume first that the point 0x  is given. Then in order to determine the constants

+w , −w , +v , +T , −T , sD  and pD  in the adiabatic problem one needs to supply a single
equation which can enter the system only as an additional jump condition. This jump
condition, however, cannot be universally applied at both discontinuities moving with the
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speeds sD  and pD , because it would lead to an over-determined system. We must
therefore distinguish between the two types of transitions: w0 →w+  and w+ → w− .

Consider the simplest isothermal case first. As we have already seen, neither of
the discontinuities can be constrained through the entropy criterion, so one needs to
search for more subtle restrictions.

Notice that the first discontinuity w0 →w+ , which we call a shock, satisfies the
Lax criterion (Lax , 1971)

                                                      
+

≥≥ tt cDc
0

,                                                         (2.4.1)

where tc  is given by (2.2.2), and ( ) ( )++ −σ−σ= wwD 00 /  is the velocity of the shock.
As a result of (2.4.1) the local configuration of characteristics around the jump
discontinuity consists of three characteristics coming (from the “past”) and one
characteristic leaving (to the “future”). This implies stable interaction of the discontinuity
with acoustic waves. On the contrary the second transition −+ → ww , which we call a
kink (known also as non-evolutionary or under-compressive shock), violates the Lax
criterion since Dct ≥−

 and Dct ≥+
. In this case two characteristics are coming to the

discontinuity and two are leaving. This results in an instability unless an additional jump
condition is prescribed. The former arguments can be easily extended to the adiabatic
case with the substitution of sc  for tc  and appropriate adjustments for the number of
characteristics.

Our analysis so far has been based exclusively on the mathematical structure of
the equations. The principal physical difference between shocks and kinks can be
illustrated by the following argument. Consider for simplicity an isothermal model with a
generic discontinuity propagating with a constant velocity 0>D  and transforming a
configuration with strain w+  into a configuration with strain w− . Assume for simplicity of
argument that the Rankine-Hugoniot conditions (2.1.8) are satisfied not only for the final
configuration w−  but also for every intermediate state w  inside the transition region.
Under this assumption, we certainly neglect important physical mechanisms of
dissipative and dispersive nature inside the transition zone; a more careful analysis,
however, does not affect the main conclusion. Along the chosen trajectory inside the
transition front one can calculate the "microscopic" rate of the total energy loss (gain). In
particular, for the process which begins at w+  and ends at the current w , the rate of
dissipation equals

 
)())()()((),( 22

2
1 vvvvwfwfDww σσ −+−+−=ℜ +++++ . (2.4.2)

The corresponding release of the total energy Dww /),( −ℜ=+ψ  can now be computed
explicitly. We obtain

)()()()(),( 2
1

++
−+

−+
+++ −��

�

�
��
�

�
−

−
−+−−= wwww

ww
wfwfww σσσψ . (2.4.3)
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As one can expect from (2.1.10), at −= ww , we obtain

     )))(()()((),( 2
1

−+−+−++− −+−−−= wwwfwfww σσψ . (2.4.4)

The schematic graphs of ),( +wwψ , based on (2.4.3), are shown in Fig. 5 separately for
the shocks and for the kinks involved in the solution (2.3.6).

Notice that in the case of shocks, the energy decreases monotonically, while in the
case of kinks, there exists a finite energy barrier. The propagation of the kink is therefore
associated with the “barrier crossing” (see the discussion of the corresponding auto-
catalytic process in Slepyan (2000, 2001) and Puglisi and Truskinovsky (2001)). In spite
of the nonzero dissipation, this process does not require extra energy from outside,
although it must be sustained by the forward energy transfer from behind the kink to its
front. The availability of such a mechanism depends on the presence in the dispersive
spectrum of the associated micromodel of the waves whose group velocity is larger than
the phase velocity.  Obviously, the velocity of the kink must be appropriate to make this
(dispersional) "tunneling" possible, which explains the microscopic origin for the
macroscopic restriction on the kink’s velocity (kinetic relation).

For the adiabatic kinks the most general kinetic relation can be written in the form

 0),,,,,,( =−+−+−+ DTTvvwwψ . (2.4.5)

The Rankine-Hugoniot conditions and the Galilean invariance allow one to reduce this
formula, at least locally, to a relation among three variables only, e.g.

 ( ) 0,, =++ DTwψ . (2.4.6)

We remark that in the  phenomenological modeling, conditions analogous to  (2.4.6) are
often formulated in terms of a relation between  two variables: the configurational force

[ ]sG −≡  (or [ ]{ }Ts− ) and the conjugate "flux" D .

2.5 Nucleation

In order to understand better what happens when we select a nucleation point
0xx = , consider the behavior of the self-similar solutions (2.3.6) and (2.3.7) after

sufficiently small time tt ∆= . For simplicity, we shall limit our discussion to the
isothermal case.

It will be convenient to parameterize functions ),( txw ∆  and ),( txv ∆  representing
solution (2.3.6) at tt ∆=  by x  and present them in the ),( vw  plane. One can see that
through this construction, we obtain a set of points describing the piece-wise constant
solution of the self-similar problem which can be connected to form a loop, beginning
and ending at the point )0,( 00 =vw  (see Fig. 6). The detailed configuration of the
connecting segments depends on the fine internal structure of both shocks and kinks: this
information obviously lies outside the scope of the non-regularized macro-model. We
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also notice that due to the self-similarity of the solution, the resulting loop does not alter
as 0→∆t , even though both strain and velocity fields converge to the constant values
everywhere outside the point 0xx = .

From the above observations one can conclude that by selecting a nucleation point
0x , we have actually supplemented our constant initial data with a singular part

represented by a measure in the configurational space ( vw, ) localized at 0xx = .  Since
the macroscopic energy of this measure-valued nucleus is identically zero, the integral
contribution to the initial data should be measured by the corresponding energy density,
which is finite and which can be used as a measure of stability of the metastable state.
The presence of the actual barrier separating the uniform initial state and the state with
the superimposed loop can only be made explicit in the framework of a regularized
model, which contains some finite internal length scale.

Finally we remark that based on the singular initial data presented above one can
compute the instantaneous rate of dissipation ℜ

        [ ] { } [ ]( ) [ ] { } [ ]( )kinkshock wfDwfD σσ −+−=ℜ 21 . (2.5.1)

If the kinetic relation is known, the energy release rate (2.5.1), which, due to the self-
similarity of the solution, does not depend on t, can be calculated as a function of 0w ; the
fact that 0≠ℜ  at 0=t  means that the initial data (2.3.5) are instantly “dissipative.”

3. The regularized model

In this section, we introduce a regularization of our model, which combines the
simplest gradient correction to the elastic energy with the Fourier heat conductivity and
Kelvin viscoelasticity (Slemrod (1984a), Truskinovsky (1985, 1993b), Turteltaub (1997a,
b), Ngan and Truskinovsky (1999)). For brevity we shall call this model thermo-visco-
capillary (TVC) model. Since after this regularization the group velocity of plane waves
can be larger than the phase velocity one can conclude that the TVC model may in
principle provide a mechanism for the barrier crossing inside the subsonic kinks.

3.1 Governing equations

Consider a a thermo-elastic material whose energy depends on both strain and
strain gradient ),/,( sxwwee ∂∂= . Then, instead of  (2.1.1), we obtain

            2

2
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∂
∂=

∂
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Here we ∂∂= /σ  is the stress, and

            ( )xw
em
∂∂∂

∂=
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is the hyper-stress (moment). For determinacy we assume that the strain gradient
contribution to the energy is of the form

2

),(),,( �
�

�
�
�

�

∂
∂+=

∂
∂

x
wswes

x
wwe ε  (3.1.2)

where ε  is a positive constant which characterizes the degree of non-locality. Then for
the hyper-stress, we obtain xwm ∂∂ε= 2 .

The dissipative part of our regularized model includes Fourier heat conductivity
and Kelvin viscosity.  Specifically, introduce a heat flux

x
Tq
∂
∂−= κ   (3.1.3)

with κ  being the coefficient of heat conductivity, and rewrite the energy equation as
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∂
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2

σ .     (3.1.4)

The viscous contribution to the stress takes a conventional form

x
v
∂
∂+→ ησσ , (3.1.5)

where η  is the viscosity coefficient. With these additional assumptions, the system
(3.1.1) takes the form
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∂
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The equations (3.1.6) constitute the basis of the TVC model. We remark that the energy
equation (3.1.63) can be substituted by an equivalent equation governing the balance of
entropy
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v
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3.2  Material model

In order to be able to perform numerical simulations, we need to specify at least
one of the thermodynamic potentials, for instance, ),( Twf . We make the simplest
assumptions:

(i) the isothermal stress-strain curve is cubic;
(ii) the stress at constant strain is a linear function of temperature;
(iii) the equilibrium (Maxwell) strains w1 and w2  are independent of

temperature.

These assumptions lead to the following stress-strain relation

( )( ) ( )( )212
1

21),( wwwwwwwKBTATw +−−−++=σ (3.2.1)

where 1w , 2w > 1w , A , B  and K  are all positive constants. One can show that in this
model the transformation strain 12 ww −  is indeed independent of temperature, that the
Maxwell stress increases linearly with temperature

 BTAM +=σ , (3.2.2)

and that the latent heat of transformation from the low-strain phase to the high strain
phase is negative (see below). We remark that these three properties are in qualitative
agreement with the experimental data on various shape memory alloys (see, for instance,
Leo et al. (1993), and Shield et al. (1997)).

By integrating the stress-strain relation, we obtain the expression for the internal
energy

( ) ( ) ( ){ }wwwwwwwwwwwwwwKAwTwe 21212
122

22
1

21
2
12

1
2
13

212
14

4
1 2),( +−++++−+=

( )Tϕ+ . (3.2.3)

Following common practice we shall assume that the specific heat VC is constant. Then

( )rV TTCT −=)(ϕ , (3.2.4)

where rT  is some reference temperature. The free energy can now be written as

( )
( ) ( ) ( ){ }

)./ln(
2

,

21212
122

22
1

21
2
12

1
2
13

212
14

4
1

rV TTTC
wwwwwwwwwwwwwwK

BTwAwTwf

−
+−++++−

++=
 (3.2.5)

To demonstrate the physical meaning of the parameter B , one can compute the specific
entropy,
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( ) VrV CTTCBws ++−= /ln , (3.2.6)

and the latent heat
TwwBssTQ )()( 1212 −−=−= . (3.2.7)

One can see that for B > 0  the heat is released when the material transforms from the low
strain phase to the high strain phase. This in turn implies that the equilibrium phase
boundary in the stress-temperature phase diagram has a positive slope: 0≥= BdTd Mσ .

3.3 Non-dimensionalization

In this sub-section, we normalize the variables and introduce the main
dimensionless parameters of the problem. Define

     xlx r ˆ= , ttt r
ˆ= , TTT r

ˆ= , σσσ ˆr= , eee r ˆ= , fff r
ˆ= , sss r ˆ= , ( )vtlv rr ˆ=  (3.3.1)

where the reference scales rl , rt , rT , rσ , re , rf  and rs  are chosen in such a way that

( ) AKTCTstlfe rVrrrrrrr ======= 2σ . (3.3.2)

This specific choice implies that all energy scales are of the same order and that the
maximum size of the hysteresis is of the order of the Maxwell stress. We choose the
length scale to be of the order of the capillary length

Alr /2 ε= .             (3.3.3)

Finally, we assume that the transformation strain is of order one, and, for determinacy,
we choose equilibrium strains to be

01 =w , 12 =w .             (3.3.4)

With these assumptions, we can now non-dimensionalize the main system of
equations. In dimensionless variables, the system (3.1.6) can be rewritten as

4

4

2

3

12

2 ),(
x
u

tx
u

x
tw

t
u

∂
∂−

∂∂
∂+

∂
∂=

∂
∂ Wσ , (3.3.5)

tx
u

x
T

t
TwsT

∂∂
∂+

∂
∂=

∂
∂ −

2

12

2
1

2
),( WW , (3.3.6)

where xuw ∂∂= /  and the two constitutive functions ),( Twσ and ),( tws are specified by
the formulas
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))(1(1),( 2
1

3 −−++= wwwTTw Wσ , (3.3.7)
1ln),( 3 ++−= TwTws W .       (3.3.8)

The non-dimensional forms of the other important thermodynamic functions are
presented below

1),( 2
4

13
2

14
4

1 −++−+= TwwwwTwe , (3.3.9)
TTwwwwTwTwf ln),( 2

4
13

2
14

4
1

3 −+−++= W .          (3.3.10)

To summarize, the system of equations (3.3.5, 3.3.6) contains three essential non-
dimensional parameters 1W , 2W , and 3W :

V

V

C
BC === 321 ,, WWW

κ
ε

ε
η .           (3.3.11)

The first parameter, 1W , can be viewed as a dimensionless ratio of viscous dissipation
and interfacial energy. The second parameter, 2W , represents a dimensionless measure of
the interfacial energy over the heat conductive dissipation. Finally, parameter 3W  has a
purely thermodynamical nature, and can be considered as a dimensionless expression of
the heat of transformation in the units of specific heat.

4. Traveling waves

In this section, we briefly review the travelling wave solutions to the system
(3.3.5, 3.3.6) describing the internal structure of a moving kink and explicitly compute
the kinetic relation in a range of parameters 321  and , WWW . We refer the reader to Ngan
and Truskinovsky (1999) for additional details.

4.1 Boundary value problem

 Consider a special class of solutions to the system (3.3.5, 3.3.6) in the form of the
travelling waves )( ),( ),( zTTzvvzww === , where Dtxz −= , and D  is the wave
velocity. After the variable v  is eliminated, the main system of non-dimensional
equations can be written in the form

( ){ }+++ −−′−−=′′ wwDwDTwTww 2
12

1 ),(),( Wσσ , (4.1.1)
        ( ) ( ){ }++++++ −−′−−−−−=′ wwTwwwwDTweTweDT ),(),(),( 222

2
1

2 σW (4.1.2)
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where ),( Twe  and ),( Twσ  are given by (3.3.7, 3.3.9). Equations (4.1.1, 4.1.2) together
with the constitutive relations (3.3.7, 3.3.9) and the boundary conditions

±=±∞ ww )(  and ±=±∞ TT )( (4.1.3)

constitute a boundary value problem on the real axis. The desired solution corresponds to
the heteroclinic trajectory of the dynamical system (4.1.1, 4.1.2), and the main problem is
to find restrictions on the set of boundary values ±w , ±v , ±T  and D  which guarantee the
existence of such a trajectory. After the solution is known, the rate of entropy production
(and the kinetic relation) can be calculated explicitly from

[ ] �
∞

∞−

′
+

′
=−

T
v

T
TsD

2
1

2
2

2 W
W

. (4.1.4)

Suppose that the state in front of the discontinuity is given. This fixes one of the
critical points of the system  (4.1.1, 4.1.2), and leaves the other critical point unspecified
until the speed of the jump discontinuity D is prescribed. Now, the problem of
admissibility can be viewed as a nonlinear eigenvalue problem with respect to D. The
fact that kinks correspond to saddle-to-saddle trajectories, while shocks correspond to
saddle-to-node (focus) trajectories, is responsible for the difference in the number of
admissibility conditions. Since the saddle-to-node transition is structurally stable, the
spectrum of the admissible speeds for the shocks will be continuous. On the other hand,
since the saddle-to-saddle transition is not structurally stable, one obtains in the case of
kinks a discrete set of admissible velocities D selected by what became known as kinetic
relation.

4.2 Kinetic relation

In the simplest special case ∞== VC,03W , the temperature can be completely
eliminated from (4.1.1) and the problem reduces to a purely mechanical one.  The
advantage of this simplified setting (isothermal regime) is that one can construct a closed
form solution describing kinks

( ) ( )
�
�
�

�
�
� −−−++= −+−+−+

04
tanh

22
zzwwwwwwzw . (4.2.1)

It is straightforward to check that the ansatz (4.2.1) is compatible with the equation
(4.1.1) if parameters w− , w+  and D  satisfy the following relations

1)1)(/121(3)( 22
1

2 =−+−+− −++− wwww W  ,   (4.2.2)

1/)1(3 W−+= −+ wwD ,

which describe points of the discrete spectrum of the eigenvalue problem (4.1.1-4.1.3).
With parameter −w  eliminated from (4.2.2) the corresponding pairs (w+ , D ) describe a
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one-dimensional subset of kinks inside the full admissibility set describing all possible
traveling waves  (shocks and kinks) for the given value of 1W .

 The generic picture is shown in Fig. 7. Notice that all kinetic curves originate
from the point A, which marks the onset of metastability in the isothermal problem (see
(2.2.1)), and end on the sonic line (e.g. point O for W1=2.5). Shocks occupy a 2D subset
of the supersonic domain. For instance, at W1=2.5, the admissible region consists of the
curve AO (kinks) and the shaded area DOA′ (shocks)2. The kinetic curves for the
adiabatic case ( ∞=2W ) possess the same basic features, with the only difference that the
isothermal sonic line tcD =  has to be substituted by the adiabatic sonic line scD = , and
that the point A has to be replaced by the corresponding adiabatic limit of metastability
(2.2.3).

In the general case which is neither isothermal, nor adiabatic (see Fig. 8), all
kinetic curves originate from a particular point M whose location may be found explicitly
(see Ngan and Truskinovsky (1999)). A close look at the structure of the kinetic curves
around point M reveals rather complicated behavior. For example, at W2=40 one can see
that there exist multiple solutions.  These solutions are characterized by finite oscillations
of strain in the transitional region which hints towards mixing of the two phases within
the phase boundary structure; the number of the phase switchings increases as we go
from point P, to Q, and then to R.  Stability of these solutions with multiple oscillations is
highly questionable and in the rest of the paper we shall only consider traveling waves
with the monotone structure.

4.3  Mobility curves 

As mentioned in Section 2, the kinetic relation is often formulated in terms of a
relation between the configurational force G and the conjugate “flux” D.  The kinetic
curves represented in these coordinates are often called mobility curves. To obtain the
mobility curves in our case we must fix one of the parameters, which we choose to be the
temperature ahead of the discontinuity.  The computed 2W  dependence of the mobility
curves is shown in Fig. 9. One can see that mobility curves, corresponding to different
values of 2W , converge to point M as 0→D (same as point M in Fig. 8). The
configurational force G at this point is different from zero, which means that the
dissipative potential at zero velocities is not smooth (trapping). At large 2W  (small heat
conductivity), the mobility curves become non-monotone; a closer look around point M
again reveals complex loop structures which we shall neglect in the rest of the paper.

Overall our analysis reveals two important effects distinguishing adiabatic kinks
from their isothermal counterparts. First, in the adiabatic case, the mobility curves do not
originate from the point where the driving force is zero due to the negative feedback
provided by the latent heat. The second effect is the multi-valuedness and non-
monotonicity of the mobility curves at low velocities, which in principle can give rise to a
stick-slip behavior (see, for instance, Rosakis and Knowles (1997)).

                                                          
2 The reader is referred to Truskinovsky (1994)  and Ngan and Truskinovsky (1999) for the reasoning why
not all  supersonic shocks are admissible and for the explicit construction of the curve OA′.



18

5. Solution of the Riemann problem

With the location of the nucleation point fixed and kinetic relation specified, one
can close the system of equations describing self-similar decomposition of a metastable
state. In this Section we explicitly determine parameters of the flow including velocities
of the precursor shocks and of the trailing subsonic kinks. As before, we consider
isothermal and adiabatic cases separately.

5.1 Isothermal case

Consider a metastable state characterized by the constant temperature 0TT = ,
constant strain 0ww = , and zero velocity 00 == vv . To determine numerical values of
parameters of the nontrivial self-similar solution, one must simultaneously solve the
following equations:

 ( ) ( )++ −=−− vvwwDs 00 , (5.1.1)
( ) ),(),( 0000 TwTwvvDs ++ σ−σ=−− , (5.1.2)

for the shock, and

( ) ( )−+−+ −=−− vvwwDp , (5.1.3)
( ) ),(),( 00 TwTwvvDp −+−+ σ−σ=−− (5.1.4)

for the kink. In addition, we require that 00 =v  and 02 =v . By imposing the constitutive
model from section 4.2, we obtain the following additional jump condition for the kink
(see (4.2.2))

1)1)(/121(3)( 22
1

2 =−+−+− +−−+ wwww W .    (5.1.5)

With five equations (5.1.1-5.1.5) for the five unknowns sD , pD , 1w , 2w , 1v  the algebraic
problem is well defined. Notice that our solution depends on the parameters of the
regularization only through the non-dimensional ratio 1W . The numerical solutions at
different values of 1W  are illustrated in Fig. 10.  One can see that in the isothermal
problem the self-similar solution describing nucleation is unique.

We remark that the computed solution describes an “explosion” - the energy
release due to the decomposition of a metastable state. It is then of interest to determine
how this energy is distributed. A fraction of the released energy will be dissipated inside
shocks and kinks. The rest will be transformed into kinetic energy of the moving
material. The overall rate of dissipation is equal to
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Inside the shocks the energy is dissipated with the rate
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Similarly, inside the kinks the rate of dissipation is

 ( )
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� −
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−σ= −+
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+

−
wwdwDA

w

wpp 2
2   . (5.1.8)

Obviously ps AAE +=′ . These expressions can be compared with the overall rate of the
elastic energy release

[ ] [ ])()(2)()(2 0 −++ −+−=′ wfwfDwfwfDE psel . (5.1.9)

In particular one can compute the fractions of the released energy dissipated in the unit of
time by shocks (x1) and kinks (x3) and the fraction transformed into the kinetic energy
(x2). From the expressions (5.1.7, 5.1.8, 5.1.9) we obtain
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The computational results are presented in Fig 11. Notice that when 1W  tends to zero,
the percentage of the energy dissipated inside the kinks approaches zero while that in the
shock waves remains finite.
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5.2 Adiabatic case

Now consider the adiabatic problem. As we have seen in Section 2 the dynamic
solution in this case consists again of two symmetric shocks emerging from the
nucleation point and propagating into opposite directions. These shocks are followed by
two kinks (see Fig. 4). The initial configuration is of the form 0ww = , 00 == vv  with

0TT = , for some fixed dimensionless temperature 0T . The Rankine-Hugoniot jump
conditions across the shock take the form

( ) ( )++ −=−− vvwwDs 00 , (5.2.1)
( ) ),(),( 000 +++ σ−σ=−− TwTwvvDs , (5.2.2)

 +++
+
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22
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00 . (5.2.3)

Across the kink we obtain

                    ( ) ( )−+−+ −=−− vvwwDp , (5.2.4)
( ) ),(),( −−++−+ σ−σ=−− TwTwvvDp , (5.2.5)
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As in the isothermal case, here we also assume that 00 =v  and 0=−v . Given the initial
state ),( 00 Tw , we have six relations (5.2.1-5.2.6) for the seven unknowns

sD , pD , 1w , 2w , 1T , 2T , 1v . The admissibility criterion implicitly formulated in Section 4
gives us an extra condition to close the system; formally, the kinetic relation can be
expressed in the form ( ) 0,,~

211 =wTwψ  where the specific form of the function ψ~

depends on the nondimensional parameters 1W , 2W  and 3W . By solving the above
equations one can completely specify the self-similar dynamical process which follows
the nucleation event.

Our numerical results are presented in Fig. 12, where we fixed parameters
1W , 3W  and 0T  and varied parameter 2W . By comparing the adiabatic solutions with the

similar solutions in the isothermal case, we observe a new feature: for sufficiently large
2W , the initial problem can have two nontrivial solutions. Thus, for instance, at W2=40,

and w0 between 0.083 and 0.123, our system of algebraic equations generates two values
of w+. The nonuniqueness here results from the nonmonotonicity of the mobility curves
(see Fig. 9); it should be noted that these two solutions arise from the “main branch” of
the kinetic relation, not the “loop structure”, which have been excluded from the analysis.
In order to decide which of the two self-similar solutions is an attractor in the non-self-
similar setting, one needs to solve the regularized initial value problem with a finite
localized perturbation added to the original Riemann data.
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6. Numerical solutions

In this section we look closely at the initial stage of the nucleation event and
employ the TVC model from Section 4 to study the non-self-similar stage of the
nucleation process. Technically, we need to solve numerically equations (3.3.5, 3.3.6) in
the infinite domain for initial data with a small but finite support.

6.1  Isothermal case

Our method of spatial discretization was motivated by the idea of an infinite one-
dimensional discrete chain with masses connected by nonlinear springs. In the long wave
limit such a chain can be described by continuum with  energy density depending on both
strains and strain gradients. One can show that the corresponding gradient model will be
characterized by a non-negative capillarity coefficient ( 0>ε ) only if the interaction of
both first and second nearest neighbors is taken into consideration and only if the
interaction of the second nearest neighbor is unstable (e.g. [Mindlin (1965), Kunin
(1982), Triantafyllidis and Bardenhagen (1993)).

Define nu  as the displacement of the nth particle from its reference position, and a
as the reference length. Then the elastic energy of the chain with nearest and next to
nearest neighbor interactions can be written in the form

�
−+−= ++

n

nnnn

a
uuaf

a
uuafW )

2
(2)( 2

2
1

1 . (6.1.1)

The springs connecting nearest and next to nearest neighbors are characterized by elastic
potentials )(1 wf  and )(2 wf , accordingly. We remark that the reference states for the two
springs may be different, and that the corresponding spring stiffnesses at zero force may
have different signs; a finite chain of this type with quadratic potentials 1f and 2f  has
been recently studied in Charlotte and Truskinovsky (2001).

The kinetic energy of the chain is given by the formula
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where the scaling is chosen to be compatible with the assumption that the reference
density is equal to unity. The equation of motion generated by (6.1.1-2) takes the form
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To obtain a long wave continuum limit of (6.1.1-3), one can replace the finite differences
by the first few terms of the Taylor expansion, and substitute the finite sums by integrals.
Then for the elastic and kinetic energies we obtain
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xxx uufW ε+= � , �= 2

2
1

tuK , (6.1.4)

where the sub-index denotes partial derivative in x while the superimposed dot denotes
partial derivative in time. In (6.1.4) the following new functions were introduced

)(2)()(ˆ
21 xxx ufufuf += , (6.1.5)

{ }3/)(24/)()( 21
2

xxx ufufau ′+′−=ε . (6.1.6)

The continuum equation of motion can now be written in the form

   { }xxxxxxxxxtt uuuuufu 2)()(2)(ˆ εε ′−−′=                (6.1.7)

It is not hard to check that this regularized wave equation is compatible with the gradient
part of our TVC model if

  )()(ˆ
xx uuf σ=′ ,     (6.1.8)

   constux =≡ εε )( .              (6.1.9)

For the consistency of this discretization procedure we need to choose functions 1f  and

2f  in such a way that (6.1.8-9) are satisfied. Since in our continuous model, )( xuσ  was
taken to be cubic, it is natural to assume that the functions 1f ′  and 2f ′  are also cubic
polynomials
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Now, if we choose
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1
Ad = , 62

Ad −= ,           (6.1.11)

where constants A and K are the same as in (3.2.1), and substitute (6.1.10) and (6.1.11)
into equations (6.1.5-6), we obtain the correspondence

xxxx uuuKAu ))(1()( 2
1−−+=σ , 2

2
1 ca=ε .           (6.1.12)

Finally, the discrete and continuum models will match if we choose 2/2 ac ε= . To
simulate viscous damping, one can include into the finite difference equation two
additional dissipative terms depending on  )(tun� . We obtain
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Here η  is the damping coefficient, which we choose to be identical with our viscosity
coefficient in (3.1.5).   In the long wave approximation (6.1.13) gives

{ } xxtxxxxtt uuuu ηεσ +−= 2)( (6.1.15)

which is exactly the isothermal adaptation of the TVC equations. In what follows, the
system of ODE (6.1.13) will be used as a discretized version of (6.1.15).

6.2  Isothermal nucleation

In Section 2, we have found that in the isothermal case there exists a two-
parameter family of self-similar solutions describing dynamic decomposition of a
metastable state. To single out a unique solution, one had to choose a nucleation point

0xx = , and specify a non-dimensional parameter W1 (see Section 5). Here instead we
study numerically the discrete problem (6.1.13) with the functions 1f  and 2f  prescribed
in (6.1.10-11) and with parameters η  and ε  chosen in such a way that εη=1W . We
consider a finite chain with a sufficiently large number of points to ignore surface
boundary layers (see Charlotte and Truskinovsky (2001)) and simulate the process for
sufficiently short time so that the interaction of the radiated waves with the boundary
points could be neglected.

In our discrete setting the initial Riemann data considered in Section 2 are
approximated by

         anwun 0)0( = , 0)0( =nu� (6.2.1)

with strain w0  in the metastability interval for the low-strain phase of the material (3.2.1).
To initiate the transformation, we need to superimpose to these data a small perturbation
centered at 0=x . In our numerical experiments we considered different types of
perturbations, all localized in an interval 2/2/ ∆≤≤∆− x , including the sinusoidal type

( )   )cos(0max ∆
−= xwww πδ and the power law type ( )  1
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∆
−−= xwwwδ with n=2

and n=6. Here, maxw  is the maximum strain and ∆  is the spatial extent of the perturbation.
The results of the numerical experiments presented in Fig. 13-15 confirm that

large perturbations evolve into a regime approaching the self-similar dynamic solution of
Section 5 while small perturbations gradually decay. This is compatible with the
existence of two attractors and suggests that the nucleation criterion should be related to
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the size of the domain of attraction of the trivial regime (decay). Specifically, Fig. 13
illustrates a typical solution with nucleation. For the case shown, the perturbation was
created at time 1tt =  and the simulation was terminated at some later time 2tt = . As
expected, two precursor shocks move away from the nucleation site, followed by a pair of
slower moving kinks.

To compare the behavior of the discrete and continuum models quantitatively, the
experiments were repeated for different values of initial strain 0w  and different
parameters 1W . The results for the two models, regularized and non-regularized, are
compared in Fig. 14. One can see that semi-analytic and numerical data are practically
undistinguishable. Finally, Fig. 15 shows how the magnitude of the critical perturbation

0max www −=∆  varies with the extent and the shape of the perturbation. The dashed
region in this figure corresponds to supercritical perturbations, sufficient to initiate a
dynamic nucleation.

6.3 Critical nucleus

In this subsection, we compute analytically the lower bound for the energy
associated with the critical perturbation and compare it with numerical data from Section
6.2. Such a bound can be obtained as an energy of the critical nucleus corresponding to a
saddle point (of the static problem) with a one-dimensional unstable manifold. The
critical perturbation so defined is then necessarily located on the boundary of the basin of
attraction of the initial metastable configuration (e.g. (Bates and Fife (1993)).

In the infinite domain the critical nucleus is described by a homoclinic trajectory
of the equation

{ })()(
2
1

0wwwxx σσ
ε

−= , (6.3.2)

which is readily available in the case of cubic stress-strain relation. The fact that this
particular perturbation plays a role of the threshold is illustrated by Fig. 16, clearly
indicating sensitivity of dynamics with respect to slight variations of the initial data
around this particular profile. In the two numerical experiments presented in Fig. 16,
small perturbations ( )xψ  and ( )xψ−  were added to a profile describing the critical
nucleus (homoclinic solution of (6.3.2)). In the first case the perturbation resulted in
nucleation and growth of the new phase. In the second case the equivalent perturbation of
the opposite sign caused the deterioration of the critical nucleus and the eventual return to
the uniform metastable profile.

It is instructive to compare the energy of the critical nucleus with the energies of
the critical perturbations of other shapes discussed in Section 6.2 (see also Fig.15). For
the critical nucleus we obtain

              ( ) ( ) ( )  )- ( 2
000 xc wwwwwfwfE εσ +−−=∆ �

∞

∞−
(6.3.3)

which can also be rewritten as
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We notice that the expression in the right hand side of (6.3.4), measuring the energy
density associated with the critical nucleus, is independent of ε . The graph of εcE∆
as a function of 0w  is presented in Fig. 17 (a). As we see inside the metastable domain
the size of the barrier diminishes to zero between the Maxwell state ( 00 =w ) and the
spinodal state ( 217.00 =w ).

Now, consider E∆ , the energy of a critical perturbation from the special classes
studied in Section 6.2 (sinusoidal, power law, etc.). According to Fig. 17(b), the threshold

cE∆  corresponding to the critical nucleus (6.3.3) lies in the 0wE −∆  space below every
other threshold. This observation supports the idea that cE∆  represents the lower bound
for the activation energy required for triggering the decomposition of a metastable state.
We notice that both the energy of the critical nucleus and the size of its support are
proportional to ε . In the limit 0→ε , the energy of the critical perturbation goes to
zero; however the associated energy density (6.3.4) remains finite depending on w0  (or
associated applied stress) only. This observation suggests that the nucleation criterion can
be formulated in terms of the energy density of the exterior measure-valued "noise". As
we have seen in the analysis of the self-similar solutions, this noise is a purely micro-
level effect, which is invisible at the continuum level ( see Section 2.5).

6.4  Non-isothermal nucleation

The non-isothermal problem encompasses all the complications of the isothermal
problem plus the additional ones due to the non-monotonicity of the mobility curves.
Indeed, as we have shown previously, in the adiabatic setting the degenerate Riemann
problem (2.3.3) may have two non-trivial self-similar solutions, both describing the
process of nucleation and growth. The direct dynamic simulation of the nucleation
phenomenon in the regularized setting can provide valuable insights concerning stability
of the corresponding self-similar solutions and the nature of the attractors for the generic
initial data with a localized support.

In this Section, we formally generalize our discrete model from Section 6.1 to the
adiabatic case by adding the temperature field T as an additional discrete variable. To
include the latent heat effects, we modify the spring response functions 1f  and 2f  in the
following manner

( )
( ) TBwcwbwadTwf

TBwcwbwadTwf

2
3

2
2

2222

1
3

1
2

1111

432,
432,

++++=′
++++=′

, (6.4.1)

where
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With these modifications, our finite difference–differential equation for the displacement
field takes the form
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is equivalent to one of the equations used in the TVC model (3.1.8-9). To identify a
discrete equation for “temperature”, we first rewrite the continuous entropy equation
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where ),( Twss = . We now discretize (6.4.5) to obtain
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One can show that (6.4.5) and (6.4.6) agree with each other within )( 4aO .
Now by using the discrete model (6.4.2, 6.4.6) we can study the non-self-similar

stage of the non-isothermal nucleation process in more detail. The approach here will be
the same as in the isothermal problem and we present our results as a set of figures
analogous to the ones discussed in Section 6.2. Thus, Fig. 18 shows the typical strain and
temperature profiles during the dynamical breakdown of the metastable state. In Fig. 19,
we compare our dynamic simulations with the semi-analytical self-similar solutions from
Section 5. The comparison shows that the discretization is adequate and that our
numerical results closely agree with the curves obtained before. We notice, however that
the regularized model allows one to reproduce only one of the two self-similar solutions
describing nucleation.

Indeed, in the dynamic simulations with W1=1, W2=40 and W3=0.03, we observe
that when the initial strain w0 lies between the values 0.083 and 0.123, the numerical
solution approaches only one of the two self-similar regimes, namely the one represented
by the lower branch of the nucleation curve (see Fig. 19). We also notice that the stable
solutions contain only those kinks which are located on the ascending section of the
mobility curve where the driving force grows with the kink velocity.

To explore this issue further, we prescribed special initial data corresponding
exactly to point A from Fig. 19 and let the solution evolve according to our regularized
model. The numerical experiments show that such a profile immediately breaks down
into an alternative system of waves. The initial stage of the associated wave splitting
process is detailed in Fig. 20. Similar phenomena were observed  when the initial data
were taken at  the points B and C. At the same time, for the points on the lower branch of
the nucleation curve, analogous tests show stable evolution, indicating that the
corresponding solutions are stable. These numerical observations lend evidence that
solutions represented by the upper branch of the nucleation curve are unstable. We
emphasize that the corresponding kinks all located on the descending branch of the
associated mobility curve (see Fig. 9).  Rigorous proof of the instability of these kinks
presents an interesting challenge (see related work of Benzoni-Gavage (1999), Corli and
Sable-Tougeron (2000) and Zumbrun (2000)).

7. Conclusions

The paper addresses the issue of explosive nucleation of a new phase in the
framework of the most elementary theory of thermo-elastic rods. In the classical scenario,
the decomposition of a metastable state can be simulated by a self-similar solution of a
degenerate Riemann problem. However, this Riemann problem, even with kinetic
relation specified, is ill-posed and the non-uniqueness occurs among regimes with
nucleation and the trivial regime with no new phase forming. This ill-posedness makes it
necessary to abandon the self-similar setting and return to the solution of the more
complex, micro-level problem with regularized initial data. With the goal of finding the
limits of stability associated with a given metastable state we studied evolution of the
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localized perturbations superimposed on this metastable state.  Our main result is a
quantitative connection between the possibility of nucleation and the size of the domain
of attraction of the trivial regime describing metastable equilibrium.

We interpret the non-uniqueness in the original thermo-elastic problem as an
indicator of the essential interaction between continuum and sub-continuum scales. It is
important to remember that the classical continuum theory represents a long wave
approximation to the behavior of a structured medium (atomic lattice, layered composite,
plate of finite thickness) and as such does not contain information about the processes at
small scales which are effectively homogenized out.  In some cases the detailed behavior
at the micro-level turns out to be irrelevant and the closure can be achieved by
prescribing some very general thermodynamic constraints like the entropy inequality.
This situation can be illustrated by the fact that in the hyperbolic systems the fine
structure of the shock discontinuity does not affect the dynamics and that singular
perturbations in the initial data die out instantly. If the energy at the micro-level is non-
convex, like in the case of phase transitions, the situation is more complex and in order to
obtain a unique solution at the continuum level, one must "de-homogenize" the naïve
macro model and introduce additional physical hypotheses about the behavior at the sub-
continuum scales. This kind of regularization is achieved automatically in numerical
calculations because of the dissipation and dispersion which discretization itself brings
into the model.

In this paper, we use the proven TVC model as a prototypical micro-description
and show how the information about the behavior of the solutions at the micro-scale can
be used to narrow the non-uniqueness at the macro-scale. The gradient part of this model
contains a small parameter with a scale of length ( ε ), and with other small parameters
scaled accordingly the classical thermo-elasticity can be viewed as a limit of this "micro-
model" as this parameter tends to zero. Through the study of the nucleation phenomenon
we have shown that the localized perturbations of the form )/( εφ x  can influence the
choice of the attractor for the limiting problem.  We observe that for this type of
perturbations, support but not amplitude vanishes as the small parameter ε  goes to
zero. The same phenomenon is the dependence of the limiting solution on the
contributions of the type )/)(( εϕ Dtx − , describing the structure of the kink and
generating specific kinetic relations.  As we see in this problem not only the limit but also
the character of convergence matters.  This suggests that consistent limit of the TVC
regularization of the continuum theory with non-convex energy should be formulated in a
broader functional space than is currently accepted in the classical thermo-elasticity. That
is why, our nucleation criterion detailed in Fig. 15, 17 is presented in terms of intensity of
the perturbations, a parameter which remain invisible in the classical setting.
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Fig. 1. The non-convex free energy density at constant temperature  (a) and the associated non-monotone
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region), and alternative modes of decomposition are also available.
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