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Thermodynamics of energy conversion via first order
phase transformation in low hysteresis magnetic
materials

Yintao Song,a Kanwal Preet Bhatti,ab Vijay Srivastava,†a C. Leightonb

and Richard D. James*a

We investigate the thermodynamics of first order non-ferromagnetic to ferromagnetic phase

transformation in low thermal hysteresis alloys with compositions near Ni44Co6Mn40Sn10 as a basis for

the study of multiferroic energy conversion. We develop a Gibbs free energy function based on

magnetic and calorimetric measurements that accounts for the magnetic behavior and martensitic

phase transformation. The model predicts temperature and field induced phase transformations in

agreement with experiments. The model is used to analyze a newly discovered method for the direct

conversion of heat to electricity [Srivastava et al., Adv. Energy Mater., 2011, 1, 97], which is suited for the

small temperature difference regime, about 10–100 K. Using the model, we explore the efficiency of

energy conversion thermodynamic cycles based on this method. We also explore the implications of

these predictions for future alloy development. Finally, we relate our simple free energy to more

sophisticated theories that account for magnetic domains, demagnetization effects, the crystallography

of martensitic phase transformations and twinning.
Broader context

The discovery of new technologies for the generation of electricity without signicant greenhouse gas emission is one of the most important environmental
imperatives of the 21st century. A recently demonstrated method of converting heat to electricity based on rst order phase transformations in multiferroic
materials [Srivastava et al., Adv. Energy Mater., 2011, 1, 97] provides a possible route to this goal, which is potentially applicable to energy conversion using the
waste heat from power plants, automobile exhaust systems, and computers, as well as natural solar- and geo-thermal sources. The efficiency of converting heat to
electricity, how best to design devices, and how to quantitatively compare this method with other methods of energy conversion rest on thermodynamic
arguments. In this paper, we present a thermomagnetic model for this new energy conversion method. Using the model, we explore the efficiency of ther-
modynamic cycles for energy conversion and the implications of these predictions for future materials development.
1 Introduction

The discovery of new technologies for the generation of elec-
tricity without signicant greenhouse gas emission is one of the
most important environmental imperatives of the 21st century.
A recently demonstrated method of converting heat to elec-
tricity based on rst order phase transformations in multi-
ferroic materials1,2 provides a possible route to this goal, which
is potentially applicable to energy conversion using the waste
heat from power plants, automobile exhaust systems, and
computers, as well as natural solar- and geo-thermal sources.
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The general idea makes use of the fact that electromagnetic
properties such as magnetization and electric polarization –

and many other properties – are sensitive to a change of lattice
parameters.3 Structural phase transformations have an abrupt
change of lattice parameters, and therefore can lead to abrupt
changes of these properties. Using standard methods of elec-
tromagnetic conversion, such as induction and charge separa-
tion, the abrupt change of a suitable electromagnetic property
can be converted into electricity. The energy obtained in this
way arises from a fraction of the latent heat absorbed. An
attractive feature of this method is the elimination of the
generator: the heat is converted directly to electricity by the
material. What fraction of the latent heat is converted to elec-
tricity, how best to design the device, and how to quantitatively
compare this method with other methods of energy conversion
rest on thermodynamic arguments.

The purpose of this paper is to present a thermodynamic
model for energy conversion using a rst order phase
Energy Environ. Sci., 2013, 6, 1315–1327 | 1315
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transformation with an abruptly changing magnetization. We
evaluate explicitly the thermodynamic functions in the theory
for the alloy Ni44Co6Mn40Sn10, which has been subject to a
detailed characterization study by calorimetry, wide angle X-ray
diffraction, SQUID magnetometry and small angle neutron
scattering.4 (The alloy used in the energy conversion demon-
stration2 was the nearby alloy Ni45Co5Mn40Sn10.) This off-stoi-
chiometric Heusler alloy undergoes a cubic (space group Fm�3m)
to monoclinic (space group P21, 5M-modulated) martensitic
phase transformation at about 390 K, with a sudden change of
magnetization. The evidence4 suggests the martensite is anti-
ferromagnetic with a small fraction of nanoscale spin clusters,
which may be retained austenite. The austenite phase of
Ni44Co6Mn40Sn10 is ferromagnetic with a magnetization of 8 �
105 A m�1 (800 emu cm�3) at 4 T near the transformation
temperature. It is fascinating to add that the nearby alloy
Ni45Co5Mn40Sn10 has a measured magnetization in austenite of
1.17 � 106 A m�1, but either an increase or a decrease of Co by
1%, substituted for Ni, leads to a signicant drop of magneti-
zation. This extreme sensitivity of magnetization to �1%
changes of composition remains unexplained.

As explained in detail elsewhere1,4 the alloys with composi-
tion near Ni45Co5Mn40Sn10 were found by combining the search
for an abrupt change of magnetization, beginning from earlier
work of Kainuma5–7 and others,1,8–10 with a systematic procedure
to lower hysteresis by improving the compatibility between
phases. This involves the tuning of lattice parameters by
changing composition so that a perfect unstressed interface is
possible between the austenite and a single variant of
martensite.3,11–13 The technical condition for this is l2 ¼ 1,
where l2 is the middle eigenvalue of the transformation stretch
matrix.3,11,12 Having l2 ¼ 1 does not contradict an otherwise
large change of lattice parameters, i.e., the other eigenvalues of
the transformation stretch matrix can still remain far away from
1, so the aforementioned abrupt change of lattice parameters is
still possible. This elimination of the usual stressed transition
layer between austenite and martensite has been shown to
drastically lower the hysteresis of the transformation and also to
signicantly reduce the migration of the transformation
temperature of the alloy under repeated cycling,14,15 a primary
indicator of degradation. Ni45Co5Mn40Sn10 has a measured
value l2 ¼ 1.0042 and a thermal hysteresis of about 6 K. Both
lowered hysteresis and a high degree of reversibility of the
phase transformation are important in energy conversion
applications.

The model can also be used to analyze magnetic refrigera-
tion based on magnetocaloric effect.16,17 Materials showing this
effect can use changes in magnetic eld to move heat from hot
to cold regions. In fact, our prototype material Ni44Co6Mn40Sn10

is close to the Ni–Mn–Sn alloy system which has been identied
to have “inverse magnetocaloric effect”.8 The magnetic refrig-
eration near room temperature is enabled by the discovery of a
so-called giant magnetocaloric effect,18 which typically occurs in
materials having a rst order martensitic phase trans-
formation.19,20 The magnetic ordering also changes abruptly
during such transformations. It can change from strong ferro-
magnetic martensite to weak ferromagnetic austenite phase,18,19
1316 | Energy Environ. Sci., 2013, 6, 1315–1327
weak ferromagnetic martensite to strong ferromagnetic
austenite,8 or antiferromagnetic martensite to ferromagnetic
austenite20,21 as in our prototype alloy. Some magnetocaloric
alloys also have low hysteresis,22 although the connection with
the alloy development strategy, l2 / 1, is unknown. Since the
thermodynamic cycles of a refrigerator and a heat engine
working at the same temperature difference are identical except
for the signs of the net work done and heat absorbed, our
explicit free energy and our analysis of energy conversion cycles
can be easily adopted to magnetic refrigerators.

The organization of the paper is as follows. Aer reviewing
experimental methods in Section 2, we describe, in Section 8,
how the simple free energy function used in the paper is related
to more general thermodynamic/micromagnetic models that
account for magnetic domains, twinning and martensitic phase
transformation. This comparison sharply denes the domain of
application and transferability of our model. Section 3 describes
our procedure for determining the free energy based on
magnetic and calorimetric measurements: a simple spin-1
Brillouin function is found to work remarkably well. This
section fully accounts for phase transformation. Section 4
compares the predictions of this free energy with further
experimental observations (not used in the evaluation of the
free energy) involving eld and temperature induced phase
transformations. In Section 5, we study several thermodynamic
(thermomagnetic) cycles that are possible according to the
theory and which are interesting from the point of view of the
direct conversion of heat to electricity. We relate these ther-
momagnetic cycles to the electric work output of a proposed
device utilizing this method of energy conversion in Section 6.
Finally, in Section 7, we summarize the main conclusions.
2 Experimental section

The active material for the characterizations was obtained from
a polycrystalline ingot (3 g) of Ni44Co6Mn40Sn10 prepared by arc
melting the elemental materials Ni (99.999%), Mn (99.98%), Co
(99.99%) and Sn (99.99%) under positive pressure of argon. The
arc melting furnace was purged three times and a Ti getter was
melted prior to melting each sample. To promote homogeneity,
the ingot was melted and turned over six times. Conversion
from Am2 kg�1 to A m�1 was done with a density 8.0 g cm�3. All
samples were weighed before and aer melting and lost less
than 1% by mass. The resulting buttons were homogenized in
an evacuated and sealed quartz tube at 900 �C for 24 h, and
quenched in room-temperature water. Differential scanning
calorimetry (DSC) measurements were done on a Thermal
Analyst, calibrated with indium, at a heating and cooling rate
of �10 K min�1 between 225 and 475 K. For the DSC
measurements, each sample was thinned and nely polished to
ensure good thermal contact with the pan. For polycrystalline
Ni44Co6Mn40Sn10 (Fig. 1) such measurements reveal Tms ¼
398 K, Tmf¼ 388 K, Tas ¼ 382 K, and Taf¼ 392 K, where Tms, Tmf,
Tas, and Taf are the martensite start, martensite nish, austenite
start, and austenite nish temperatures using the standard
parameterization of martensitic phase transformation temper-
atures. Magnetometry was done in a Quantum Design SQUID
This journal is ª The Royal Society of Chemistry 2013
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Fig. 1 (a) Heat flow and (b) heat capacity vs. temperature measured by DSC at
heating/cooling rate of 10 K min�1. Tms, Tmf, Tas, and Taf are the martensite start/
finish and austenite start/finish temperatures, respectively. The latent heat
computed from the graph is L ¼ 13.17 J g�1. Ca ¼ 3.65 mJ K�1 and Cm ¼ 3.90 mJ
K�1 are the average heat capacities for austenite and martensite single phases,
respectively.
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magnetometer from 5 to 600 K, in applied magnetic elds from
0.001 to 7 T. For low-eld measurements the remnant eld
prole in the superconducting magnet was measured, and the
eld at the sample nulled to �1 � 10�4 T. The magnetic
properties of Ni44Co6Mn40Sn10 used in the present study are
taken from ref. 4.

3 Free energy function

We now build up a thermodynamic model to describe the rst
order phase transformation in materials having different
magnetic properties in the two phases. According to classical
equilibrium thermodynamics, the Gibbs free energy j as a
function of external magnetic eld H and temperature T in a
single phase material satises the Maxwell relations

vjðH;TÞ
vH

¼ �m0M;
vjðH;TÞ

vT
¼ �S: (1)

Integrating the rst relation, we have

jðH;TÞ ¼ �m0

ðH
0

Mðh;TÞdhþ f ðTÞ; (2)
This journal is ª The Royal Society of Chemistry 2013
where f (T) is the eld-independent component of the free energy,
and M(H, T) is the magnetization as a function of external eld
and temperature. The latter can be obtained from single-phase
M–H and M–T measurements reported in the following sections,
where the exact method of interpolation is also provided. Based
on eqn (2), we can express entropy and heat capacity as

SðH;TÞ ¼ �m0

ðH
0

vMðh;TÞ
vT

dhþ df ðTÞ
dT

; (3a)

CðH;TÞ ¼ T
vSðH;TÞ

vT
: (3b)

When no eld is applied, j(H, T) reduces to f (T), and the
heat capacity is simply C(0, T) ¼ T (d2f/dT2). Based on DSC data
of the alloys of interest (Fig. 1), we treat the heat capacity of each
phase as a constant, denoted by Cm and Ca for martensite and
austenite phases, respectively. (Throughout this paper, we use
subscripts m or a to denote the thermodynamic functions in
martensite or austenite single phase, respectively. Functions
without subscripts pertain to the state of the whole specimen,
including two-phase mixtures.) The entropy of each phase at
zero eld then can be obtained by integrating eqn (3b) over the
second argument at H ¼ 0 from T0 to T.

Sm(0, T) ¼ Cmln(T/T0) + C1, (4a)

Sa(0, T) ¼ Caln(T/T0) + C2, (4b)

where T0 is the zero-eld transformation temperature given by
the DSC measurement, and the difference of integration
constants C1 � C2 is evaluated from

[Sa(0, T0) � Sm(0, T0)]T0 ¼ L, (5)

using the measured zero-eld latent heat per unit volume, L. By
basic thermodynamic principles excluding the equivocal third
law of thermodynamics, only the difference C1� C2 has physical
meaning in a temperature range bounded away from T ¼ 0 K.
Without loss of generality, we therefore choose C1 ¼ 0 and C2 ¼
L/T0�DC,DC¼ Ca� Cm. Then using eqn (3a), we have the eld-
independent components of free energy functions

fm(T) ¼ �Cm[T0 � T + T ln(T/T0)] + C3, (6a)

fa(T) ¼ �Ca[T0 � T + T ln(T/T0)] � (L/T0 � DC)T + C4. (6b)

C3 ¼ �(L � DCT0) and C4 ¼ 0 are determined by the condi-
tion fa(T0)¼ fm(T0). Substituting f 's back into eqn (2) leads to the
complete free energy functions, once the magnetization func-
tion M(H, T) is obtained. The M–H curve of the alloy at 390 K is
plotted in Fig. 2. In the gure, we see that theM–H curve can be
divided into three regions: low eld (<0.25 T), intermediate eld
(between 0.25 and 2 T), and high eld (>2 T). In the low eld
region, a small fraction of the specimen that is ferromagnetic
quickly saturates. Aer saturating the ferromagnetic compo-
nent, in the intermediate eld region, the linear response due to
the antiferromagnetic component dominates. Finally, we
Energy Environ. Sci., 2013, 6, 1315–1327 | 1317
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Fig. 2 Fitting ofM–H curve for martensite near the transformation temperature.
The fitting parameters obtained from the graph are a ¼ 19 748 A m�1 and b ¼
19.3183.

Fig. 3 Magnetization of austenite phase as a function of (a) temperature and (b)
field calculated by Weiss molecular field theory. Open circles are experimental
data for both heating and cooling,4 solid lines are fitted by Brillouin function with
mm ¼ 4.2 mB, which is the same as 8.4 mB/f.u., and the molecular field constant is
g ¼ 1573.55 T m A�1. The result shows excellent agreement with experimental
data in both Ma vs. T at fixed H and Ma vs. H at fixed T curves. The formula unit
used here is Ni1.76Co0.24Mn1.60Sn0.40. M0 ¼ Nvmm is the calculated saturation
magnetization at T ¼ 0 K.
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observe a eld induced phase transformation in the high eld
region. Since the eld used in the energy conversion is usually
in the intermediate region, for the martensite phase, we use an
affine function, Mm(H) ¼ a + bH, to t its M–H response, with
two temperature-independent parameters a and b, as shown
in Fig. 2. The total free energy of martensite phase is then
jm(H, T) ¼ m0(aH + bH2/2) + fm(T).

The difference between the linear tting and the nonlinear
data at low elds may contribute a small additive constant
(�10�6 J cm�3) to the free energy at intermediate elds aer
integration. As explained in Section 4, the temperatures Tas and
Taf computed from eqn (11) are characterized by two constant
differences (DJs and DJf in Section 4) between the Gibbs free
energies of austenite and martensite single phases. The
constant introduced here by the discrepancy between data and
linear tting in the low eld region can be absorbed into those
two tting parameters. We drop it for simplicity.

For the austenite phase, we use the Weiss molecular eld
theory to derive the magnetization function,Ma(H, T). Although
it is considered more accurate to use the Heisenberg Hamilto-
nian to describe the interactions between atomic moments, the
Weiss molecular eld theory matches experiments very well
within the range of temperature and eld of interest, as shown
below in Fig. 3. Furthermore, the simplicity of this model and
its capability of reproducing the measured effect of eld on
transformation temperature is appealing. In molecular eld
theory, each atom (or molecule in Weiss' terminology, or
formula unit in our calculation) in the crystal is assumed to
have a magnetic moment, mm J, where mm is the magnitude and
J is the direction of the moment. The magnetization is thenM¼
Nvmm h Ji, where Nv is the number of spins per unit volume. In
our tting, we found two spin sites per formula unit worked
well. h Ji is the mean value of the projection of J along a certain
direction, usually the direction of the external eld. Weiss
assumed that the interaction between an atom and all the
others can be described as an effective internal magnetic eld,
called the molecular eld, which is proportional to the magne-
tization, m0Hm ¼ gM, where g is the molecular eld constant. We
use the spin-1 Brillouin function, i.e. assuming J ¼ 1, to
compute the mean value of atomic moments
1318 | Energy Environ. Sci., 2013, 6, 1315–1327
hJi ¼ B1

�
mmðgNvmmhJi þ m0HÞ

kBT

�
; (7)

where kB is Boltzmann constant and Bj(a) is the jth Brillouin
function

BjðzÞ ¼ 2j þ 1

2j
coth

�
2j þ 1

2j
z

�
� 1

2j
coth

�
z

2j

�
: (8)

The choice J ¼ 1 is reasonable (see ref. 23) and provides a
good t, but is not supported by knowledge of the detailed
magnetic ordering of Ni44Co6Mn40Sn10. As far as we know, the
data needed for a quantitative calculation of J for austenite is
unavailable for this alloy.

Eqn (7) gives the magnetization in austenite phase as a
function of temperature and eld through the relation M ¼
Nvmm h Ji. When H ¼ 0, it reduces to the spontaneous magne-
tization as a function of temperature only. The temperature
where this spontaneous magnetization vanishes is the Curie
temperature. The molecular eld constant g which ts best the
data and which is used in following calculation gives a Curie
temperature of 439 K. The M–T curve of the same material
measured at a low eld (104 A m�1) shows that the Curie
This journal is ª The Royal Society of Chemistry 2013
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Table 1 Parameters used in the fitting of austenite magnetization function,
Ma(H, T), in Ni44Co6Mn40Sn10. Heat capacities Cm and Ca (J cm�3 K�1), and
the latent heat L (J cm�3) are obtained from the DSC measurement (Fig. 1). The
atomic moment mm (mB) and the molecular field constant g (T m A�1) for
the austenite phase (Fig. 3), and coefficients a (A m�1) and b (dimensionless) for
the martensite phase (Fig. 2), are fit to the Curie temperature and M–H, M–T
curves from the SQUID data

Cm Ca L mm g a b

2.40 2.22 105.36 4.2 1573.55 19 748 19.3183

Fig. 4 (a) Gibbs free energy of both phases expressed as eqn (2) and (b) the
transformation temperature as a function of field computed from eqn (10). The
simulation of Tas and Taf are computed from eqn (11) with the energy barriers Djs

and Djf as two fitting parameters. The method of obtaining Tas and Taf fromM–T
curves is shown in Fig. 3a. For the alloy Ni44Co6Mn40Sn10, Djs ¼ �2.3 J cm�3 and
Djf ¼ �4.3 J cm�3.
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temperature is about 425 K.4 The discrepancy between tted
and measured values of the Curie temperature suggests that the
magnetic property of this material cannot be fully explained by
such a single magnetic sublattice J ¼ 1 molecular eld
approximation. The reasons include the interaction between
multiple magnetic sublattices (Ni/Co, Mn1, Mn2)24 and the
spatial disordering of species in such an off-stoichiometric
alloy.24 In a nutshell, getting a more accurate M–H response in
the region where no magnetic measurement of austenite is
available, i.e. below the transformation temperature, is rather
difficult. However, for the purpose of studying small shis in
transformation temperature, as we do in the rest of this paper,
this simple tting model is sufficient. The tting of austenite
magnetization in Ni44Co6Mn40Sn10 is shown in Fig. 3. The
parameters used in the tting are listed in Table 1.

Overall, the tting of this data to the function Ma(H, T ) is
excellent. The small discrepancy occurring at low eld (<0.1 T) is
likely to be a result of complex domain interactions arising from
the competition of demagnetization and anisotropy energies.
The fact that the saturation magnetization at 0 K is much larger
than the high eld magnetization on the Ma–H curve in Fig. 3b
is because 415 K is very close to the Curie temperature,25 which
is about 425 K for this alloy.

In summary, the Gibbs free energy used in the rest of this
paper is dened explicitly by

jðH;TÞ ¼ �m0

ðH
0

Mðh;TÞdhþ f ðTÞ; (9)

whereM ¼Ma(H, T) ¼ Nvmmh Ji for the austenite phase, with h Ji
given by eqn (7) and (8) evaluated with mm given in Table 1,
Mm(H) ¼ a + bH for the martensite phase (a, b in Table 1), and f
for martensite and austenite, respectively, given by eqn (6) (Ca,
Cm, L in Table 1).

4 Temperature and field induced phase
transformation

The transformation temperature TM ¼ TM(H) as a function of the
eld H is dened as the temperature where the Gibbs free energy
functions of two phases are the same at the given eld (Fig. 4a), i.e.,

ja(H, TM(H)) ¼ jm(H, TM(H)). (10)

The variation of TM with changes of H denes the effect of
eld on transformation temperature, which is usually
This journal is ª The Royal Society of Chemistry 2013
quantied by differentiating eqn (10) with respect to H and
using eqn (1). The result is a version of the Clausius–Clapeyron
relation appropriate to magnetic eld induced transformation.

Note that the Gibbs free energies in Fig. 4a are not mono-
tonically decreasing, which means that the entropy is not
positive at all temperatures. This can be xed by adding an
affine function of temperature c1T + c2 to the Gibbs free energy,
which preserves all the results of the paper. In our case c1 could
be chosen to make the entropy positive. We could in fact adjust
c1 and c2 to satisfy the classical version of the third law of
thermodynamics. Since this law is controversial and since the
low temperature behavior of Ni44Co6Mn40Sn10 involves a
number of unusual effects such as exchange bias, which we
have not modeled, we did not do this. The entropy does increase
as the temperature increases, which is shown as the concavity of
Gibbs free energies.

In order to initiate the transformation from martensite to
austenite, the critical temperature Tas must be slightly higher
than the computed TM, due to the existence of an energy barrier
between two equal depth energy wells at TM. We denote such an
energy barrier Djs. A similar concept is applied to the
Energy Environ. Sci., 2013, 6, 1315–1327 | 1319
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temperature Taf with a different constant Djf. Thus in the
model, the temperature Tas and Taf are determined through

ja(H, Tas) � jm(H, Tas) ¼ Djs, (11a)

ja(H, Taf) � jm(H, Taf) ¼ Djf. (11b)

The constants on the right hand sides are chosen to give
agreement with the measured transformation temperature at
0.5 T. Then it is seen from Fig. 4b that the predicted variation of
transformation temperature with magnetic eld matches
experimental data quite well for elds in the range 0 < m0H < 8 T
in Ni44Co6Mn40Sn10. One remark here is that the zero-eld
experimental data is obtained from the DSC measurement,
while the measured austenite start and nish temperatures,
denoted by Tas and Taf respectively, are interpolated from
SQUID data. The measurements from these two methods are
slightly different from each other.

By the inspection of the M–T curves in Fig. 5a, the transition
between two phases is abrupt but not perfectly sharp. An exact
quantitative model of this phenomenon would require a
detailed study of the mechanism of nucleation,4 and could also
involve an assessment of demagnetization and rate effects.
However, simple rate-independent models23 have been
Fig. 5 Total magnetization of the whole specimen (a) varies with temperature at
fixed field, and (b) with field at fixed temperature. Experimental data in these
plots weremeasured for heating. Full datasets including heating and cooling refer
to ref. 4.

1320 | Energy Environ. Sci., 2013, 6, 1315–1327
successfully used for the quasi-static regime as in our case, and
we adopt this simple approach. Therefore, following Maat et al.
in ref. 23, we approximate vM(H, T)/vT during the phase
transformation by a Gaussian. Specically, we assume that the
average magnetization of the specimen is given by

M(H, T)¼ [1� c(Ā, DA, T)]Mm(H) + c(Ā,DA, T)Ma(H, T ), (12)

where Ā ¼ [Tas(H) + Taf(H)]/2, DA ¼ Taf(H) � Tas(H), and

cðxc;D; xÞ ¼ 1

2

�
1þ erf

�
x� xcffiffiffiffiffiffiffiffi
2D2

p
��

(13)

is the cumulative distribution function of the Gaussian, which
might be interpreted as the volume fraction of austenite.

The calculated temperature and eld induced phase trans-
formations compared with experimental data are shown in
Fig. 5. The primary features of these curves are captured
reasonably well by our method.
5 Thermodynamic cycles

A thermodynamic cycle consists of a sequence of thermody-
namic processes (oen quasi-static) of a system in which the
state variables return to their original values aer one period.
During the cycle, heat and mechanical, electrical or magnetic
work can be transferred between the system and the environ-
ment. Thermodynamic cycles are useful for analyzing energy
conversion systems.

The analog of the traditional P–V diagram in the present case
is the H–M diagram, which is Fig. 5b with the axes interchanged.
As in the traditional case when phase transformation is present,
a subset of the T–S or H–M diagrams may consist of a mixed
phase region. This region is dened as the set of values of the
state variables for which both phases minimize the Gibbs free
energy and therefore the state variables for the individual phases
necessarily give the same Gibbs free energy. In the mixed phase
region an additional state variable, the volume fraction 0 < c < 1
of, say, austenite, is introduced. In our case the values of the
state variables T, H, Sa, Sm,Ma,Mm, c in the mixed phase region
are determined by the equilibrium conditions (1), the conditions
that M and S are extensive variables, M ¼ (1 � c)Mm + cMa, S ¼
(1 � c)Sm + cSa, and the condition that the Gibbs free energy
functions of the two phases are the same, i.e., ja(H, T) ¼
jm(H, T). The values of Ma, Mm are the corresponding equi-
minimizers of the Gibbs free energy. If these conditions cannot
be satised, or the domains of the free energies 4 or j exclude
certain values of the state variables, then these regions must be
excluded from the thermodynamic diagrams. The latter is also
important for the evaluation of energy conversion devices.

The measured value l2 ¼ 1.0042 in Ni45Co5Mn40Sn10 corre-
sponds to a thermal hysteresis of 6 K (ref. 1) which is quite low.
In similar systems, by carefully tuning l2 even closer to 1,
thermal hysteresis has been reproducibly tuned to less than 1 K
in lms produced by combinatorial synthesis methods,14 and
between 2 and 3 K in arc-melted buttons.15 Similar results have
been achieved in a variety of materials, including both metals
and oxides.26,27 We assume that these procedures extend to the
This journal is ª The Royal Society of Chemistry 2013
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kinds of materials discussed here so that the (already low)
hysteresis is even further lowered, so we neglect the losses due
to hysteresis in the arguments below.

We now describe the thermodynamic diagrams based on the
specic free energy evaluated above for Ni44Co6Mn40Sn10. The
most useful is the T–S diagram shown in Fig. 6, because the area
of a loop in the T–S diagram is the net work output, due to
the rst law of thermodynamics. By direct calculation based on
the Gibbs free energy determined in Section 3, the mixed phase
region is represented in this diagram by the region between the
dotted curved on the le, corresponding to martensite, and the
series of dashed curves on the right for austenite. There are
several curves on the right due to the effect of magnetic eld H
on transformation temperature, i.e., the mixed phase region
depends on both independent variables H and T. Overall effi-
ciency is of course affected by how this is recovered, either by
induction or some other process. We defer a discussion of the
latter to Section 6.

The mixed phase region, between the dotted and dashed
lines in Fig. 6, is the most interesting region for energy
conversion, because in this region the latent heat can utilized.
By denition, the efficiency h of a cycle is W/Q+, where W is the
net work done andQ+ is the heat absorbed. That is, if the cycle is
parameterized by (T(t), S(t)), 0 # t < t1,

Qþ ¼
ð
T þ

TðtÞ _SðtÞdt; (14)

where T + is the set of times in the interval [0, t1) for which _S(t)
> 0. Carnot cycles are by denition rectangles in the T–S
diagram, and these give maximum efficiency hCarnot ¼ 1 �
Tmin/Tmax among all cycles operating between temperatures
Tmin < Tmax, by a classical argument. As one can see from Fig. 6,
the thermomagnetic model given in Section 8–4 admits Carnot
cycles of reasonable size in the mixed phase region. Note that
Carnot cycles are also possible in the single phase austenite
Fig. 6 Constant field curves in T–S diagram. The dotted line is the entropy of
martensite single phase, which is field independent. The dashed lines are the
entropy of austenite single phase at different fields, and solid lines are the entropy
of the whole specimen containing both phases.

This journal is ª The Royal Society of Chemistry 2013
region – the upper right in Fig. 6 – although they are so small
as to be impractical in our example and also entail excep-
tionally large changes of the external eld over small temper-
ature intervals.

Observe that the predicted constant eld lines in the
mixed phase region shown in Fig. 6 are not perfectly hori-
zontal. Hence Carnot cycles in the mixed phase region
require a changing eld on the isothermal segments. It may
be possible to design devices with this feature, but a simpler
approach is to consider cycles having two adiabatic segments
alternating with two constant eld segments. The resulting
cycle is the thermomagnetic analog of the Rankine cycle,
and we therefore term this a thermomagnetic Rankine cycle.
Such a thermomagnetic Rankine cycle is illustrated in Fig. 7.
Its efficiency can be computed by direct calculation of Q+

and W using the rst law of thermodynamics. Geometrically,
the efficiency is the ratio between the area enclosed by
the loop 1 / 2 / 3 / 4 / 1 and that below the curve 1 /

2 / 3.
Another classical cycle, used widely in jet engines, is the air-

standard Ericsson cycle. It also can be adapted to the case of
phase transformation and thermomagnetic materials, so we
term the resulting cycle the thermomagnetic Ericsson cycle. The
thermomagnetic Ericsson cycle contains two isothermal
segments alternating with two constant eld segments. It is
dened as follows.

1. Process 1 / 2: heating at constant eld. The working
material, Ni44Co6Mn40Sn10 in our example, is initially placed in
the eld Hmin at the temperature Tmin, denoted as “1” in Fig. 8.
It is heated to Tmax at the constant eld. Ideally, the heat for this
purpose solely comes from process 3 / 4.
Fig. 7 A thermomagnetic Rankine cycle. This cycle differs from the thermo-
magnetic Ericsson cycle by replacing two isothermal processes by adiabatic
processes. Two fields are still Hmin ¼ H0 � DH and Hmax ¼ H0 + DH, while four
temperatures are chosen to be T1 ¼ Tas(Hmax) and T2 ¼ Tmax ¼ Taf(Hmin), according
to eqn (11), T3 and T4 ¼ Tmin are the solutions to S(Hmin, T2) ¼ S(Hmax, T3) and
S(Hmin, T1) ¼ S(Hmax, T4) respectively. In this drawing, we use m0H0 ¼ 3 T and
m0DH ¼ 1 T. The efficiency is given by the ratio between the area enclosed by the
loop 1 / 2 / 3 / 4 / 1 and that below the curve 1 / 2 / 3.

Energy Environ. Sci., 2013, 6, 1315–1327 | 1321
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Fig. 8 A thermomagnetic Ericsson cycle. The cycle contains a constant field
heating (red arrowed line) from Tmin to Tmax at Hmin, a constant field cooling (blue
arrowed line) from Tmax to Tmin at Hmax, and two isothermal processes (black
arrowed lines) switching between two fields isothermally. Two fields are given
by Hmin ¼ H0 � DH and Hmax ¼ H0 + DH, while two working temperatures are
Tmax,min ¼ [Tas(Hmin) + Taf(Hmax)]/2� dT, according to eqn (11), and dT is chosen to
satisfy eqn (15). In this drawing, we use m0H0 ¼ 3 T and m0DH ¼ 1 T. The efficiency
is given by the ratio between the area enclosed by the loop 1/ 2/ 3/ 4/ 1
and that below the curve 1 / 2 / 3.

Energy & Environmental Science Paper

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
in

ne
so

ta
 -

 T
w

in
 C

iti
es

 o
n 

26
 M

ar
ch

 2
01

3
Pu

bl
is

he
d 

on
 1

2 
Fe

br
ua

ry
 2

01
3 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
3E

E
24

02
1E

View Article Online
2. Process 2 / 3: isothermal magnetization. The eld is
increased to Hmax without change of temperature. Heat is
absorbed during this process.

3. Process 3 / 4: cooling at constant eld. The working
material is actively cooled to the temperature Tmin at the constant
eld Hmax. Heat is emitted during this process. Ideally, this heat
is completely used to heat the material in the process 1 / 2.

4. Process 4 / 1: isothermal demagnetization. The eld is
decreased to Hmin isothermally, returning the working material
to state 1.

An attractive feature of the thermomagnetic Ericsson cycle,
as in the ordinary Ericsson cycle, is that if dissipative processes
are neglected, the Carnot efficiency is achieved. This is achieved
by using, and only using, the heat emitted in process 3 / 4 as
the supply for the heating process 1 / 2, so that the heat-
exchange with the external environment is no longer required
during either process 1 / 2 or 3 / 4. This technique is called
“regeneration”. The thermomagnetic model given in Sections 3
and 4 (also in appendix) admits these ideal thermomagnetic
Ericsson cycles. To see this, the material properties have to be
such that during the constant eld heating 1 / 2 the heat
absorbed has to be equal to the heat emitted during 3/ 4, and,
at the same time, these segments must begin and end on the
same isothermal segments. This is possible according to the
following argument. Referring to Fig. 8, consider parameter-
izing the constant eld segments 1/ 2 and 4/ 3 by functions
S12(T) and S43(T) using T as a parameter. These sigmoidal curves
have the property that there is a temperature Ts such that
dS12/dT < dS43/dT for T < Ts and dS12/dT > dS43/dT for T > Ts.
Thus, by the intermediate value theorem, there are values Tmin <
Ts < Tmax such that
1322 | Energy Environ. Sci., 2013, 6, 1315–1327
ðTmax

Tmin

T
dS12

dT
dT ¼

ðTmax

Tmin

T
dS43

dT
dT : (15)

This is the equality of heats in 1/ 2 and 4/ 3. In fact, it is
seen that over a broad range of temperatures in the mixed phase
region, Tmin < Ts can be assigned and then Tmax can be deter-
mined such that eqn (15) holds. Fig. 8 shows an example of a
thermomagnetic Ericsson cycle where eqn (15) has been satis-
ed by a simple numerical procedure.

There are numerous potential device designs utilizing back-
to-back plates of active material, together with suitable ux
paths that could be used to approximate the conditions of either
thermomagnetic Carnot or Ericsson cycles. The switching of the
eld can also be integrated as part of the device. For example, in
the demonstration2 the current produced in the surrounding
coil exerted a back-eld on the specimen, which had the effect
of altering the eld.

The maximum efficiency for conventional thermoelectric
materials is given by the formula28,29

hte ¼
�
1� Tmin

Tmax

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zT

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ zT
p

þ Tmin=Tmax

; (16)

where �T ¼ (Tmin + Tmax)/2, and zT¼ sS2/k is the gure of merit of
the material at temperature T. Here, S is the temperature-
dependent Seebeck coefficient, s is the electrical conductivity,
and k is the thermal conductivity. Here it is important to note
that for thermoelectrics there are two gures of merit in
common use, zT and ZT. The former refers to the material
alone, as can be seen from its denition, while the latter is for
the whole device: for whole devices, ZT is in fact typically
calculated from eqn (16) (with of course zT replaced by ZT) and
the measured efficiency of the device (see, e.g., Snyder and
Toberer,29 p. 112, box 4).

Since our predictions above refer to material rather than
device, we compare the efficiency of energy conversion of afore-
mentioned cycles with the thermoelectric efficiency hte based on
the material gure of merit zT and the working temperature
near the transformation temperature of Ni44Co6Mn40Sn10. The
best currently available thermoelectric materials at �T ¼ 140 �C
have zTz 1 (n-type Bi2Te3 paired with p-type Sb2Te3). In 2008, a
hot pressed nanocrystalline powder of BiSbTe having zT ¼ 1.4
near 100 �C was reported.30 Below we use both zT¼ 1.0 and zT¼
1.4 in our comparisons.

We compare the efficiency of thermomagnetic Ericsson,
Rankine and Carnot cycles with that of a thermoelectric having
the gure of merit zT ¼ 1.0, 1.4 in Fig. 9. The thermomagnetic
cycles are all assumed to be working at the temperature differ-
ence given by the difference between two elds, DH, in Fig. 9.
The efficiency of thermomagnetic Ericsson cycles are computed
without assuming regeneration, as then they recover the Carnot
efficiency. Excluding thermoelectric generators using radioiso-
topes, commercial thermoelectric generators generally operate
in the range under DT ¼ 100 K. For these, the comparison in
Fig. 9 shows a competitive efficiency by this new energy
conversion method.
This journal is ª The Royal Society of Chemistry 2013
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Fig. 9 Efficiencies of thermodynamic cycles. The efficiencies of thermomagnetic
Ericsson (a) and Rankine (b) cycles are compared with the Carnot efficiency and
that of conventional thermoelectric devices with zT ¼ 1.0 and 1.4 at the given
temperature differences that are related to DH as described in the captions of
Fig. 8 and 7.

Fig. 10 A schematic view of the proposed device.
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Another noteworthy feature of the efficiency, especially for
thermomagnetic Rankine cycles, is that as DH increases, the
efficiency increases. What's more, for a Rankine cycle, the effi-
ciency approaches to the Carnot efficiency as DH increases.
However, a DH larger than 2 T is impractical in most cases. An
alternative strategy is to use a material with a strong effect of
eld on transformation temperature, so that the same DH
corresponds to a larger DT, and therefore provides a higher
efficiency. Geometrically, in Fig. 9, such a material would move
the curves corresponding to thermomagnetic Rankine and
Ericsson cycles to the le, while keeping all other curves xed.
This journal is ª The Royal Society of Chemistry 2013
According to the aforementioned discussion on the Clausius–
Clapeyron relation, the strategy of improving material proper-
ties here is to lower the ratio between latent heat and zero-eld
transformation temperature while retaining a large change in
magnetization.
6 Energy conversion

The comparison summarized in Fig. 9 concerns the efficiency of
materials only, both for the thermoelectric and multiferroic
devices, with the electromagnetic work output calculated using
standard denitions, but not accounting for the way the work
output is recovered. Here we postulate and analyze a specic
mechanism.

In this section we consider an axisymmetric specimen of the
working material surrounded by a pick-up coil and placed near
a permanent magnet which applies a background eld. The coil
is connected to a load that is modeled by a resistor here. We
heat and cool the specimen by forced convection or radiation.
During the phase transformation, the change in magnetization
generates a current in the pick-up coil due to Faraday's law, and
this coil further induces a back-eld on the core region. This
back-eld decreases (resp., increases) the external eld during
heating (resp., cooling). Thus the efficiency of converting heat
into magnetic work can be estimated by a thermomagnetic
Ericsson or Rankine cycle as discussed in the previous section
with the change of the eld due to the changing back-eld. It is
the goal of this section to analyze how much of this magnetic
work is recovered as the electric work on the load by the
proposed device. A schematic of the device is shown in Fig. 10.

In this section we use H to denote the total magnetic eld
including external (Hext) and self-induced (Hm) parts, where the
external eld further splits into two parts: an applied eld (H0)
and a current-induced back eld (Hb). The magnetic power
done by the external eld on the specimen is

P mag ¼
ð
U

m0H ext$ _Mdx: (17)

Wemodel the permanent magnet as a xed background eld
B0 ¼ m0H0 distributed uniformly over U. If the thermodynamic
system is chosen to be the specimen alone, the rst law of
thermodynamics gives
Energy Environ. Sci., 2013, 6, 1315–1327 | 1323
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d

dt

ð
U

udx ¼ �B

ð
vU

q$ndaþ
ð
U

m0ðH0 þHbÞ$ _Mdx; (18)

where u is the internal energy density, q is the heat ux per unit
area, and n is the outer normal of the surface vU. The le hand
side of eqn (18) is the rate of change of the total internal energy.
The rst term on the right hand side is the total heat ux
owing across the boundary of U. The second term on the right
hand side is the magnetic power done by the external eld on
the specimen, as noted above. In this case, the external eld
contains both the background eld from the permanent
magnet, H0, and the back-eld induced by the coil, Hb. Dene
the total internal energy U and heating power Q by

U ¼
ð
U

udx; Q ¼ �B

ð
vU

q$nda: (19)

The integration of the rst law around a closed cycle there-
fore gives ð

C

Q dt ¼ �
ð
C

ð
U

m0Hb$ _Mdxdt; (20)

where C ¼ [0, t1] is the time interval of the cycle. Since no internal
dissipation is considered, the integral on the le hand side
(¼ ÐCT _Sdt) is the area of the corresponding loop in the T–S diagram
discussed in the previous section. Here we have shown that the net
heat is converted into magnetic work done by the back-eld on the
specimen. Next, we show that thismagnetic work equals the electric
work on the load,

Ð
C I

2RdT, where I is the current in the coil and R is
the resistance of the load. The proof can take two approaches: one is
a direct proof by Maxwell's equations, and the other is by rewriting
the rst law for a different choice of the system that consists of all
the components, i.e. specimen, permanent magnet, coil and load
resistor.

In the second approach in which the system consists of the
specimen, permanent magnet, coil and resistor, we have to
model the continuous cooling of the resistor which is necessary
to restore the system to its original state aer each cycle. (Of
course, in applications, this dissipation to heat would occur in
the extended systems served by the energy conversion device.)
Without loss of generality, we choose the boundary of this
system large enough so that no elds cross it. Since no work is
done by this system and there is no change of internal energy in
a full cycle, it is then seen that the rst law for this system is the
heat balance, ð

C

Q dt ¼
ð
C

I2Rdt; (21)

i.e., the heat absorbed of the specimen equals the heat dissi-
pated by the load.

Combining eqn (21) with (20) we get

�
ð
C

ð
U

m0Hb$ _Mdxdt ¼
ð
C

I2Rdt: (22)

Eqn (22) says that the thermomagnetic efficiency calculated
in the previous section is the same as the efficiency of
1324 | Energy Environ. Sci., 2013, 6, 1315–1327
converting heat into electricity using the proposed device,
under the assumptions made here. Hence, we conclude that the
magnetic work done by the specimen is fully recovered to the electric
work on the load. In other words, in the formula h ¼ W/Q+ used
for efficiency in the Section 4, W is equal to the electric energy
dissipated in the load resistor. This argument also claries the
important role of the back-eld in producing this work.

To solve either version of the rst law of thermodynamics for
the power output, we need relationships among _M, Hb and I.
These relationships are affected by micromagnetic phenomena,
heat transfer properties of the heating device and specimen,
and the kinetics of phase transformation. A more device-
oriented analysis, in addition to a 3D kinetic model of the
phase-changing material, is required to further evaluate the
performance of such devices.

The nal remark we want to make is about demagnetization.
Demagnetization is expected to introduce a strong shape
dependence to the energy landscape of the material (see
Appendix). In the energy conversion system proposed in this
section, although the total magnetic work done by the demag-
netization eld,

Ð
CHm$ _Mdt, in a full cycle vanishes, as noted

above, it still plays an important role on the specimen-shape
dependence of total (magnetic or electric) work output through
its inuence on the back eld. It can be seen by the following
arguments. Ampère's law gives a linear relation between the
back-eld and the current in the coil,Hbf I. Faraday's law gives
a linear relation between the current and the rate of change in
magnetic ux, I f _B. Thus, we have Hb f _B. The primary
contribution to _B is the abrupt change in magnetization across
phase transformation. Due to demagnetization, this contribu-
tion has two components: _Hm and _M. Hm is in general
proportional to M. Thus, a signicant demagnetization eld
kills part of the change in magnetization and therefore reduces
_B drastically, which in turn lowers the back-eld Hm, shrinks
the thermomagnetic cycle in the T–S diagram, and nally
reduces the efficiency. However, demagnetization is not the
only shape-dependent factor in this kind of devices, other such
factors include the heat transfer property. A comprehensive
analysis on the shape-dependence of the efficiency and the
power output, again, requires a more sophisticated thermody-
namic model.
7 Conclusions

Temperature and eld induced rst order phase trans-
formations are investigated in the alloy Ni44Co6Mn40Sn10. The
properties are found to be suitable for the heat to electricity
energy conversion technology recently discovered by Srivastava
et al. in ref. 2. A thermodynamic theory aiming at analyzing the
energy conversion utilized by these new materials is developed.
We summarize our main conclusions:

1. A simple Gibbs free energy function as a function of
external magnetic eld and temperature T is determined from
calorimetric and magnetic measurements on this alloy, using a
simple version of molecular eld theory. This function repro-
duces well the temperature and eld-induced phase trans-
formations and the effect of eld on transformation
This journal is ª The Royal Society of Chemistry 2013
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temperature. This free energy has a precise relation to 3D
models that account for magnetic domains, phase trans-
formation, deformation, elasticity and microstructure. This
relation reveals that M is the volume average magnetization
(averaged over the deformed conguration), and that the simple
free energy includes the contribution from the demagnetization
energy. The latter can be estimated from the 3D theory.

2. The entropy as a function of eld and temperature is
obtained from the Gibbs energy. We show that this thermody-
namic model admits thermomagnetic Carnot, Ericsson and
Rankine cycles with relatively large area in the mixed phase
region. These are conveniently represented on the T–S diagram,
as in the classical case. Efficiency is computed for these cycles
and compared with the Carnot efficiency and that of thermo-
electrics. The result shows that the method of thermomagnetic
energy conversion investigated here is competitive with the best
available thermoelectric materials. Furthermore, materials with
a strong effect of magnetic eld on transformation temperature
are desirable for this method.

3. A proposed device utilizing induction and a biasing
magnet is used to connect the aforementioned thermomagnetic
cycles of a material to the electric work output of the device
using this method of energy conversion. As a result, we found
that in the proposed design, the net magnetic work done by the
specimen is fully converted into electricity. A more accurate
estimation on the power output requires extending the quasi-
static thermodynamics to that for nite-rate processes, which
will be included in future work.
8 Appendix: magnetism and phase
transformation

In this paper we determine from measurements a simple free
energy (density) of the form 4(M, T ) as a function of a scalar
magnetization M and temperature T. In this section we explain
how the simple free energy used in this paper is related to more
sophisticated models that account for more features of an
actual polycrystal specimen such as highly nonuniform vector
magnetization due to the presence of magnetic domains and
complex distortions in the martensite phase including twinning
and approximate interfaces between martensite plates.

Let U be the region occupied by the specimen in the undis-
torted austenite phase at T0. Deformations of U due to both
elastic distortion and transformation are described by a defor-
mation vector eld y(x), x ˛ U giving the new position y of the
particle originally located at x. The magnetization vector eld,
M( y), is dened on the deformed conguration y(U). A free
energy functional that accounts for complex magnetization and
phase transformation is31–33

E½ y;M� ¼
ð
U

n
AjVM j2 þWðVyðxÞ;MðyðxÞÞ;TÞ

� Bext$Mð yðxÞÞdetVyðxÞ
o
dxþ m0

2

ð
R

3

jVuj2dy; (23)

where m0 is the vacuum permeability, and A is the exchange
constant. The magnetostatic potential u depends uniquely
This journal is ª The Royal Society of Chemistry 2013
(up to an additive constant) on the magnetization, and is
obtained by solving the magnetostatic equation,

V(�Vu + M) ¼ 0, (24)

on all of space for a trial magnetizationM(y), which is assumed
to vanish outside of y(U). The rst term on the right hand side
of eqn (23) is a simple form of the exchange energy. The second
term is the multi-well bulk free energy density and includes
anisotropy energy, elastic energy, and free energy differences
between phases. The third term is the Zeeman energy corre-
sponding to the external magnetic eld Bext ¼ m0Hext, which can
alternatively be written in the more conventional form

�m0

ð
yðUÞ

H ext$MðyÞdy: (25)

The phase transformation is modeled by the symmetries and
the energy-well structure of W. In general, W is Galilean
invariant and exhibits the symmetries implied by an appro-
priate form of the Cauchy–Born rule34,35 combined with
the Ericksen–Pitteri neighborhood.35,36 In the case of
Ni44Co6Mn40Sn10 in which only the austenite is ferromagnetic,
this leads to the energy-well structure of the following type:

W(I, M1, T) ¼ . ¼ W(I, Mr, T) # W(F, M, T) for T > T0; (26)

W(U1, 0, T) ¼ . ¼ W(U12, 0, T) # W(F, M, T) for T # T0,(27)

where Un, n ¼ 1, ., 12, is the right Green stretch tensor of the
deformation from undistorted austenite to the nth undistorted
martensite variant. These inequalities are required to hold for
all (F, M, T) in the domain of W, where F is the 3-by-3 matrix
representing the deformation gradient Vy. The rst inequality
says that when T > T0, W is equally minimized by the austenite
lattice with the magnetization pointing in the special direc-
tions,M1,.,Mr. These special directions are determined by the
point group of austenite lattice. The second inequality says that
when T # T0, W is equally minimized by 12 martensite variants
with zero magnetization. The forms of the twelve tensors U1,.,
U12 are restricted by the point groups of austenite
and martensite. In the orthonormal cubic basis, U1 of
Ni45Co5Mn40Sn10 is obtained from X-ray data,1

U1 ¼
0
@ 1:0054 0:0082 0

0:0082 1:0590 0

0 0 0:9425

1
A; (28)

with ordered eigenvalues (l1, l2, l3) ¼ (0.9425, 1.0042, 1.0602).
In particular, as noted in the introduction section, l2 ¼ 1.0042.

Let angled brackets denote the volume average over the
deformed conguration y(U) and V y ¼ vol.( y(U)):

hMiyðUÞ ¼
1

V y

ð
yðUÞ

MðyÞdy: (29)

The simple Helmholtz free energy 4(M, T) is obtained from
the general free energy functional E[ y, M] by constrained
minimization, but excluding the Zeeman energy,
Energy Environ. Sci., 2013, 6, 1315–1327 | 1325
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4ðM;TÞ ¼ min
jhMiyðUÞj¼M

1

V y

0
B@ð

U

AjVMj2

þWðVyðxÞ;MðyðxÞÞ;TÞ dxþ m0

2

ð
R

3

jVuj2dy

1
CA:

(30)

With appropriate function spaces for y,M, and suitable mild
growth conditions onW(F,M, T) for large F, theminimum (or, at
least the inmum) of the term in parentheses exists, so this
constrained minimization is well-posed.

Now we read off properties of 4 from this denition. First, we
see thatM should be interpreted as the magnitude of the energy
minimizing volume-averaged magnetization, averaged over the
deformed conguration. Second, if the Zeeman energy with a
uniform external eld is added, then the appropriate general
minimization is

min E½ y;M � ¼ min
M

 
min

jhMiyðUÞj¼M

E½ y;M�
!

¼ min
M

ð4ðM;TÞ � m0HextMÞ; (31)

where Hext is the component of Hext along the average mini-
mizing magnetization. Note that the latter simplication relies
in an important way on having a uniform external eld. Eqn
(31) justies the minimization problem used below to partly
determine 4(M, T). Third, it is seen from the denition of
4(M, T) that demagnetization energy (the last term of eqn (30))
is included in 4(M, T). This is important, as it implies that
changing the shape of the specimen but keeping the material
the same will result in a different 4(M, T). In the main part of
this paper, all measurements used to evaluate 4(M, T) were
done on the same specimen or are shape-independent. This
specimen contained small surface cracks that could affect the
demagnetization energy, so we have not tried to separate out
this contribution to 4.

However, it is useful to estimate the inuence of demagne-
tization energy. We note that there is a rigorous lower bound for
the contribution of the demagnetization energy to 4(M, T) in the
case that the deformed conguration is an ellipsoid. That is, if
y(U) is an ellipsoid, then the constrained minimization of the
demagnetization energy alone has an explicit solution:

min
jhMiyðUÞj¼M

0
B@ m0

2V y

ð
R

3

jVuj2dy

1
CA¼ m0

2
min
jmj¼M

m$Dm; (32)

where D is the demagnetization matrix of the ellipsoid (see, e.g.,
Lemma A.1 in ref. 37). The meaning of the minimization
problem on the le hand side of eqn (32) is the following: (i)
given M, a trial magnetization M(y) is chosen satisfying the
constraint |hMiy(U)| ¼ M, (ii) the magnetostatic equation, eqn
(24), is solved for the corresponding potential u(y), (iii) the
demagnetization energy of u is calculated from the integral in
eqn (32), (iv) the trial magnetization giving the lowest value of
the demagnetization energy is found. A simple nal lower
1326 | Energy Environ. Sci., 2013, 6, 1315–1327
bound for the right hand side of eqn (32) is m0/2 times the
minimum eigenvalue of the demagnetization matrix, but a
better bound can be given if information about the direction of
the minimizing average magnetization is known. Now using the
general inequality min(A + B) $ minA + minB and the bound
eqn (32) we deduce from eqn (30) that

4ðM;TÞ$ 4̂ðM;TÞ þ m0

2
min
jmj¼M

m$Dm; (33)

where 4̂(M, T) is the constrained minimum free energy with
demagnetization energy excluded, i.e., 4̂(M, T) is shape-inde-
pendent. This lower bound is expected to be a good estimate
based on results given in ref. 37, for example, if the magneti-
zation varies on a ne scale but is macroscopically nearly
constant. Overall, it is seen from this bound that demagneti-
zation energy can be an important contribution to the total free
energy that is expected to play a role in carefully designed
energy conversion devices.

In summary, 4(M, T) relates precisely by constrained mini-
mization to 3D models of micromagnetics and phase trans-
formation. M is interpreted as the volume averaged
magnetization over the deformed conguration. Under the
important condition that the external eld is uniform and the
average magnetization points in the direction of the external
eld, there is the implied minimization problem minM(4(M, T)
� m0HextM). Finally, 4(M, T) includes demagnetization effects
but these can be estimated if the deformed conguration is
approximately ellipsoidal.

The minimum value of the right hand side of eqn (31) is the
Gibbs free energy as a function of external eld and temperature

jðHext;TÞ ¼ min
M

ð4ðM;TÞ � m0HextMÞ: (34)

The Gibbs free energy j is easier to t from experimental
data than the multiwell (Helmholtz) free energy 4, but care
must be taken to t it only from single phase data, where the
inversion allowing passage from j back to 4 is valid. Or, from a
physical viewpoint, given values of Hext, T can correspond to
mixed phase states. For the simplicity of notation, we denote
the external magnetic eld by H instead of Hext in the main part
of this paper, unless otherwise mentioned.
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