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Nonlinear Elasticity – Calculus of Variations approach

Body Ω ⊂ R3, deformation u : Ω→ R3.

Elastic (bulk) energy:

∫
Ω

W (x,Du(x))dx,

Body forces:

∫
Ω

F (x,u(x))dx,

Surface forces:

∫
ΓN

G (x,u(x))dH2(x),

Boundary condition: u = u0 on ΓD .

(∂Ω = ΓD ∪ ΓN disjoint).

An equilibrium solution u (Statics) is a solution of

min
u∈W 1,p

u0

∫
Ω

W (x,Du) dx−
∫

Ω
F (x,u)dx−

∫
ΓD

G (x,u) dH2.
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Apart from solving a minimization problem, every physically

realistic solution u must:

• preserve the orientation: det Du > 0,

• be one-to-one (no interpenetration of matter).
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Cavitation is the phenomenon of sudden formation of voids in

near-incompressible solids subject to large triaxial tension. It is

typical in elastomers and ductile metals.

(A.N. Gent & P.B. Lindley 1959)
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For the well-posedness of the model (and also to be physically more

realistic) an extra surface energy due to cavitation is needed.

Existence theories (Statics: minimization of energy):

I S. Müller & S.J. Spector 95.

I J. Sivaloganathan & S.J. Spector 00.

I D. Henao & C.M.-C. 10–11.

(Idea: Surface energy =⇒ det is w-continuous =⇒ energy is swlsc.)

We will use the theory of Henao & M.-C.: The cavitation energy is

proportional to the surface created. Orientation-preserving and

non-interpenetration are also taken into account.

u
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Irreversibility

Once a cavity is formed, the shape and size of the cavity surface

can change in time (even dissapear macroscopically), but the cavity

point in the reference configuration will remain as a flaw point.

A configuration is a pair (u, S) where u is a deformation, and S is

a subset of Ω containing the cavity points C (u) of u. Intuitively,

S = {cavity or flaw points} = {past or present cavity points}.

The cavitation energy S(u,S) := S1(S) + S2(u) is the sum of a

fixed amount accounting for the mere process of cavity formation

S1(S) :=
∑
a∈S

κ1(a)

plus a term proportional to the area of the surface created

S2(u) :=
∑

a∈C(u)

κ2(a)H2(C (u, a)).
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Quasistatic evolution

In a quasistatic theory,

I the interaction of the system with its environment is infinitely

slow

I the system is always in equilibrium

I the system does not have its own dynamics, but rather the

dynamics respond to changes in the external conditions

I evolution is considered as a family of minimization problems

parametrized by the time variable

I at each instant of time, the energy is minimized

I an energy balance holds (taking into account dissipation).
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Quasistatic evolution of cavitation

Total energy

I(t)(u,S) :=W(Du)︸ ︷︷ ︸
bulk

+ S(u,S)︸ ︷︷ ︸
cavitation

−F(t)(u)︸ ︷︷ ︸
body force

− G(t)(u)︸ ︷︷ ︸
surface force

Boundary condition: u = u0(t) on ΓD .

Given a family {u(t)}t∈[0,1] of deformations, define

S(t) :=
⋃

s∈[0,t] C (u(s)). It constitutes a quasistatic evolution if

a) Global stability: For each t, the pair (u(t), S(t)) minimizes

I(t) over (u,S) satisfying S ⊃
⋃

s<t S(s) and b.c.

b) Energy balance: Increment in stored energy plus energy spent

in cavities equals increase of the work of external forces:

I(t)(u(t),S(t)) = I(0)(u(0),S(0)) +

∫ t

0
[· · · ] ds
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Method of proof

(A. Mielke & F. Theil 99, G. Francfort & C. Larsen 03,

G. Dal Maso, G. Francfort & R. Toader 05. . . )

1. Time discretization: For each k ∈ N,

0 = t0
k < t1

k < · · · < tkk = 1 with lim
k→∞

max
1≤i≤k

(t ik−t i−1
k ) = 0.

Let (u0
k ,S

0
k ) = (u0, S0) (given) and for 1 ≤ i ≤ k , let (ui

k ,S
i
k)

be a minimizer of I(t ik) with b.c. u0(t ik) and S i
k ⊃ S i−1

k .

2. Constant interpolation: For k ∈ N and t ∈ [0, 1] let

0 ≤ ik ≤ k be such that t ∈ [t ikk , t
ik+1
k ).

3. Passage to the limit: For each t ∈ [0, 1], let

u(t) := lim
k→∞

uik
k , S(t) := lim

k→∞
S ik
k .
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About the limit passage

uik
k being a minimizer satisfies some a priori bounds that, up to a

subsequence, allow to take limits uik
k → u(t) as k →∞ in the

sense of the theorem of existence of minimizers. Moreover,

W(Du(t)) ≤ lim inf
k→∞

W(Duik
k ), S2(u(t)) ≤ lim inf

k→∞
S2(uik

k ),

F(t)(u(t)) = lim
k→∞

F(t ikk )(uik
k ), G(t)(u(t)) = lim

k→∞
G(t ikk )(uik

k ).

uik
k being a minimizer implies that H0(S ik

k ) is bounded. Hence up

to a subsequence H0(S ik
k ) is constant and S ik

k converges

componentwise to an S(t). Moreover,

S1(S(t)) ≤ lim inf
k→∞

S1(S ik
k ).

We show that (u(t),S(t)) is admissible, i.e., S(t) ⊃ C (u(t)).
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Main difficulty: stability of minimizers

We have to show that (u(t), S(t)) is a minimizer. Let (u,S) be

admissible with S ⊃
⋃

s<t S(s). If we construct (ũk , S̃k) satisfying

b.c. u0(t ikk ) and such that S̃k ⊃ S ik−1
k and

lim sup
k→∞

I(t ikk )(ũk , S̃k) ≤ I(t)(u, S)

then

I(t)(u(t), S(t)) ≤ lim inf
k→∞

I(t ikk )(uik
k ,S

ik
k )

≤ lim inf
k→∞

I(t ikk )(ũk , S̃k) ≤ I(t)(u, S).

(cf. ‘transfer lemma’ Larsen & Francfort 03. Think also of a recovery

sequence in Γ-convergence)
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Stability of minimizers. First attempt

Modify the position of the cavity points of u to coincide with those

of uik
k . So construct (ũk , S̃k) with ũk ' u but with S̃k ⊃ S ik−1

k .

ua1a2

a2(k)
a1(k)

ũk

It seems to work, but. . .
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Stability of minimizers. First attempt

Modify the position of the cavity points of u to coincide with those

of uik
k . So ũk ' u but with S̃k ⊃ S ik−1

k . It seems to work, but. . .

An abstract consequence of the quasistatic theory is that

I(t)(u(t),S(t)) = lim
k→∞

I(t ikk )(uik
k , S

ik
k ).

(cf. ‘minimizers go to minimizers’ and ‘energy of minimizers go to energy

of minimizers’ in Γ-convergence)

We always have

I(t)(u(t), S(t)) ≤ lim inf
k→∞

I(t ikk )(uik
k ,S

ik
k )

and the recovery sequence provides

I(t)(u(t),S(t)) ≥ lim sup
k→∞

I(t ikk )(uik
k , S

ik
k ).
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Stability of minimizers. Second attempt

Independently of the recovery sequence, the only reason for which

we may have

I(t)(u(t), S(t)) < lim inf
k→∞

I(t ikk )(uik
k , S

ik
k )

is that when we take the limit S ik
k → S(t) we have

H0(S(t)) < lim inf
k→∞

H0(S ik
k ). (*)

There are only three reasons for which (*) can happen: in the limit

passage,

(1) Cavities scape to the boundary.

(2) Cavities collapse (coalesce).

(3) Cavities close up (heal).

A quasistatic evolution exists iff none of (1)–(3) hold. 14/17



a(k) a1(k)

a2(k)

a1=a2
C(uk, a(k))

Scape to boundary Collapse Close up
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Stability of minimizers. Solution

Independently of the recovery sequence, we have to avoid that

cavities

(1) scape to the boundary; (2) collapse; (3) close up.

Condition (1) is avoided by prohibiting cavitation at the boundary

in the static model (as in J. Sivaloganathan & S.J. Spector 00,

D. Henao 09: also prohibits pathological behaviour).

Conditions (2)–(3) may well happen but not for minimizers.

Qualitative (not quantitative) result:

I Minimizers cannot have two cavities very close to each other

(it is better to have only one).

I Minimizers cannot have a cavity enclosing a very small volume

(it is better not to have any).
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Conclusion

(u(t),S(t)) is a minimizer and S(t) =
⋃

s∈[0,t]

C (u(s)).

Energy balance and remaining properties of quasistatic evolution

follow the lines of G. Dal Maso, G. Francfort & R. Toader 05.

Theorem: For every initial data, there exists a quasistatic

evolution starting at the initial data, and satisfying global stability,

irreversibility and energy balance.
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