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Nonlinear Elasticity — Calculus of Variations approach
Body Q C R3, deformation u: Q — R3.
Elastic (bulk) energy: / W (x, Du(x)) dx,
Q
Body forces: / F(x,u(x))dx,
Q

Surface forces: G(x,u(x)) dH?(x),
My

Boundary condition: u = ug on Ip.

(09 = 'p U Ty disjoint).

An equilibrium solution u (Statics) is a solution of

min /QW(X,Du)dx—/QF(x,u)dx—/rD G(x,u) dH2.

1,
ue WP

2/17



Apart from solving a minimization problem, every physically

realistic solution u must:

e preserve the orientation: det Du > 0,

e be one-to-one (no interpenetration of matter).
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Cavitation is the phenomenon of sudden formation of voids in
near-incompressible solids subject to large triaxial tension. It is

typical in elastomers and ductile metals.

(A.N. Gent & P.B. Lindley 1959)
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For the well-posedness of the model (and also to be physically more

realistic) an extra surface energy due to cavitation is needed.
Existence theories (Statics: minimization of energy):

» S. Miiller & S.J. Spector 95.
» J. Sivaloganathan & S.J. Spector 00.
» D. Henao & C.M.-C. 10-11.

(Idea: Surface energy = det is w-continuous = energy is swisc.)

We will use the theory of Henao & M.-C.: The cavitation energy is
proportional to the surface created. Orientation-preserving and

non-interpenetration are also taken into account.
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Irreversibility
Once a cavity is formed, the shape and size of the cavity surface
can change in time (even dissapear macroscopically), but the cavity

point in the reference configuration will remain as a flaw point.

A configuration is a pair (u, S) where u is a deformation, and S is

a subset of Q containing the cavity points C(u) of u. Intuitively,
S = {cavity or flaw points} = {past or present cavity points}.

The cavitation energy S(u, S) := S1(S) + Sa(u) is the sum of a

fixed amount accounting for the mere process of cavity formation

S1(S) =) _ra(a)

acs
plus a term proportional to the area of the surface created

Saw) = Y kafa) HA(C(u.a)).
acC(u)
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Quasistatic evolution

In a quasistatic theory,

» the interaction of the system with its environment is infinitely

slow
> the system is always in equilibrium

> the system does not have its own dynamics, but rather the

dynamics respond to changes in the external conditions

» evolution is considered as a family of minimization problems

parametrized by the time variable
> at each instant of time, the energy is minimized

» an energy balance holds (taking into account dissipation).
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Quasistatic evolution of cavitation
Total energy
Z(t)(u,S) := W(Du) + S(u, 5) — F(t)(u) — G(t)(u)
—_—— ——  ~—— ——
bulk cavitation  body force  surface force
Boundary condition: u = ug(t) on 'p.
Given a family {u(t)}cjo,1 of deformations, define

5(t) == Usepo,q C(u(s)). It constitutes a quasistatic evolution if

a) Global stability: For each t, the pair (u(t), S(t)) minimizes
Z(t) over (u, S) satisfying S O |J,., S(s) and b.c.
b) Energy balance: Increment in stored energy plus energy spent

in cavities equals increase of the work of external forces:

Z(t)(u(t), 5(t)) = Z(0)(u(0), 5(0)) + /Ot [--]ds

8/17



Method of proof

(A. Mielke & F. Theil 99, G. Francfort & C. Larsen 03,
G. Dal Maso, G. Francfort & R. Toader 05...)

1. Time discretization: For each k € N,

0=t <tl<...<th=1 with lim max(ti—t 1) =0.
k k k k—>ool§i§k(k k )

Let (u?, S9) = (u°, S°) (given) and for 1 < i < k, let (u},S})
be a minimizer of Z(t}) with b.c. ug(t;) and S D 5,’;71.

2. Constant interpolation: For k € N and t € [0, 1] let
0 < iy < k be such that t € [t £,

3. Passage to the limit: For each t € [0,1], let

u(t) == lim uk,  S(t):= lim S}

k—o0 k—o0
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About the limit passage

u'kk being a minimizer satisfies some a priori bounds that, up to a
subsequence, allow to take limits uZ‘ — u(t) as k — oo in the
sense of the theorem of existence of minimizers. Moreover,

W(Du(t)) < liminf W(Du}),  Sa(ult)) < liminf Sa(u),

k—o0

F(t)(u() = Jim F(g)(uy). G(0)(u(t) = Jim G(t)(uy)-

u;f being a minimizer implies that 7—[0(5,'}) is bounded. Hence up
to a subsequence H°(S,¥) is constant and S}* converges

componentwise to an S(t). Moreover,

S1(5(t)) < Iikm_>iorlf81(5,’;k).

We show that (u(t), S(t)) is admissible, i.e., S(t) D C(u(t)).
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Main difficulty: stability of minimizers

We have to show that (u(t), S(t)) is a minimizer. Let (u, S) be
admissible with S O J,_, S(s). If we construct (i, Sy) satisfying
b.c. ug(t}) and such that 5, > S}~ and

lim sup () (iix, Sx) < Z(t)(u, S)

k—o00

then

Z(t)(u(t), S(t)) < liminf Z(t})(ulk, S

k— o0

< liminf Z(t} (iik, k) < Z(t)(u, S).

k— o0

(cf. ‘transfer lemma’ Larsen & Francfort 03. Think also of a recovery

sequence in I-convergence)
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Stability of minimizers. First attempt

Modify the position of the cavity points of u to coincide with those

of u;f So construct (i, Sk) with {ix =~ u but with 5; Slk g

@9
3>

It seems to work, but. ..
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Stability of minimizers. First attempt

Modify the position of the cavity points of u to coincide with those

of u;f. So {1 ~ u but with S, D Slik_l. It seems to work, but. ..
An abstract consequence of the quasistatic theory is that

T()(u(t), S(1)) = fim T(cf)(uf, 5F)
(cf. ‘minimizers go to minimizers' and ‘energy of minimizers go to energy
of minimizers' in [-convergence)
We always have

Z(1)(u(2). S(¢)) < lim inf Z(t)(us, Si)
and the recovery sequence provides

Z(t)(u(t), S(t)) > limsup Z(t})(ulk, Sj).

k—o00
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Stability of minimizers. Second attempt

Independently of the recovery sequence, the only reason for which

we may have
Z(t)(u(2), (1)) < lim inf Z(t))(ulk, S))
—00
is that when we take the limit Sik — S(t) we have

HO(S(t)) < I|m|nf7-[0(5 ). *)

k—o0

There are only three reasons for which (*) can happen: in the limit

passage,

(1) Cavities scape to the boundary.
(2) Cavities collapse (coalesce).

(3) Cavities close up (heal).

A quasistatic evolution exists iff none of (1)—(3) hold. 1417



Scape to boundary Collapse Close up
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Stability of minimizers. Solution

Independently of the recovery sequence, we have to avoid that

cavities

(1) scape to the boundary; (2) collapse;  (3) close up.

Condition (1) is avoided by prohibiting cavitation at the boundary
in the static model (as in J. Sivaloganathan & S.J. Spector 00,

D. Henao 09: also prohibits pathological behaviour).

Conditions (2)—(3) may well happen but not for minimizers.

Qualitative (not quantitative) result:

» Minimizers cannot have two cavities very close to each other
(it is better to have only one).
» Minimizers cannot have a cavity enclosing a very small volume

(it is better not to have any).
16/17



Conclusion
(u(t), S(t)) is a minimizer and S(t) = U C(u(s)).
s€[0,t]
Energy balance and remaining properties of quasistatic evolution
follow the lines of G. Dal Maso, G. Francfort & R. Toader 05.

Theorem: For every initial data, there exists a quasistatic

evolution starting at the initial data, and satisfying global stability,

irreversibility and energy balance.
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