Quasistatic evolution of cavities in nonlinear elasticity

Carlos Mora-Corral University Autónoma of Madrid

▲□> <圖> < E> < E> E のQQ

Nonlinear Elasticity – Calculus of Variations approach Body $\Omega \subset \mathbb{R}^3$, deformation $\mathbf{u} : \Omega \to \mathbb{R}^3$.

Elastic (bulk) energy:
$$\int_{\Omega} W(\mathbf{x}, D\mathbf{u}(\mathbf{x})) \, \mathrm{d}\mathbf{x}$$

Body forces:
$$\int_{\Omega} F(\mathbf{x}, \mathbf{u}(\mathbf{x})) \, \mathrm{d}\mathbf{x}$$

Surface forces:
$$\int_{\Gamma_N} G(\mathbf{x}, \mathbf{u}(\mathbf{x})) \, \mathrm{d}\mathcal{H}^2(\mathbf{x}),$$

Boundary condition: $\mathbf{u} = \mathbf{u}_0$ on Γ_D .

 $(\partial \Omega = \Gamma_D \cup \Gamma_N \text{ disjoint}).$

An equilibrium solution \mathbf{u} (Statics) is a solution of

$$\min_{\mathbf{u}\in W_{\mathbf{u}_0}^{1,p}}\int_{\Omega}W(\mathbf{x},D\mathbf{u})\,\mathrm{d}\mathbf{x}-\int_{\Omega}F(\mathbf{x},\mathbf{u})\,\mathrm{d}\mathbf{x}-\int_{\Gamma_D}G(\mathbf{x},\mathbf{u})\,\mathrm{d}\mathcal{H}^2.$$

▲□> <圖> < E> < E> E のQQ

Apart from solving a minimization problem, every physically realistic solution \mathbf{u} must:

- preserve the orientation: det $D\mathbf{u} > 0$,
- be one-to-one (no interpenetration of matter).

Cavitation is the phenomenon of sudden formation of voids in near-incompressible solids subject to large triaxial tension. It is typical in elastomers and ductile metals.

(A.N. Gent & P.B. Lindley 1959)

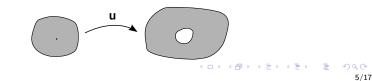
For the well-posedness of the model (and also to be physically more realistic) an extra **surface energy due to cavitation** is needed.

Existence theories (Statics: minimization of energy):

- S. Müller & S.J. Spector 95.
- ► J. Sivaloganathan & S.J. Spector 00.
- ▶ D. Henao & C.M.-C. 10–11.

(Idea: Surface energy \implies det is w-continuous \implies energy is swlsc.)

We will use the theory of Henao & M.-C.: The cavitation energy is proportional to the surface created. Orientation-preserving and non-interpenetration are also taken into account.



Irreversibility

Once a cavity is formed, the shape and size of the cavity surface can change in time (even dissapear macroscopically), but the cavity point in the reference configuration will remain as a flaw point.

A configuration is a pair (\mathbf{u}, S) where \mathbf{u} is a deformation, and S is a subset of Ω containing the cavity points $C(\mathbf{u})$ of \mathbf{u} . Intuitively,

 $S = \{$ cavity or flaw points $\} = \{$ past or present cavity points $\}.$

The cavitation energy $S(\mathbf{u}, S) := S_1(S) + S_2(\mathbf{u})$ is the sum of a fixed amount accounting for the mere process of cavity formation

$$\mathcal{S}_1(S) := \sum_{\mathbf{a} \in S} \kappa_1(\mathbf{a})$$

plus a term proportional to the area of the surface created

$$\mathcal{S}_2(\mathbf{u}) := \sum_{\mathbf{a} \in C(\mathbf{u})} \kappa_2(\mathbf{a}) \, \mathcal{H}^2(C(\mathbf{u}, \mathbf{a})).$$

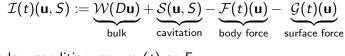
Quasistatic evolution

In a quasistatic theory,

- the interaction of the system with its environment is infinitely slow
- the system is always in equilibrium
- the system does not have its own dynamics, but rather the dynamics respond to changes in the external conditions
- evolution is considered as a family of minimization problems parametrized by the time variable
- at each instant of time, the energy is minimized
- an energy balance holds (taking into account dissipation).

Quasistatic evolution of cavitation

Total energy



Boundary condition: $\mathbf{u} = \mathbf{u}_0(t)$ on Γ_D .

Given a family $\{\mathbf{u}(t)\}_{t\in[0,1]}$ of deformations, define $S(t) := \bigcup_{s\in[0,t]} C(\mathbf{u}(s))$. It constitutes a *quasistatic evolution* if

- a) Global stability: For each t, the pair $(\mathbf{u}(t), S(t))$ minimizes $\mathcal{I}(t)$ over (\mathbf{u}, S) satisfying $S \supset \bigcup_{s < t} S(s)$ and b.c.
- b) *Energy balance:* Increment in stored energy plus energy spent in cavities equals increase of the work of external forces:

$$\mathcal{I}(t)(\mathbf{u}(t), S(t)) = \mathcal{I}(0)(\mathbf{u}(0), S(0)) + \int_{0}^{t} [\cdots] \, \mathrm{d}s$$

Method of proof

(A. Mielke & F. Theil 99, G. Francfort & C. Larsen 03,G. Dal Maso, G. Francfort & R. Toader 05...)

1. *Time discretization:* For each $k \in \mathbb{N}$,

$$0 = t_k^0 < t_k^1 < \cdots < t_k^k = 1$$
 with $\lim_{k \to \infty} \max_{1 \le i \le k} (t_k^i - t_k^{i-1}) = 0.$

Let $(\mathbf{u}_k^0, S_k^0) = (\mathbf{u}^0, S^0)$ (given) and for $1 \le i \le k$, let (\mathbf{u}_k^i, S_k^i) be a minimizer of $\mathcal{I}(t_k^i)$ with b.c. $\mathbf{u}_0(t_k^i)$ and $S_k^i \supset S_k^{i-1}$.

- 2. Constant interpolation: For $k \in \mathbb{N}$ and $t \in [0, 1]$ let $0 \le i_k \le k$ be such that $t \in [t_k^{i_k}, t_k^{i_k+1})$.
- 3. Passage to the limit: For each $t \in [0, 1]$, let

$$\mathbf{u}(t) := \lim_{k \to \infty} \mathbf{u}_k^{i_k}, \qquad S(t) := \lim_{k \to \infty} S_k^{i_k}.$$

About the limit passage

 $\mathbf{u}_k^{i_k}$ being a minimizer satisfies some a priori bounds that, up to a subsequence, allow to take limits $\mathbf{u}_k^{i_k} \to \mathbf{u}(t)$ as $k \to \infty$ in the sense of the theorem of existence of minimizers. Moreover,

$$egin{aligned} &\mathcal{W}(D \mathbf{u}(t)) \leq \liminf_{k o \infty} \mathcal{W}(D \mathbf{u}_k^{i_k}), \quad \mathcal{S}_2(\mathbf{u}(t)) \leq \liminf_{k o \infty} \mathcal{S}_2(\mathbf{u}_k^{i_k}), \ &\mathcal{F}(t)(\mathbf{u}(t)) = \lim_{k o \infty} \mathcal{F}(t_k^{i_k})(\mathbf{u}_k^{i_k}), \quad &\mathcal{G}(t)(\mathbf{u}(t)) = \lim_{k o \infty} \mathcal{G}(t_k^{i_k})(\mathbf{u}_k^{i_k}). \end{aligned}$$

 $\mathbf{u}_{k}^{i_{k}}$ being a minimizer implies that $\mathcal{H}^{0}(S_{k}^{i_{k}})$ is bounded. Hence up to a subsequence $\mathcal{H}^{0}(S_{k}^{i_{k}})$ is constant and $S_{k}^{i_{k}}$ converges componentwise to an S(t). Moreover,

$$\mathcal{S}_1(S(t)) \leq \liminf_{k \to \infty} \mathcal{S}_1(S_k^{i_k}).$$

We show that $(\mathbf{u}(t), S(t))$ is admissible, i.e., $S(t) \supseteq C(\mathbf{u}(t))$

Main difficulty: stability of minimizers

We have to show that $(\mathbf{u}(t), S(t))$ is a minimizer. Let (\mathbf{u}, S) be admissible with $S \supset \bigcup_{s < t} S(s)$. If we construct $(\tilde{\mathbf{u}}_k, \tilde{S}_k)$ satisfying b.c. $\mathbf{u}_0(t_k^{i_k})$ and such that $\tilde{S}_k \supset S_k^{i_k-1}$ and

$$\limsup_{k\to\infty} \mathcal{I}(t_k^{i_k})(\tilde{\mathbf{u}}_k,\tilde{S}_k) \leq \mathcal{I}(t)(\mathbf{u},S)$$

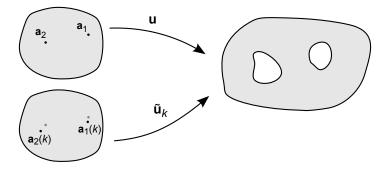
then

$$egin{aligned} \mathcal{I}(t)(\mathbf{u}(t),S(t)) &\leq \liminf_{k o\infty} \mathcal{I}(t_k^{i_k})(\mathbf{u}_k^{i_k},S_k^{i_k}) \ &\leq \liminf_{k o\infty} \mathcal{I}(t_k^{i_k})(\mathbf{\widetilde{u}}_k,\mathbf{\widetilde{S}}_k) \leq \mathcal{I}(t)(\mathbf{u},S). \end{aligned}$$

(cf. 'transfer lemma' Larsen & Francfort 03. Think also of a recovery sequence in Γ-convergence)

Stability of minimizers. First attempt

Modify the position of the cavity points of **u** to coincide with those of $\mathbf{u}_k^{i_k}$. So construct $(\tilde{\mathbf{u}}_k, \tilde{S}_k)$ with $\tilde{\mathbf{u}}_k \simeq \mathbf{u}$ but with $\tilde{S}_k \supset S_k^{i_k-1}$.



It seems to work, but...

Stability of minimizers. First attempt

Modify the position of the cavity points of **u** to coincide with those of $\mathbf{u}_k^{i_k}$. So $\tilde{\mathbf{u}}_k \simeq \mathbf{u}$ but with $\tilde{S}_k \supset S_k^{i_k-1}$. It seems to work, but...

An abstract consequence of the quasistatic theory is that

$$\mathcal{I}(t)(\mathbf{u}(t), \mathcal{S}(t)) = \lim_{k \to \infty} \mathcal{I}(t_k^{i_k})(\mathbf{u}_k^{i_k}, \mathcal{S}_k^{i_k}).$$

(cf. 'minimizers go to minimizers' and 'energy of minimizers go to energy of minimizers' in Γ -convergence)

We always have

$$\mathcal{I}(t)(\mathbf{u}(t),S(t))\leq \liminf_{k
ightarrow\infty}\mathcal{I}(t_k^{i_k})(\mathbf{u}_k^{i_k},S_k^{i_k})$$

and the recovery sequence provides

$$\mathcal{I}(t)(\mathbf{u}(t),S(t)) \geq \limsup_{k \to \infty} \mathcal{I}(t_k^{i_k})(\mathbf{u}_k^{i_k},S_k^{i_k}).$$

Stability of minimizers. Second attempt

Independently of the recovery sequence, the only reason for which we may have

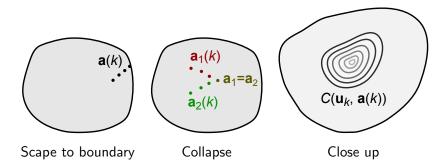
$$\mathcal{I}(t)(\mathbf{u}(t), \mathcal{S}(t)) < \liminf_{k o \infty} \mathcal{I}(t_k^{i_k})(\mathbf{u}_k^{i_k}, S_k^{i_k})$$

is that when we take the limit $S_k^{i_k} o S(t)$ we have

$$\mathcal{H}^0(S(t)) < \liminf_{k \to \infty} \mathcal{H}^0(S_k^{i_k}).$$
 (*)

There are only three reasons for which (*) can happen: in the limit passage,

- (1) Cavities scape to the boundary.
- (2) Cavities collapse (coalesce).
- (3) Cavities close up (heal).



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣

Stability of minimizers. Solution

Independently of the recovery sequence, we have to avoid that cavities

(1) scape to the boundary; (2) collapse; (3) close up.

Condition (1) is avoided by prohibiting *cavitation at the boundary* in the static model (as in J. Sivaloganathan & S.J. Spector 00,

D. Henao 09: also prohibits pathological behaviour).

Conditions (2)–(3) may well happen *but not for minimizers.* Qualitative (not quantitative) result:

- Minimizers cannot have two cavities very close to each other (it is better to have only one).
- Minimizers cannot have a cavity enclosing a very small volume (it is better not to have any).

Conclusion

$$(\mathbf{u}(t), S(t))$$
 is a minimizer and $S(t) = \bigcup_{s \in [0,t]} C(\mathbf{u}(s)).$

Energy balance and remaining properties of quasistatic evolution follow the lines of G. Dal Maso, G. Francfort & R. Toader 05.

Theorem: For every initial data, there exists a quasistatic evolution starting at the initial data, and satisfying global stability, irreversibility and energy balance.

<ロ> <部> <部> <き> <き> <き> の