Low Temperature Solvent Annealing in Organic Thin Films

A. E. Hosoi with Tony Yu and Vladimir Bulovic

Organic electronics

Flexible Devices

Sony OTFT-driven OLED

Organic Electronics

Advantages

- Flexibility
- Transparency
- Low temperature manufacturing (Low cost)

Challenges

• Low mobility (slow)

Goal: Make crystalline films and structures out of organic semiconductors

Solvent-annealed

Our Molecule

Tris(8-hydroxyquinoline)aluminium (Alq3)

Producing Alq₃ needles on glass

Solvent annealing: plasticization

Debenedetti and Stillinger (2001)

Physical Picture

Experiments

Needle growth rates

unobstructedobstructed

Needle growth and film thickness

Itlineathematical Model

Wednesday, January 6, 2010

ry 6, 2010

n and solvent-transport ons_{Thin Film Model}

Dimensionless evolution equations

Needle growth and thin-film evolution

Needle growth and thin-film evolution

Needle growth: α = diffusion vs. coarsening

Low- α limit: coarsening-dominated

t

of dewetting films," PRE 67 (2003)

Low- α limit: height dependence

Needle growth: α = diffusion vs. coarsening

