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Organic Electronics

Advantages
• Flexibility
• Transparency
• Low temperature 

manufacturing (Low cost)

Challenges
• Low mobility (slow)
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Our Molecule
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Producing Alq3 needles on glass

Alq3 needles
and droplets

glass
substrate

amorphous
solid film

Alq3 deposition methanol annealing



Physical Picture
Solvent annealing: plasticization
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Physical Picture
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Needle growth rates
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Needle growth and film thickness

100 μm

hAlq3 = 15nm hAlq3 = 60nm
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Mathematical Model

Solvent annealing: plasticization
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Thin Film ModelThin film and solvent-transport 
equations
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Aside: 6-12 potential give 
3-9 exponents however 

experimental data indicates 
than many materials can be 

modeled with 3-4.
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Needle growth and thin-film evolution
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Needle growth: 	  = diffusion vs. coarseningα

diffusioncoarsening
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Crystal growth

V̇m ∼ hsolidL̇m

Rate of change of 
volume of meniscus:
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Droplet coarsening

Glasner and Witelski “Coarsening dynamics 
of dewetting films,” PRE 67 (2003)

L̄ ∼ t2/5

P̄ ∼ t−1/5

Ndrop ∼ t−2/5

k − 1 k + 1k

L L ε
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L
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4
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L
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3(Pk+1 − 2Pk + Pk−1)

!i" The potential U(h) has only a single minimum,
whereas Cahn-Hilliard dynamics usually considers a poten-
tial with two minima.

!ii" The mobility coefficient in Eq. !1.11", h3 is nearly
degenerate for h→# , which leads to different relaxation time
scales for the droplets $where h!O(1)] and for the UTF
regions $where h!O(#)]. The original statement of the
Cahn-Hilliard equation $13% included nonconstant mobilities,
and has been the subject of recent studies $42%.
The limiting behavior of Cahn-Hilliard-type equations are

frequently expressed as free boundary problems, as was for-
mally derived by Pego $43%. In the context of a distinguished
asymptotic limit, our equation will also yield a similar type
of finite-dimensional ODE approximation.
A further asymptotic regime of Cahn-Hilliard dynamics is

described by the theories of Lifshitz and Slyozov $44% and
Wagner $45%, who characterize the statistical evolution of the
phase separated regions !this is known popularly as ‘‘LSW
theory’’". Mitlin $46,47% has proposed and studied a LSW-
type model of coarsening behavior in fluid dewetting. We
also study the statistics of dewetting using our finite-
dimensional approximation.
In the following section, we begin with an analysis of the

form of the structure of the equilibrium droplet solutions. In
Sec. III, energetic arguments are used to describe the ex-
pected long-time dynamics. In Sec. IV, evolution equations
are derived for a single near-equilibrium droplet in response
to externally imposed fluxes. These evolution equations are
then extended to describe the dynamics of arrays of interact-
ing droplets in Sec. V. And finally, in Sec. VI a scaling law is
derived to describe coarsening in very large sets of droplets.

II. STEADY-STATE SOLUTIONS

Stable steady solutions of Eq. !1.11" which represent iso-
lated fluid droplets were analyzed previously $24%, and we
briefly review them here. Nontrivial steady-state solutions of
Eq. !1.11" have uniform, constant pressure p! p̄&0, and
consequently h! h̄(x; p̄) satisfies the second-order ordinary
differential equation

d2h̄

dx2
!'! h̄ "" p̄ . !2.1"

Given the structure of '(h) for any value of p̄ in the range
0# p̄#pmax , a phase plane analysis shows that an isolated
droplet on an unbounded domain is given by the homoclinic
solution of Eq. !2.1", see Fig. 2. The maximum pressure
pmax!'(hpeak)!O(#"1) is large, and there is a continuous
family of droplet solutions parametrized by the pressure p̄ .
For any fixed, finite pressure in this range, p̄!O(1), the
minimum thickness of film in the droplet solution is the
O(#) fixed point of Eq. !2.1", the root of the equation

'!hmin"! p̄ , !2.2"

this value determines the thickness of the ultrathin film far
away from the droplet. Once hmin(p̄) is determined, we can
write the first integral of Eq. !2.1" as

1
2 ! dh̄dx " 2!R! h̄ ", !2.3"

where

R! h̄ "(U! h̄ ""U!hmin"" p̄! h̄"hmin". !2.4"

At the maximum of the droplet h̄x!0 at x!0, and hence
hmax is determined by the condition

R!hmax"!0. !2.5"

The values of hmin , hmax may be obtained graphically by
constructing the tangent-secant line with slope p̄ for the po-
tential U(h), see Fig. 3. The homoclinic solution can then be
obtained from Eq. !2.3" via quadrature.
To get more insight into the droplet solutions, we consider

their asymptotic properties for the limit #→0. In the limit
#→0, the structure of the solution breaks down into three
regimes $24% !see Fig. 2": !i" the droplet core containing the
bulk of the fluid mass, !ii" the contact line where asymptotic
matching between the core and the outer film takes place,
and !iii" the outer region, the uniform ultrathin film that ex-
tends indefinitely away from the base of the droplet.
In region !iii", away from the droplet core, the ultrathin

film differs from the minimum thickness by exponentially
small terms, h̄(x))hmin(p̄). To leading order, hmin)# and
solving Eq. !2.2" to next order as #→0 yields the depen-
dence on the pressure,

hmin! p̄ ")#$#2
p̄

U !!1 "
. !2.6"

Moreover, from Eq. !2.5" we also obtain that the droplet core
satisfies hmax(p̄))"U(1)/ p̄ . In the core region, the film
thickness satisfies #% h̄*hmax , consequently the disjoining

FIG. 2. A stable steady-state droplet solution h̄(x; p̄) showing
the three regions in the asymptotic structure of the solution for #
→0: !i" the droplet core, !ii" the contact line, and !iii" the outer
ultrathin film. The dashed curve shows the leading order asymptotic
solution for the droplet core, the parabola !2.7", with width 2w̄ .
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the generic behavior of the coarsening process. We now
present a heuristic argument for the occurrence of this
power-law scaling behavior in the coarsening dynamics for
dewetting.
This scaling behavior can be derived by considering the

dynamics given by Eq. !5.9" that control the collapse of a
single typical droplet in the array. Let this drop, with index k,
have somewhat smaller mass !and hence higher pressure Pk)
than its neighbors. We will assume that the separation be-
tween droplets, L is relatively large, so that we can neglect
the droplet motion and focus on the equation for the evolu-
tion of the droplet pressures. By Eq. !4.16", we have CP
#P3, and from Eq. !5.9" it is clear that droplets with larger
pressures !that is smaller masses" evolve on faster time
scales. In fact, we will show that the collapse of small drop-
lets occurs in finite time. Using Eq. !2.6", to leading order the
chemical potential yields V(hmin)$%3P. Consequently, the
flux !5.8" is approximated to leading order by

Jk ,k!1$"
%3Pk!1"%3Pk

L . !6.2"

Here we have assumed that L&Xk!1"Xk is large compared
to the average droplet width and that we can neglect the

influence of droplet motion on the time scale for pressure
evolution. Therefore, the pressure evolution equation be-
comes

dPk

dt #
%3

L Pk
3!Pk!1"2Pk!Pk"1". !6.3"

Since we have assumed that Pk#Pk$1, the time scale for the
evolution of Pk is much faster than that of its neighbors,
therefore this equation further reduces to the local model,

dPk

dt #"
1
L Pk

4 . !6.4"

The solution of this model shows collapse of the droplet in a
finite time, as the pressure diverges as t→Tc ,

Pk! t "#! Tc"t
L " "1/3

. !6.5"

If the initial pressure of the collapsing drop is P̄k , then its
collapse time scales like

Tc# P̄k
"3L . !6.6"

The typical droplet pressure relates to the mass by M# P̄"2

'see Eq. !2.12"(. Both M and L scale like N"1 by the con-
servation of mass and the definition of the average separation
distance on a finite size system, respectively. Therefore Eq.
!6.6" yields the relation for the collapse time scale of the Nth
droplet,

Tc#N"5/2. !6.7"

Note that during the collapse of each droplet, we assume that
the separation distance L is approximately fixed. Although
individual droplets will move, it seems evident again from
the numerical simulations that the average droplet spacing
will be unaffected. Therefore, the scaling !6.7" should be
correct when averaged over a large number of droplets. We
also assume that L varies on a slower time scale in response
to reduction in the number of droplets due to collapse of
individual drops, consistent with our assumption that the mo-
tion of droplets is slower than the evolution of pressures.
As can be seen from Fig. 13, as time progresses, a roughly

constant fraction of droplets vanish per unit time. We assume
that the droplet collapses are independent uncorrelated
events. Therefore, at a given time a constant fraction of drop-
lets will be collapsing, which means that the droplet number
N(t) satisfies

dN
dt #"

N
Tc

#"N7/2. !6.8"

This may be integrated to yield the desired scaling relation,

N#t"2/5. !6.9"

FIG. 13. World lines Xk(t) for a set of drops in a large array
from a simulation of the coarsening dynamics given by Eq. !5.9".
Xk(t) lines end when a droplet collapses to negligible mass.

FIG. 14. Log-log plot of the number of drops as a function of
time. A line corresponding to the scaling law !6.1" is shown for
comparison.
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Low-    limit: height dependence
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Needle growth: 	  = diffusion vs. coarseningα

diffusioncoarsening

hsolid = 16

α ∼ H0
−2

high-    limitα

Lneedle ∼ t1/2

αlow-    limit

Lneedle ∼ t0.2960 nm
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