A Γ-Convergence Analysis of the Quasicontinuum Method

Malena I. Español1, Dennis M. Kochmann1, Sergio Conti2, and Michael Ortiz1

1California Institute of Technology, Pasadena, USA
2University of Bonn, Bonn, Germany

PIRE and OxMOS Workshop on Pattern Formation and Multiscale Phenomena in Materials
September 26-28, 2011
The Quasicontinuum Method and Applications

Knap & Ortiz, 2003
Outline

1. The Problem
 - Atomistic Model

2. Quasicontinuum model
 - Interpolation Schemes
 - Summation Rules

3. Γ-Convergence
 - Definition
 - Atomistic Model
 - The Quasicontinuum Model

4. Numerical Examples

5. Conclusions and Future Work
We want to find the equilibrium configuration of the crystal, that is, we want to solve

$$\min_{u \in \mathcal{X}} F(u),$$

where the potential energy of the system is defined as

$$F(u) = \sum_{l \in \mathbb{Z}^n} \Phi(l, u)$$

where $u(l) = x(l) - q(l)$ is the displacement corresponding to the atom l, and Φ is the interatomic potential.
The Quasicontinuum Method

QC: A computational scheme for seamlessly bridging the atomistic and continuum description of materials.

- QC: Tadmor et al., 1996; Shennoy et al., 1998; Miller et al., 1998; Rodney-Philipps, 1999; Tadmor et al., 1999
We want to solve

$$\min_{u \in X} F(u)$$

Energy-based QC:

- **Interpolation Schemes:** coarse-graining of fully atomistic resolution via kinematic constraints.

 $$\min_{u \in X} F(u) \text{ is replaced by } \min_{u \in X_h} F(u)$$

- **Summation Rules:** approximation of the energy/forces via summation rules.

 $$\min_{u \in X_h} F(u) \text{ is replaced by } \min_{u \in X_h} F_h(u)$$
Interpolation Schemes

\[X_h = \{ u : \mathbb{Z}^n \rightarrow \bar{\mathbb{R}}, \quad u(l) = \sum_{\alpha \in I} u_{\alpha} \varphi_{\alpha}(l) \} \]

Examples

- **FEM**

- **Max-Ent** (Arroyo-Ortiz 2006)
Summation Rules

\[S = \sum_{l \in \mathbb{Z}^n} g(l) \approx \sum_{l \in \mathbb{Z}^n} w_h(l) g(l) = S_h, \]

Examples

- **Uniform Summation Rules**
 \[w_h(l) = \begin{cases}
 h, & \text{if } l \in h\mathbb{Z}; \\
 0, & \text{otherwise}.
\end{cases} \]

- **Cluster Summation Rules** (Knap-Ortiz 2002)
 \[w_h(l) = \begin{cases}
 \frac{h}{1+2r}, & \text{if } l \in [h\mathbb{Z} - r, h\mathbb{Z} + r]; \\
 0, & \text{otherwise}.
\end{cases} \]

- **Quadrature Rules** (Gunzburger-Zhang 2010)
 \[w_h(l) = \begin{cases}
 1, & \text{if } l \in h\mathbb{Z}; \\
 (h - 1)/2, & \text{if } l \in h\mathbb{Z} + h/3 \text{ or } l \in h\mathbb{Z} + 2h/3; \\
 0, & \text{otherwise}.
\end{cases} \]
$$E_{\min} = \min_u E_0(u)$$

and a sequence of variational problems

$$E_{\min,\epsilon} = \min_{u_\epsilon} E_\epsilon(u_\epsilon).$$
The Problem Quasicontinuum model \(\Gamma \)-Convergence Numerical Examples Conclusions and Future Work

\(\Gamma \)-Convergence

We have

\[
E_{\text{min}} = \min_u E_0(u)
\]

and a sequence of variational problems

\[
E_{\text{min},\epsilon} = \min_{u_{\epsilon}} E_{\epsilon}(u_{\epsilon}).
\]

\(\Gamma \)-Convergence + Equicoercivity = Convergence of minimizers

\underline{Definition}

Let \(E_\epsilon : X \to \mathbb{R} \) with \(\epsilon > 0 \). We say that the sequence \(\{E_\epsilon\} \) \(\Gamma \)-converges to \(E_0 : X \to \mathbb{R} \), and we write \(\Gamma - \lim E_\epsilon = E_0 \), if

- (lower bound inequality) for every \(u \in X \) and every sequence \(\{u_\epsilon\} \) such that \(u_\epsilon \to u \in X \), \(E_0(u) \leq \liminf_{\epsilon \to 0} E_\epsilon(u_\epsilon) \);

- (Existence of recovery sequence) for every \(u \in X \), there exists a sequence \(\{u_\epsilon\} \) such that \(u_\epsilon \to u \in X \) and \(E_0(u) = \lim_{\epsilon \to 0} E_\epsilon(u_\epsilon) \).

Dal Maso, Introduction to Gamma convergence, Birkhauser (1993)

Harmonic Lattice

We consider the harmonic lattice where the potential energy is defined by

\[
F(u) = \frac{1}{\Omega} \sum_{l \in \mathbb{Z}^n} \frac{1}{2} \langle \Phi \ast u(l), u(l) \rangle - \Omega \sum_{l \in \mathbb{Z}^n} \langle f(l), u(l) \rangle,
\]

where \(\Phi \) is the force-constant field of the lattice, and \(f : \mathbb{Z}^n \to \mathbb{R}^n \) is an applied force field, which can also be written using the Fourier transform as

\[
F(u) = \frac{1}{(2\pi)^n} \int_B \frac{1}{2} \langle D(k) \hat{u}(k), \hat{u}^*(k) \rangle \, dk - \frac{1}{(2\pi)^n} \int_B \langle \hat{f}(k), \hat{u}(k) \rangle \, dk,
\]

where \(B \) is the Brioullin zone of the reciprocal lattice and

\[
D(k) = \frac{1}{\Omega^2} \hat{\Phi}(k)
\]

is the dynamical matrix of the lattice.
The Continuum Limit

- Sequence of scaled functions

\[f_\epsilon(x) = \epsilon^2 f(\epsilon x) \]

of decreasing variation on the scale of the lattice.

- Sequence of scaled potential energy functions

\[F_\epsilon(u) = \epsilon^{n-2} (E(u) - \langle f_\epsilon, u \rangle) \]
The sequence of scaled potential energy functions can also be defined as

\[F_\epsilon(u) = E_\epsilon(u) - \langle f, u \rangle, \]

where the sequence of functionals \(E_\epsilon : H^1(\mathbb{R}^n) \to \mathbb{R} \) is defined as

\[
E_\epsilon(u) = \begin{cases}
\frac{1}{(2\pi)^n} \int_{B/\epsilon} \frac{1}{2} \langle \epsilon^{-2} D(\epsilon k) \hat{u}(k), \hat{u}(k) \rangle \, dk, & \text{if } \text{supp}(\hat{u}) \in B/\epsilon \\
+\infty, & \text{otherwise}
\end{cases}
\]
Theorem (Ariza-Ortiz 2005)

Suppose that:

i) For every $\zeta \in \mathbb{C}^n$ the function $\langle D(\cdot)\zeta, \zeta \rangle$ is measurable on B.

ii) There is a constant \tilde{C} such that

$$0 \leq \langle D(k)\zeta, \zeta \rangle \leq \tilde{C}|k|^2|\zeta|^2$$

for a.e. $k \in B$ and for every $\zeta \in \mathbb{C}^n$.

iii) For every $\zeta \in \mathbb{C}^n$, the functions $\epsilon^{-2}\langle D(\epsilon k)\zeta, \zeta \rangle$ converge for a.e. k to $\langle D_0(k)\zeta, \zeta \rangle$.

Then, $\Gamma\lim_{\epsilon \to 0} E_\epsilon = \frac{1}{(2\pi)^n} \int \langle D_0(k)\hat{u}(k), \hat{u}^*(k) \rangle \, dk$, in the weak topology of $H^1(\mathbb{R})$.
Theorem (Ariza-Ortiz 2005)

Suppose that:

i) For every $\zeta \in \mathbb{C}^n$ the function $\langle D(\cdot)\zeta, \zeta \rangle$ is measurable on B.

ii) There is a constant \tilde{C} such that

$$0 \leq \langle D(k)\zeta, \zeta \rangle \leq \tilde{C}|k|^2|\zeta|^2$$

for a.e. $k \in B$ and for every $\zeta \in \mathbb{C}^n$.

iii) For every $\zeta \in \mathbb{C}^n$, the functions $\epsilon^{-2}\langle D(\epsilon k)\zeta, \zeta \rangle$ converge for a.e. k to $\langle D_0(k)\zeta, \zeta \rangle$.

Then, $\Gamma\text{-lim}_{\epsilon \to 0} E_\epsilon = \frac{1}{(2\pi)^n} \int \langle D_0(k)\hat{u}(k), \hat{u}^*(k) \rangle \, dk$, in the weak topology of $H^1(\mathbb{R})$.

Γ-convergence + Equicoercivity = Convergence of minimizers
We approximate

\[E(u) = \frac{1}{\Omega} \sum_{l \in \mathbb{Z}^n} \frac{1}{2} \langle (\Phi \ast u)(l), u(l) \rangle \]

by

\[E_h(u) = \frac{1}{\Omega} \sum_{l \in \mathbb{Z}^n} w_h(l) \frac{1}{2} \langle (\Phi \ast u)(l), u(l) \rangle, \]

or equivalently

\[E_h(u) = \frac{1}{(2\pi)^n} \int_B \int_B \frac{1}{2} G_h(k - k') \langle D(k) \hat{u}(k), \hat{u}^*(k') \rangle \, dk' \, dk, \]

where

\[G_h(k) = \hat{w}_h(k). \]
Continuum Limit: Scaling

If we define
- $X_{h,\epsilon}$: Given by scaled shape functions $\varphi_{\alpha, \epsilon}(x) = \varphi_{\alpha}(x/\epsilon)$.
- $G_{h,\epsilon}(k) = \epsilon^n G(\epsilon k)$.

Then, the sequence of scaled potential energy functionals is defined by

$$F_{h,\epsilon}(u) = \tilde{E}_{h,\epsilon}(u) - \langle f, u \rangle,$$

where

$$\tilde{E}_{h,\epsilon}(u) = \begin{cases} E_{h,\epsilon}(u) & \text{if } u \in X_{h,\epsilon} \\ +\infty, & \text{otherwise} \end{cases}$$

with

$$E_{h,\epsilon} = \frac{1}{(2\pi)^{2n}} \int_{B/\epsilon} \int_{B/\epsilon} \frac{1}{2} G_{h,\epsilon}(k-k') \langle \epsilon^{-2} D(\epsilon k') \hat{u}(k'), \hat{u}^*(k) \rangle \, dk \, dk'$$
Theorem

Let $X_{h,\epsilon}$ be a dense sequence of sets in $H^1(\mathbb{R}^n)$. Suppose that the assumptions over $D(k)$ still hold and that:

i) $G_h(k) - \delta(k) \in L^\infty$.

ii) There is a constant \tilde{C} such that

$$0 \leq \int_B G(k - k') \langle D(k)\zeta, \zeta \rangle \, dk' \leq \tilde{C} |k|^2 |\zeta|^2.$$ \hspace{1cm} (1)

Then,

$$\Gamma-\lim_{\epsilon \to 0} \tilde{E}_{h,\epsilon}(u) = E_0(u)$$ \hspace{1cm} (2)

in the weak topology of $H^1(\mathbb{R}^n)$.
Theorem

Let $X_{h,\epsilon}$ be a dense sequence of sets in $H^1(\mathbb{R}^n)$. Suppose that the assumptions over $D(k)$ still hold and that:

i) $G_h(k) - \delta(k) \in L^\infty$.

ii) There is a constant \tilde{C} such that

$$0 \leq \int_{B} G(k - k') \langle D(k)\zeta, \zeta \rangle dk' \leq \tilde{C}|k|^2|\zeta|^2. \quad (1)$$

Then,

$$\Gamma - \lim_{\epsilon \to 0} \tilde{E}_{h,\epsilon}(u) = E_0(u) \quad (2)$$

in the weak topology of $H^1(\mathbb{R}^n)$.

Γ-convergence + Equicoercivity = Convergence of minimizers
Numerical Examples: 2D

- Lennard-Jones Potential
- \(f_n = a n^2 |\sin(n\pi x/L)||\sin(n\pi y/L)| \)
- Max-Ent (Bompadre-Schmidt-Ortiz, submitted)
- Cluster summation rule
Numerical Examples: 3D

- Finnes-Sinclair Potential
- $f_n = a_n^2 |\sin(n\pi x / L)| |\sin(n\pi y / L)| |\sin(n\pi z / L)|$
- Max-Ent
- Cluster summation rule

![Graphs and images of numerical examples](image-url)
Summary and forthcoming

- Proposed a convergence approach
- Obtained sufficient conditions on interpolation schemes and summation rules
- Showed in numerical examples the convergence
Summary and forthcoming

- Proposed a convergence approach
- Obtained sufficient conditions on interpolation schemes and summation rules
- Showed in numerical examples the convergence
- Defects
 - Dislocations: Dilute Limit (Ariza-Ortiz 2005)
 - Fracture (Braides-Lew-Ortiz 2006)