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Examples of isometry groups

� Translation group

� Theorem: If a discrete group of isometries does not contain a 
translation and does not consist entirely of rotations, it is expressible 
in one of the forms B

A
A DC
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A time-dependent invariant manifold of 
the equations of molecular dynamics

simulated atoms

a discrete group of isometries
(N can be infinite)
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all of the atoms

The elements      can depend on t>0, but this time dependence must be
consistent with

,t



Atomic forces

The force satisfies 
� Frame-indifference

(These conditions 
satisfied, e.g., by the 
Hellmann-Feynman
force based on Born-
Oppenheimer 
quantum mechanics)
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� Permutation invariance

where Π is a permutation that preserves species.



Potential energy

These conditions can be found by formally differentiating 
the frame-indifference and permutation invariance of the 
potential energy, 
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( but of course this calculation would not make sense when N = ∞ )



Theorem

Assume the restrictions on the potential energy above and 
let                                 be a time-dependent discrete group 
of isometries satisfying the restriction on the time-
dependence given above.  If                                satisfy the 
equations of molecular dynamics, i.e.,
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equations of molecular dynamics, i.e.,

then           also satisfy the equations of molecular dynamics:



Proof
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Allowed time dependence of the group 
elements

The permitted time-dependence,

that is, 
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that is, 

This is satisfied (in the absence of excessive assumptions on the solution)
if and only if



The invariant manifold is independent of 
the material

p

(p , q )
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(p0, q0)

q

t

Relation to experimental science?



Simplest case - translation group

simulated atoms

discrete translation group

all of the atoms

affine in t
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permitted time-dependence



Passage to continuum level

Assume (“no body force”) 

force on a collection of n3 unit cells
n3

0

The macroscopic motion describes not the motion of the average position, but the motion of the mass
averaged position
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“affine motion”

n3
0

center of mass of simulated atoms moves with
constant velocity

Assume this velocity is zero.  The centers of mass of the
images lie on a grid moving according to   



Viscometric flows

Constitutive equation for the Cauchy stress

“relative deformation gradient”

Ordinary Lagrangian description of motion
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Formula for the relative deformation gradient

Definition of a viscometric flow

cone and 
plate flow



Relation between the invariant manifold
and viscometric flows

“affine motion”

For “simple fluids”
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� Viscometric flows ∩ {                                   } 

=

For the invariant solutions



Viscometry

� Most viscometric flows (i.e. cone and plate flow) are only exact 
solutions (for some fluids) with inertia and thermodynamics neglected

� is an exact solution of the equations of 

Lagrangian Eulerian
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� is an exact solution of the equations of 
motion of every accepted model of fluid

� It makes sense to base experimental fluid mechanics on
rather than viscometric flows

because



A “theoretical viscometer”
Caveat: it could be difficult to actually build this viscometer

My attempt at a 
design: this 
corresponds to 
the general 
isochoric case
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(e.g.,incompressible
fluid), in which case

in a suitable 
orthonormal basis



Other groups besides the translation group
(joint work with Traian Dumitrica, Kaushik Dayal)
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Objective MD study of a carbon nanotube 
under torsion

� Three-body Tersoff potential for carbon
� Twist was controlled by controlling the group parameters
� The groups chosen were various subgroups of the following 

group listed earlier:
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No time-dependence of the group elements



(12, 12) CNT

b

a

b

t1

Objective MD: study of buckling of 
C nanotube under torsion
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~3 deg/nm twist

a

b

t2b



Effect of different choices of the 
fundamental domain
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bifurcation diagram



Objective MD simulation of bending of a 
carbon nanotube
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Is there a St. Venant’s 
principle at atomic level,

with these solutions 
playing the role of the 
St. Venant solutions?

I. Nikiforov, D.-B. Zhang, R.D. James, and T. Dumitrica



A time dependent group: “viscometry of 
nanostructures”

� Tersoff potential for carbon, again
� Same group as in the static simulations of the carbon nanotubes, 

but introduce time-dependence consistent with the main theorem 
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Replace 



Two FDs used
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Strain rate = 10-5 /ps, initial temperature = 
1200K, helical FD 
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Wide variety of failure modes
cross-sectional collapse cavitation failure fibrous fracture
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Typical temperature vs. time 
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Green: 108 1/s. Blü: 106 1/s

Temperature replotted parametrically vs. strain 
at two strain rates
A. Aghaei and K. Dayal
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Temperature vs. strain over a wide range of strain
rates

A. Aghaei and K. Dayal
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Force vs. strain over the same strain rates

Initial temperature is 500K for all simulations
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Maxwell-Boltzmann equation

Maxwell-
Boltzmann
equation 

molecular density
function 
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Solutions on the invariant manifold have 
their own “statistics”

� Use translation group (i.e., gases fill volumes)

0

y
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0



This yields an exact reduction of the 
Maxwell-Boltzmann equation

satisfies

(with Stefan Müller)
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� Includes many (all?) known exact solutions of the equations of the moments 
for special force laws

� Does not include the Bobylev-Krook-Wu solution 



The moments of f (and g)
Valüs of these moments 
for the invariant solutions
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Theorem . For sufficiently regular solutions of the Maxwell-Boltzmann equation, the balance laws of 
continuum mechanics are satisfied by these moments:



The moments of f (and g)
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Theorem. For sufficiently regular solutions of 
the Maxwell-Boltzmann equation, the balance 
laws of continuum mechanics are satisfied by 
these moments:



H-theorem

H-theorem for the invariant solutions:
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Remark on H for Maxwellian densities

H-theorem for Maxwellian densities:

Maxwellian density.
Solves MBE for suitable
moments.
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Valü of H (minus entropy) for Maxwellian densities:



J. C. Maxwell on inverse
fifth power molecules, 1866

July 11, 2012

The special invariance for inverse 5th power molecules:



Further simplification for inverse 5th power
molecules

Assume

Choose ξ and η to remove time dependence.  Get
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removes the  time dependence.  

Examples

a

n

1.



Examples, continüd

2.

!
t

H(t)

H0
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2.

!
t

H(t)

H0

Plate moving at
constant 
velocity a Stationary 

platea

n



Remarks

g(t,w)

� Consistency of behavior of H with its definition?

f

f log f

1/e
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w

� Both the solutions of Boltzmann and the  numerical results on 
pulling carbon nanotubes at constant strain rate suggest that 
there is a statistical mechanics for the invariant manifold.  If 
so, it cannot be based on the invariant measure of ordinary 
statistical mechanics (Gibbs measure) because

Hamiltonian       constant 


