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Examples of isometry groups

" Translation group

GT — {tfi)tgtg Ip,q,TE Z} — {(I|pel T gey + ?"63) P, q,T € Z}
" Theorem: If a discrete group of isometries does not contain a
translation and does not consist entirely of rotations, it is expressible
in one of the forms '
A {h':peZ},
B {h?f™:.peZ, m=1,2}
C {Wg":peZ,q=1,...,n},
D {hP¢?f":peZ,q=1,...,n, m=1,2},

where

1. h=(Ry|tet+(Ry—I)xo}, Rye = e, [e| = 1, xqg-e = 0, e,xg € R® 7 £ 0, and € is an irrational
multiple of 27.

2. g=(Ry|(Ry —I)xq), Rye = e, is a proper rotation with angle ¢ = 2n/n, n € Z, n # 0.

3. f=R|(R-Dx;1), R=—-1+2e;®ey, |e;] =1,e-e; =0 and x; = x¢ + e, for some £ € R.
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A time-dependent invariant manifold of
the equations of molecular dynamics

Yk(t), | L,....M simulated atoms
. a discrete group of isometries
G = {917 g2, - - ;Q’N} (N can be infinite)

eklt) = g; t)), all of the atoms
ikt g(Yk({)t\) i=1,....N, k=1,.... M

The elements g; can depend on t>0, but this time dependence must be
consistent with

dIyjp(t) & dyi(t)
gJ:(QJ|CJ)EG,j:1,,N,kzlj,M
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Atomic forces

The force on atom %, k is denoted by the suggestive notation —dyp/dy; : R* — R3

The force satisfies g:g;:dcoengiti%r;sthe
" Frame-indifference Q € O(3), c € R? Hellmann-Feynman
(9 force based on Born-
4 Oppenheimer
Qay (s s a Viniior s e FinadlByme 13 Py e e Vins <=2 quantum mechanics)
i,k
Oy
— (- Qyyrte, .. Qyumtc.. ., Qyuite.. . Qypmte,...)
5Y@,k
" Permutation invariance
Oy
—( SR £2I CIEI 21,7 SIS, £7% PRI 479,V SR )
8YH(i,k)
Oy
= 8y- ) ( .. 7yH(z'1,1); .« YH(z'l,M); ca s ;YH(z'g,l); “. yH(?;sz), .. )
7’)

where [ is a permutation that preserves species.

Preservation of species means that if (i, k) = TI(j,£) then the species (i.e., atomic mass and
number) of atom 4, k is the same as the species of atom j, .
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Potential energy

These conditions can be found by formally differentiating
the frame-indifference and permutation invariance of the
potential energy,

()0( oy Yig 1o Yo My 5 Y010 - Yo M- )
= ... y YI(i1,1)5 - - - YTI(i1,M)s - - - 2 YTI(3i9,1)5 - - - 5 Y1I(i2, M) - - N
= (-, Qyuit+e. . Qyumte.. . Qypite,...,Qypmutec,...)

( but of course this calculation would not make sense when N = «)
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Theorem

Assume the restrictions on the potential energy above and
let G =g, 992,...,9n5}be atime-dependent discrete group
of iIsometries satisfying the restriction on the time-
dependence given above. If yi(t), k= 1,..., M satisfy the
equations of molecular dynamics, i.e.,

. o
mryr = —ayfk( s Yilse e YiMs Yitll e Yitl,M; - -)
D¢
= —3 (s 01y 9i(Y M)y G 1(Y1)s - Git(Yar)s -0
Y1,k

ye(0) =yi ¥#(0)=vi, k=1,....M
then y; «({) also satisfy the equations of molecular dynamics:
OV k
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Proof

There is a permutation I, depending on the choice of g, such that

YH(z,k;)(t) = Q(Yz,k(t)); Z = 1, TrT N, ]{ — 1, voey M
Fix 7 € {1,..., N} and choose g = gj_1 — (Qﬂ - QJc))
The corresponding permutation II satisfies 11(, k) = (1, k)

mYie(t) = meQ;¥i(t) = —Q; Oy

(o yin()s - yim (), yiralt), - yirm(t), - )

Y1,k
Oy
= _QjM('"in,l(t)a"-7yi,M(t):yi+1,1(t)7'"7yi+1,M(t)7'")
I
0
= —Q By oy () - yuaan @), - - yuaen (), - Y+, (), - )
Is
0 _ _ _ _
= —Q; ay?k(- 85 V)05 e (0), 97 i ()0 07 (i, (), )
I
0
= —Q; ay?k(- Qi) —Qley, ., Qlyim(t) — Q) ¢y,
I

Qi yinat) — Q.. Qlyinm(t) — Qlcy,...)

= (¥l yam (@), yirra (), - yir,m(t), )
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Allowed time dependence of the group
elements g; = (Qjlc;), Q; € O(3), ¢; € R?

(d/dt)Q; = Q;W; (no sum), where W; = —W

The permitted time-dependence,
d2
dt?
that is,

(Q;yr +¢j) = Q;

dt?

dzyk (t)

& = —Qi(Wlyi + Wiyi + 2W, ;)

k=1,.... M, t >0

This is satisfied (in the absence of excessive assumptions on the solution)

CJZO E:LIld WJZO

if and only if

That is, Q; € O(3) must be constant and

July 11, 2012

Cj = ajt + bj

must be an affine function of ¢
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The invariant manifold is independent of
the material

. d .
P = {kai:k: } = mkEQz‘(ka 7t) = mpQi¥V1,k +Mgay

P
T q={Yik } = 9i(y1,1) = Qiy1.k Tt + by

Relation to experimental science?
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Simplest case - translation group

/K—/— affine in t

Gr = {(Ilv'e; I viey | vies) : v, v, v° € Z}  discrete translation group

yy,k(t), VEZ3, k=1,...,M, t >0 all of the atoms

Ye(l) = Yoo s(t), k=1,..., M simulated atoms
Yuk(t) = gu(yu(t)) = yi(t) + p'es + p'tAe; = yi(t) + (14 tA)(1'e;)
o o - - permitted time-dependence
V\. / it [ .. [ J . . .. (] . . .. [ . . .. [ J . . ° i
\/’ \. . o. = o‘ R o. - o. o.
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Passage to continuum level

/ 0y Y. AR D /°

Yuk(t) = yi(t) + T+ 1A)(1'e;) TR T AT
Assume (“no body force”) /L//////

VAN SR A A A

force on a collection of n3 unit cells
n3
center of mass of simulated atoms moves with
constant velocity

> 0

Assume this velocity is zero. The centers of mass of the
Images lie on a grid moving according to

E— )[()(7 t) —= (I —|~ tA)X “affine motion”

The macroscopic motion describes not the motion of the average position, but the motion of the mass

averaged position
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Viscometric flows

Constitutive equation for the Cauchy stress

o(y,t) = —pl + X(F(y,-))

“relative deformation gradient”
Ordinary Lagrangian description of motion

y:Q2x(0,00) = R°  y(x,t)

Formula for the relative deformation gradient

Fi(z,7) = Vi(y(y(z,1),7))

cone and

p_Iate flow

7 N

Definition of a viscometric flow @) (b) ()

Fy,7) = Quy, )T+ (7 — )M(y)), rankM, <1, Q, € O(3)
Tét, t>0, YEQt
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Relation between the invariant manifold
and viscometric flows

Yiuk(t) = Yi(t) + I+ tA)(i'e;)
—_— y(x,t) = (I +tA)x afine motion’
For “simple fluids” o(y,t) = —pl + X(F¢(y,-))
For the invariant solutions  Fy(y, 7) = (I+ 7A)(I+ tA)™!

" Viscometric flows [ ) {y(x,1) = I+ tA)x }

» dimension

{Moving )
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Viscometry

Lagrangian Eulerian
y(x,t) = I+tA)x  v(y,t)=AI+tA)”

® Most viscometric flows (i.e. cone and plate flow) are only exact
solutions (for some fluids) with inertia and thermodynamics neglected

= v(y,t) = A+ tA)_ly is an exact solution of the equations of
motion of every accepted model of fluid

p(vi+Vvv)=V.0=0

because
p(vi + Vvv) = p(—AI + At)TAT + At) 'y AT+ At PAT + At)ly) =0

" It makes sense to base experimental fluid mechanics on
viy,t) = A0+ tA)" Ly rather than viscometric flows
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A “theoretical viscometer”
Caveat: it could be difficult to actually build this viscometer

t=0
a)
ezL)
S
w
= =
C)
e3L)
S
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t>0

My attempt at a
design: this
corresponds to

the general
Isochoric case
(e.g.,incompressible
fluid), in which case

0 0 K
A= v 0
0 0 0

in a suitable

orthonormal basis
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Other groups besides the translation group

(joint work with Traian Dumitrica, Kaushik Dayal)
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Objective MD study of a carbon nanotube
under torsion

m Three-body Tersoff potential for carbon
m  Twist was controlled by controlling the group parameters

m The groups chosen were various subgroups of the following
group listed earlier:

{hP¢? :peZ,qg=1,...,n}

1. h=(Ry|re+(Ry—I)xp}, Rye — e, le| = 1, xg-e = 0, e,xg € R?, 7 # 0, and # is an irrational
multiple of 27.

2. 9= (Ry|(Ry —D)xo), Rye = e, is a proper rotation with angle ¢ = 2x/n, n € Z, n # 0.

No time-dependence of the group elements
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Objective MD: study of buckling of
C nanotube under torsion (12, 12) CNT

~3 deg/nm twist
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Effect of different choices of the
fundamental domain

'2: 1':‘1'0
“':Q" i l ;“ ﬂ
‘J‘,‘a m ";' SA

bifurcation diagram

'
4
-

E (eV/atom)

=~
(8]

~
[
L I m e |
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Objective MD simulation of bending of a
carbon nanotube
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Is there a St. Venant’s
"2 principle at atomic level,
y with these solutions
playing the role of the
. St. Venant solutions?
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A time dependent group: “viscometry of
nanostructures”

" Tersoff potential for carbon, again

® Same group as in the static simulations of the carbon nanotubes,
but introduce time-dependence consistent with the main theorem

{h*g?:peZ,qg=1,...,n}

/Replace T=c(l+1té)

1. h= (Rylre+ (Ro—I)x0}, Rye = e, [e| = 1, xg-e = 0, e,x9 € R*, 7 # 0, and 6 is an irrational
multiple of 27.

2. 9= (Ry|(Ry — D)x0), Rye = e, is a proper rotation with angle ¢ = 2x/n, n € Z, n # 0.
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Two FDs used
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Strain rate = 105 /ps, initial temperature =
1200K, helical FD LA
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Wide variety of failure modes

cross-sectional collapse cavitation failure fibrous fracture
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Typical temperature vs. time
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Temperature replotted parametrically vs. strain
at two strain rates Green: 108 1/s. Bli: 10° 1/s

A. Aghaei and K. Daya
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Temperature vs. strain over a wide range of strain
rates

A. Aghaei and K. Dayal

520 : : : : : !
500" ................... ................... ................... .................... .................. .................. ................... ................. ................ i

480 | " ....... .................. .................. ................... ................. ................

460

440- 5 5
— Rate= 108 1/5

Rate=10" 1/s
420_ ................. 5
= Rate=10"1/s
— Rate=10° 1/s
400_ ................. 4
— Rate=10"1/s

380 i i i

July 11, 2012



Force vs. strain over the same strain rates

Initial temperature is 500K for all simulations
12 : ;

S : : :
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Maxwell-Boltzmann equation

f R x RS % RS _ R> (t’y’ ) fmuglcc?[icour:ar density
of Maxwell-
— + V- / / f*f f* deV* Boltzmann
ot R3 equation

f;: — f(tJY7V:¢) — f(tJY7V*_ ((V*_V) 'e)e)
o= flty,v)=ft,y,vt((vi —Vv)-e)e)
f* — f(ta Y, V*)

f o= fy,v)
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Solutions on the invariant manifold have
thelir own “statistics”

®  Use translation group (i.e., gases fill volumes)
[ [ J

°
/‘ !/. VA d

® The Vel()(:ltles at 0 are y;, © = 1
o The velocities at y = I+ tA)x arey; + Ax,i=1,..., M

e Or, in the Eulerian form used in the kinetic theory, the velocities at y are
yvi t AQD+tA)y,i=1,....M

—> [y, v+AI+tA)y) = f(t,0,v)
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This yields an exact reduction of the

Maxwell-Boltzmann equation with Stefan Maller)

flt,y,v) = f(t,0,v—AI+tA)"y)
— g(t,v— AT +tA) y), veR) yeR® >0

g(t,w) satisfies

dg 0Og

— — — AT +tA)” — g, N
5 B I+tA) 'w = /Rg/g_kg g+g) dSdw

® Includes many (all?) known exact solutions of the equations of the moments
for special force laws

" Does not include the Bobylev-Krook-Wu solution
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The moments of f (and g)

(m = molecular mass)

Valus of these moments
for the invariant solutions

_ Po
Density p(t,y) =mn{t,y)=m | f(t,y,v)dv plty) = det(T + LA)
) R u(t,y) = AI+tA) 'y +G.T.
Velocity u(t,y) = ~ /R Vity.v)dv elt,y) = e(t)
11 5 Tlty) = T()
Internal energy e(t,y) = —/ §\V —ult,y)|*f{t,y,v)dv ) 0
n Jas p(Ly) = ST = Sp(Del()
Stress T(t.y) = —?n/ (v—ult,y) @ (v—u(t,y))f(t.y,v)dv qalt.y) = a(b)
R3
1 2
Pressure p(t,y) = —gtrT(t, y) = §pe(t)
1
Hoat s alty) =m [ 5V = u(t )Py — vty v
B3

Theorem . For sufficiently regular solutions of the Maxwell-Boltzmann equation, the balance laws of
continuum mechanics are satisfied by these moments:

p: +div(pu) = 0
p(ug + Vuu) = divT
ple;, + Ve-u) = T-Vu-—divqg
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The moments of f (and g) (m = molecular mass)

Density plt,y) =mn(t,y)=m | [f(t,y,v)dv
R3
1
Velocity u(t,y) = —/ vf(t,y,v)dv
T Jps3
1 /1 .
Internal energy e(t,y) = — —|lv—ult,y)|"f(t,y,v)dv
n Jpa 2
Stress T(L,y) — —m / (v — u(t.y)) @ (v — u(t,y) F(L,y, v) dv
R3
1 2
Pressure p(l,y) = —gtrT(t, y) = gpe(t)
1
Heat fux  a(ty) =m [ v ult,y)P(v - u(t.y)f(ty.v)dv
3

Theorem. For sufficiently regl_JIar solutions of o+ div(pu) = 0
the Maxwell-Boltzmann equation, the balance

laws of continuum mechanics are satisfied by ~ * (0 +Vuu) = divT |
these moments: plee+Ve-u) = T-Vu—divq
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H-theorem

1 1
Hty) ~+ [ flogfav— = [ gloggav

n Jp3

H-theorem for the invariant solutions:

oH
— <0
ot —
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Remark on H for Maxwellian densities

. P 23 lv—uf? Maxwellian density.
fu = e e :
Ar \3/2 Solves MBE for suitable
m (?6) moments. Cfis = 0

H-theorem for Maxwellian densities:

1 dH
HHM_/ faulog fudv — 2 g
n Jgrs dt
Valu of H (minus entropy) for Maxwellian densities:
1 63/2
H—=Hy — — farlog far dv = —log — + const.

T Jp3 P
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TRANSACTIONS

J. C. Maxwell on Inverse o
fifth power molecules, 1866 RovAL seciEt

OF

LONDON.
IV. On the Dynamical Theory of Gases. By J. CLERK MaxweLL, F.R.S. L.& E

FOR THE YEAR MDCCCLXVIIL

Received May 16,—Read May 31, 1866,

MR. CLERK MAXWELL ON THE DYNAMICAL THEORY OF GASES. 51

In the present paper I propose to consider the molecules of a gas, not as elastic spheres
of definite radius, but as small bodies or groups of smaller molecules repelling one
another with a force whose direction always passes very nearly through the centres of
gravity of the molecules, and whose magnitude is represented very nearly by some
fanction of the distance of the centres of gravity. I have made this modification of the
theory in consequence of the results of my experiments on the viscosity of air at different
temperatures, and I have deduced from these experiments that the repulsion 1s inversely

as the fifth power of the distance.

The special invariance for inverse 5" power molecules: (Cg(A-))(w) = A3(Cg)(Aw)
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Further simplification for inverse 5" power
molecules

Assume g(t,w) = £(H)G(n(t)w)
Choose ¢ and n to remove time dependence. Get
div (G(t (cof A")® + 81 — A")v) = CG

(cof ATYP = 0 removes the time dependence.

¥ dimension
Examples boundary plate (2D) A
i:lmﬁ'mgj clo I1:-.:_l' N
1. A — a ® I]_:, a-1N — O - shear stress, T 7
u(y? t) — A(I + tA)_ly _ (Il ) y)a Q Fluid o pradicat,
k I'n-umll' : pla :Il:I‘.ll
>a oA
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Examples, continud

p(t) = po, u(l.y) = kyzer, T()

H(t) =36t + Hy = —log

— Toe ¢, e(t) =

H(t)
+ const. I HOI\
1 > t

e3/2(t)
p

3
—(trTy/2p0)e 2Pt = 2—])06_2&
Ao

2. A=a®n, a- n#[]

1
u(t1Y) — 1+ (an)t(ny)
w0 = T TO = A ()t
H(t) — :’5“ log(1+ (a- n)t) + Hy —
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Plate moving at
onstant
veIOC|ty a Stationary
plate

3
p01+an _ﬁ

290

:.o|U:
wlw

TO 8 =

H(Y)
3/2 .
— log e (t) + const.l HOI\ |
p(t) | | 1 )t
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Remarks

m Consistency of behavior of H with its definition? flog f
[ 1/e /
>

1 1
Hty) -~ [ flogfdv— = [ gloggay
T JRr3 3

! f
, 9tw) S
e(t) — 0
e(t)°
— N
W e R’ 1/¢(t)

m Both the solutions of Boltzmann and the numerical results on
pulling carbon nanotubes at constant strain rate suggest that
there is a statistical mechanics for the invariant manifold. If
S0, it cannot be based on the invariant measure of ordinary
statistical mechanics (Gibbs measure) because

Hamiltonian == constant
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