
Ant Colony Optimization Applied to the Bike

Sharing Problem

Cashous W. Bortner1, Can Gürkan2, and Brian Kell3

1Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE,

cashous.bortner@huskers.unl.edu
2Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY,

gurkac@rpi.edu
3Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA,

bkell@cmu.edu

Abstract

In this study, we analyze a single vehicle capacitated pickup and deliv-
ery problem, namely the bike sharing problem as seen in bike sharing
systems around the world. We investigate previous works and for-
mulate our own, novel algorithm for solving the bike sharing problem
which is based on an ant colony optimization heuristic. Our algorithm
takes into account the total distance traveled, and the distribution of
the bikes within the system. We then test our algorithm on random
data samples as well as real world data in order to compare our algo-
rithm to other formulations.

1 Introduction

Bike sharing systems have gained wide-spread popularity as cities around
the world continue to implement them in an effort to influence citizens to
use bikes instead of motorized vehicles to lower green-house gas emissions,
induce a more healthy lifestyle, and decrease the traffic flow. These systems
allow one to rent a bike from an automated bike-rack, or station, to be rid-
den to a destination where there is another bike-rack, for returning the bike.

The main factor that determines the success of the system is the demand
and how well it is met throughout the daily operation of the system. The
demand of the bikes is twofold; there must be enough bikes at every station
so that users can take a bike, but there also need to be enough open slots
for users that have already rented bikes to return their bikes. To meet this
demand, a fleet of vehicles specially designed to efficiently pick up and drop
off bikes is sent out from the depot, or the place at which the vehicles are

1

stationed, to pick up and deliver bikes as they see fit, so that the amount
of times a potential customer is turned away from a station, either because
there are no bikes to pick up, or because there is no room to return a bike,
is reduced to a minimum. The problem of finding an optimal path of the
vehicle tasked with repositioning the bikes is a relatively new and interest-
ing question which has recently been investigated in the area of operations
research.

This repositioning problem has been studied both in its initial form as a bike
sharing problem (BSP), where the goal is to find a route that best meets
the demand of the system, and a variation of it in which more constraints
are added to focus the problem. What makes this problem so difficult, as
well as interesting, is the combination of a routing problem in determining
the best path for the repositioning vehicle to minimize distance, as well as
an inventory problem in which the vehicle must also attempt to meet the
demand as well as possible. Many different approaches have been taken to
attain exact solutions using some variation of mixed integer programming;
however, these methods proved to be inefficient [3, 5, 6, 8, 12]. Since finding
exact solutions is inefficient, many heuristics (rules of thumb which yield
good approximation) have been applied to solve the BSP [3,7,10,11,13,15].
There has also been an attempt to combine heuristics with exact solution
methods to find better solutions more efficiently [3, 7, 13]. For example,
Di Gaspero et al. used ant colony optimization and constraint programming
to solve the BSP [7]. This was one of the main motivations behind our study.

Ant colony optimization (ACO) was originally introduced in the early 1990’s
inspired by the actual behavior of ants, particularly, the way the ants gather
food and return to their nest with utmost efficiency. The ACO algorithm
was first used in an attempt to heuristically solve the traveling salesman
problem (TSP) as well as scheduling problems [2]. ACO is an agent based
algorithm in which agents (ants) move from node to node based on a proba-
bility function. Once they reach the end of the path, the ants travel the same
path back home, laying a trail of pheromones on the path, that will increase
the probability of using that path in future iterations. The pheromone level
depends upon the total distance of the ant’s path; for example, a shorter
path would yield a higher pheromone level compared to a longer path. This
would make the shorter path more appealing to ants in the following itera-
tions.

Our novel ant colony optimization formulation uses the learning capabilities
of ACO not only on the path the vehicle travels, but also on the number of
bikes the vehicle should transport to solve the BSP. Each ant can be thought
of as a redistribution vehicle travelling to each node, picking up or dropping
off bikes. We use this method to solve a specific variation of the BSP.

2

2 Problem Description

The problem considered in this study can be formalized as follows. Let
G = (V,E) denote a complete directed graph where V = {0, 1, . . . , n} is
the set of vertices representing the stations with vertex 0 representing the
depot. Each vertex i ∈ V has an initial state si ∈ Z+ and a target state
ri ∈ Z+ representing the initial and target number of bikes respectively.
The final number of bikes in a station, that is, the number of bikes after
an iteration is completed, is denoted by qi. Additionally each vertex has a
capacity Ci ∈ Z+ which represents the size of the station. Note that the
number of bikes at a station i cannot exceed Ci. Let di = ri− si be the
demand of each station. If di < 0 then di bikes should be removed from the
station i, whereas if di > 0 then di bikes should be supplied to station i. If
di = 0 no further action is required for that station. A traveling cost cij is
associated with every arc (i, j) ∈ E. There is a single vehicle with capacity
Q that traverses the graph and transports the bikes.

The goal of the problem is to minimize a function

f : A → R

where A is a set of bijections of the form

g : {1, . . . , n′} → {i ∈ V : di 6= 0}

with n′ denoting the number of stations visited. In other words A is a set
that consists of sequences of vertices such that it starts and ends with the
vertex 0 and every other vertex has a non-zero demand.

For a given sequence A ∈ A,

R =
∑
v∈A
|qv−rv|

also referred to as the residual, is the total difference between the current
number of bikes and the target number of bikes at each station, and

L =
∑
u,v∈A

cu,v

is the total traveling cost, where u and v are consecutive elements in A.

The objective function considered in this paper is

f = aRā+bLb̄

with the parameters a, ā, and b, b̄ that determine the relative importance
of R and L respectively.

3

3 Previous Work

There are similar problems discussed in the literature, many of which are
analyzed in the context of bike sharing problems. Most of these studies
have used exact solution methods, for example, integer programming [3,5,6,
8,12] as well as several heuristic approaches, namely variable neighborhood
search (VNS) [11], local searches including tabu search [3], and genetic al-
gorithms [15].

Most of the BSP variants can be classified as static or dynamic. Solving
the static case simply means that the system is at rest when repositioning
occurs, for example during the night. The dynamic case is about reposition-
ing the bikes while they are being used, for example during the rush hours [1].

Some of the previous work on the static case of the BSP are as follows.

One of the initial studies on the bike sharing problem was conducted by
Benchimol et al. The authors considered a variation of the C-delivery trav-
eling salesman problem, where one truck with capacity C visited every node
exactly once and balanced the number of bikes while minimizing the distance
traveled. They showed that the BSP is NP-hard even in simplified cases [1].
This means that there does not exist an efficient algorithm for solving the
problem exactly,unless P=NP, which leads to the use of heuristics— methods
that can only find an approximate answer but which are also very efficient.
This was one of the reasons that a novel heuristic was considered to solve
the BSP in this paper.

In 2004, Hernández-Pérez and Salazar-González attempted to use 0-1 in-
teger programming coupled with a branch and cut algorithm to solve the
pickup and delivery traveling salesman problem. They also formulated an
accepted convention of producing random data to test the pickup and de-
livery traveling salesman problem [8]. We implemented these conventions in
this paper as well.

Chemla et al. worked on a more realistic variation of the problem in which a
vertex can be visited multiple times and vertices with the target number of
bikes are not necessarily visited but they can be used to temporarily store
bikes. The authors presented an exact model of the problem but they also
proposed a relaxation of it as the exact formulation is intractable. They
used branch and cut algorithms to solve the relaxation integer program and
utilized a tabu search heuristic to solve the problem more efficiently by find-
ing the upper bounds [3].

4

Raviv et al. formulated multiple mixed integer linear programs (MILP) in
an attempt to solve the static case of the BSP. They were successful in cre-
ating two reasonable MILP’s for the BSP, although they struggled to solve
larger instances efficiently [12].

In a recent paper, Dell’Amico et al. used a mixed integer linear program
aided by the branch and cut algorithm to solve the BSP. The authors also
used a set of benchmark instances of real world data to test their algo-
rithm [5]. These instances were used to test the algorithms introduced in
this paper as well.

Erdoğan et al. used a combination of a separation algorithm as well as a
construction heuristic and integer programming to solve a variant of the
BSP in which they require the system to be at equilibrium, meaning every
demand is filled, at the end of the iteration [6]. We were able to compare
our results to theirs, since they tested their algorithm on real world data
collected by Dell’Amico.

Contardo et al. considered the dynamic variant of the BSP in which the
system must be balanced while considering the constant change within the
system [4].

Schuijbroek et al. worked on a dynamic variant of the BSP as well. They
unified the inventory balancing problem and the routing problem for the
first time and modeled the stochastic demand by viewing the inventory at
each station as a queuing system. In other words, they presented a novel
formulation of the BSP. They used clustered routing heuristics and con-
straint programming (CP) to solve the problem by clustering the vertices
so that each cluster is balanced by a single vehicle. In doing so they in-
troduced one of the first constraint programming formulations of the bike
sharing problem. They found that the clustered routing heuristic performs
better than CP for instances with a large vehicle fleet and a low number of
stations per vehicle, where CP is better for lower number of vehicles and
longer routes [13].

In 2014 Hernández-Pérez and Salazar-González consider a more generalized
version of the capacitated pickup and delivery traveling salesman problem
(CPDTSP) where there are m different types of commodities instead of
just one. In other words the multi-commodity pickup-and-delivery traveling
salesman problem (m-PDTSP) is the problem of finding a route for a single
vehicle such that it picks up and delivers all the quantities of the m different
types of products satisfying the vehicle-capacity limitation and minimizing
the total travel cost. They explicitly suggest that this problem can be used to
model bike sharing systems with two different kinds of bikes [9]. We believe
that our ACO formulation is very well suited to accommodate this variation.

5

Stützle and Hoos created a variant of the ACO in an attempt to create
an algorithm that converges faster than the normal ACO, and also tends to
have a lower probability to converge prematurely on a route that is less than
optimal for the traveling salesman problem. This algorithm only allows the
“ant” with the best path in a certain iteration to lay pheromones, rather
than every ant laying pheromones [14].

In a recent paper, Di Gaspero et al. used a hybridization of the ant colony op-
timization method and constraint programming (ACO+CP) with the strat-
egy of using the learning ability designed within the ant colony optimization
algorithm in conjunction with the solving power of constraint programming.
This strategy proved to be effective in solving the BSP as they were far more
efficient than solving with a traditional constraint programming method,
and also even outperformed other widely used methods including mixed in-
teger linear programming in solving more complicated instances [7].

4 Ant Colony Optimization

Our ant colony optimization algorithm is designed to use a number of agents
m, which we will refer to as ants, to explore possible paths in search of an
optimal path, based on a probabilistic choice which we will define in more
detail later in this section. These ants are specifically designed to pick up
any bikes at a station that has an excess number of bikes, and drop off bikes
at a station that has too few, without exceeding the capacity of bikes they
can carry. We will make use of many variables in the description of our al-
gorithm. An overview of their meanings is given below; they will be defined
more precisely later in this section.

τij(t) represents the pheromone on the arc from station i to sta-
tion j at iteration t.

p
(k)
ij represents the probability that an ant k will travel from sta-

tion i to station j for j that has not been visited.

ηij is a function of the distance from station i to station j as
part of the probability function of traveling from i to j.

λ
(k)
ij is a measure of the potential effectiveness of the ant k travel-

ing from station i to station j in distributing bikes efficiently
as part of the probability function of traveling from station
i to station j.

6

qi represents the number of bikes at station i after an iteration
has been completed.

ri represents the target number of bikes at station i.

B
(k)
i represents the best possible number of bikes we would have

at station i, if an ant k traveled to station i next.

H
(k)
i represents the number of bikes held by ant k at station i

(after dropping off or picking up bikes at station i).

Q represents the maximum number of bikes that an ant can
carry.

Other than the fact that the ants will always begin at the designated depot,
the first iteration of the algorithm is completely random, in that each ant
has the same probability to visit any unvisited station. Upon arrival at the
final unvisited station, the ant then returns directly to the depot. Now, the
ant will essentially retrace its steps along the path that it had just traveled,
laying “pheromones” along the path. The pheromone level for each ant is
determined by the following formula:

∆τ
(k)
ij (t) =

(

1
L(k)(t)

)σ
+
(

1
R(k)(t)+1

)δ
if arc(i, j) is used by ant k

in iteration t,

0 otherwise,

(1)

where L(k)(t) is the length of the path taken by the kth ant in iteration
t, and R(k)(t) represents the “residual” number of bikes, or the total dif-
ference between the final number of bikes and the target number of bikes
for each station by the kth ant in iteration t. Additionally, σ > 0 is the
parameter that stresses the relative importance placed on path length for
the pheromone level, and similarly δ > 0 is the parameter stressing the rela-

tive importance of the residual for the pheromone level. This ∆τ
(k)
ij rewards

routes that are both short, and have a small residual, meaning that those
routes would have a higher pheromone level and would be more likely to be
chosen by an ant in the following iterations, as seen in Equation (2).

Once the first iteration is complete, the ants will now start the second itera-
tion. During this iteration, the ants will each make a probabilistic choice as
to which station they will visit next. The probability function that a given
ant will travel from the station it is currently in, say station i, to another
station that is yet to be visited, say station j, is determined by a mixture of
both learned long term knowledge of good paths to take, and greedy short
term decisions based on what the ant can do at very next step:

7

p
(k)
ij =

[
τij(t)

]α[
ηij
]β[

λ
(k)
ij

]γ∑
l∈N (k)

i

[
τil(t)

]α[
ηil
]β[

λ
(k)
il

]γ if j ∈ N (k)
i (2)

where α, β, and γ are parameters that stress the relative importance of
the pheromone level, the distance, and the potential effectiveness of the
ant traveling from station i to station j respectively. The set of unvisited

stations is N (k)
i . Also, as previously seen, τij is the level of pheromone on

the path from i to j. The function for distance is ηij = 1/cij where cij
represents the distance from station i to j (which rewards smaller values of
cij). The function for the potential effectiveness of the ant traveling from
station i to station j is as follows:

λ
(k)
ij =

|sj−B(k)
j |

|rj−B(k)
j |+1

(3)

where sj is the starting number of bikes at station j, rj is the target number

of bikes at station j, and B
(k)
j is the function that determines the best

possible number of bikes at station j, if the ant travels to station j next.
That is:

B
(k)
j =

sj−

(
Q−H(k)

i

)
if Q−H(k)

i < sj−rj
sj+H

(k)
i if H

(k)
i < rj−sj

rj otherwise

(4)

where H
(k)
i represents the number of bikes that ant k has after performing

necessary actions at station i (i.e., the station that the ant currently sits
at). The maximum number of bicycles that an ant can carry is denoted
by Q. Notice that, the first output of the piecewise function is used if we
cannot pick up enough bikes to meet the demand at station j, the second
part of the function is evaluated if we cannot drop off enough bikes to meet
the demand at station j, and the last part is for if we are able to meet the
demand at station j.

We require that if p
(k)
ij (t) < Π then p

(k)
ij (t) = Π, and similarly, if p

(k)
ij (t) > Θ

then p
(k)
ij (t) = Θ, for 0 < Π < Θ < 1, so that the minimum and maximum

probabilities of p
(k)
ij (t) are restricted by Π and Θ. After adjusting P

(k)
ij we

renormalize the probabilities. This restriction is enforced so that the dis-
tribution of probabilities of going to any given node that has not yet been
visited is never zero which aids in assuring that premature convergence oc-
curs less frequently.

Once the second iteration is completed, the pheromone levels are adjusted
as follows:

8

τij(t+1) = ρτij(t)+
m∑
k=1

∆τ
(k)
ij (t) (5)

where ρ ∈ (0, 1) is a fixed parameter that represents the evaporation rate,
or the amount at which the pheromone level is disintegrated from each arc
per iteration. From this point, the algorithm repeats exactly what it did in
the second iteration for a designated amount of time and returns a solution
only if it was better than the previous best solution.

5 Computational Results

The algorithm was coded in Python 2.7, and tested on an Intel Core i7-
3540 CPU, 3.00 GHz, 4.00 GB single processor. We tested our ACO al-
gorithm on random data produced in accordance with the conventions of
Hernández-Pérez and Salazar-González [8], as well as on real data collected
by Dell’Amico et al. [5].

10:10

16:10

6:10

9:10

8:10

0:10

14:10

11:10

11:10

15:10

Drop off node

Pick up node

Depot

Figure 1: Best route found by the ACO method for a random graph, where
the first label is the initial number of bikes and the second label is the final
number of bikes for each station.

9

Figure 1 depicts an example of a random set of vertices with random de-
mands at each vertex. The grey arcs represent the best solution found by
our algorithm. As the legend depicts, the green circle represents the depot
node, which is where the ants begin their routes. The blue squares repre-
sent the stations that have a positive demand, meaning that they require
bikes to be dropped off in order to reach their target number of bikes. The
red diamonds represent stations that have a negative demand meaning that
they are overfilled and require bikes to be picked up to reach their target
number of bikes. The target number of bikes for this instance is 10 for each
node. The two numbers at each node that are separated by a colon rep-
resent the initial number of bikes at that node (on the left), and the final
number of bikes at that node (on the right), i.e, the number of bikes at a
node after the algorithm is run. This graph depicts an instance of the bike
sharing problem and its solution. As it can be seen, every node has the
target number of bikes, so the demand is completely met. The parameters
set for all tests used in this paper are as follows: a = 1, ā = 2, b = 0.2,
b̄ = 1, σ = 1, δ = 1, α = 1, β = 1, γ = .05, Ω = .95, Π = 1

(n+1)2
, and ρ = .91.

0 1000 2000 3000 4000
Number of Iterations

1000

1500

2000

2500

3000

3500

f
=
R
e
si
d
u
a
l2
+
0.
2
D
is
ta
n
ce

Figure 2: The most recent objective value as function of the number of
iterations.

Figure 2 is a plot of the most recent “best” objective value found by our
algorithm as a function of iterations. The solutions plotted converge very
quickly to a “good approximation” and then level off but keep improving

10

over time. Notice that a lower objective value is found even after 4016 iter-
ations. This suggests that our algorithm can find good solutions in a short
amount of time, but it takes a while for it to find better solutions after
a certain number of iterations. It can also be seen that the effects of the
driving mechanism behind the ant colony optimization algorithm, that is,
its learning capability, allows it to make better decisions about which paths
to take in the future based on its past experiences.

n Q Residual Length O.V.

20 10 4 3600.79 736.158

20 15 0 3448.77 689.754

20 20 0 3409.17 681.834

20 25 0 3067.87 613.574

20 30 0 3199.92 639.984

30 10 2 6341.72 1272.344

30 15 0 5330.59 1066.118

30 20 0 5192.02 1038,404

30 25 0 5094.58 1018.916

30 30 0 4993.09 998.618

40 10 4 8081.86 1632.372

40 15 0 7949.14 1589.828

40 20 2 7303.26 1464.652

40 25 2 7144.89 1432.978

40 30 2 7485.77 1501.154

50 10 6 7855.84 1607.168

50 15 2 8818.31 1767.662

50 20 0 6779.23 1355.846

50 25 0 7525.27 1505.054

50 30 0 7345.95 1469.19

Table 1: Performance of the ACO method on randomly generated instances.

11

For our randomly generated instances, we used the conventions of Hernández-
Pérez and Salazar-González [8] to formulate the random set of nodes and
demands. For each randomly generated instance, we tested our algorithm
for vehicle capacities Q ∈ {10, 15, 20, 25, 30}, and number of nodes n ∈
{20, 30, 40, 50}. The last column of the table represents the actual value of
the objective function, which is f = aRā+bLb̄. We allowed our algorithm to
run for fifteen minutes for testing the randomly generated instances as well
as for any other instance considered in this study. Our solutions are similar
to those of Hernández-Pérez and Salazar-González, especially for smaller
instances [8].

Instance n Q Best Known ACO % Gap Path

16LaSpezia30 20 30 20,746 21,518 3.65 [0, 1, 15, 11, 7, 16, 9, 14, 17,
19, 12, 4, 2, 5, 3, 10, 8, 6, 13,
18, 0]

17LaSpezia20 20 20 20,746 23,488 12.40 [0, 1, 15, 11, 10, 7, 16, 9, 14,
17, 19, 4, 12, 2, 5, 3, 6, 8, 18,
13, 0]

18LaSpezia10 20 10 22,811 23,908 4.70 [0, 1, 15, 13, 11, 10, 7, 16, 9,
17, 14, 4, 2, 5, 3, 12, 19, 8,
6, 18, 0]

21Ottawa30 21 30 16,202 17,178 5.85 [0, 1, 4, 13, 14, 15, 16, 11,
12, 17, 18, 19, 20, 9, 10, 8,
7, 6, 5, 3, 2, 0]

22Ottawa20 21 20 16,202 17,178 5.85 [0, 1, 4, 13, 14, 15, 16, 12,
11, 17, 18, 19, 20, 9, 10, 8,
7, 6, 5, 3, 2, 0]

23Ottawa10 21 10 17,370 17,604 1.34 [0, 1, 4, 13, 16, 14, 15, 12,
11, 10, 9, 17, 18, 19, 20, 8,
7, 6, 5, 3, 2, 0]

33Madison30 28 30 29,246 34,029 15.12 [0, 21, 16, 25, 5, 6, 3, 1, 4, 2,
24, 13, 14, 12, 10, 27, 26, 7,
22, 23, 8, 19, 18, 11, 15, 9,
20, 17, 0]

34Madison20 28 20 29,839 34,706 15.08 [0, 21, 16, 13, 24, 1, 5, 6, 3,
4, 2, 14, 12, 27, 10, 7, 26, 8,
19, 18, 23, 22, 11, 15, 9, 25,
20, 17, 0]

35Madison10 28 10 33,627 38,677 13.97 [0, 21, 16, 13, 1, 4, 3, 5, 6, 2,
24, 14, 11, 15, 12, 10, 18, 22,
23, 8, 19, 27, 7, 26, 9, 25, 20,
17, 0]

Table 2: Performance of the ACO method on real world instances.

12

The real world data we used to test our algorithm with, is introduced by
Dell’Amico et al. The data we used was collected from La Spezia, Italy;
Madison, United States; and Ottawa, Canada [5]. We chose these instances
because the total demand in the system (i.e, the sum of all demands in the
system) was close to zero. This meant that the system had enough bikes to
satisfy the total demand, and that the stations could be balanced by visiting
each node once for the instances considered. Table 2 is a comparison of our
results with those of Dell’Amico’s [5]. In this table, n represents the number
of nodes and Q represents the capacity of the delivery vehicle. Dell’Amico’s
results are named ‘Best Known’ since they are the best known solutions.
Our results are labeled ‘ACO’, with ‘% Gap’ denoting the percentage differ-
ence between the two solutions. We changed our original algorithm slightly
to include the stipulation that every station’s demand must be met exactly
in an attempt to better compare the results to those of Dell’Amico. As it
can be seen, we were very successful in finding good solutions for the real
world instances. Our results seem to outperform some of the recently devel-
oped methods [6].

6 Conclusion

In this paper, we formulate a novel algorithm for solving the bike sharing
problem that is both efficient, and effective for solving small to moderate
size instances. This study is a first attempt at using solely Ant Colony
Optimization for solving the single vehicle capacitated pickup and delivery
problem, namely the BSP. We found that our algorithm was very effective
compared to other methods that have recently been used to solve the BSP.
We believe that our approach also shows promise for solving other variations
of the BSP, as described in the next section.

7 Future Work

We believe that one of the true advantages of using the ACO algorithm for
solving the BSP is its flexibility. This algorithm could possibly be changed
to accommodate many different variations of the BSP as well as any other
type of single vehicle capacitated pick up and delivery problems. One inter-
esting avenue of study in a relatively unexplored area is that of the multi-
commodity capacitated pick up and delivery problem [9], which we believe
the ACO algorithm is very well suited for. In this problem, rather than
attempting to reposition one commodity in a graph, one needs to reposition
m different types of commodities. This problem is motivated by the idea
of a BSP with two kinds of bikes, or perhaps a bike and a scooter that the
vehicle must reposition simultaneously. The ACO algorithm would handle

13

this by adding another short-term greedy function to the probability func-
tion and adding some type of factor of the new commodity to the pheromone
function. An example of the implementation of another commodity into the
probability and pheromone functions is as follows:

p
(k)
ij =

[
τij(t)

]α[
ηij
]β[

λ
(k)
ij

]γ[
µ

(k)
ij

]φ∑
l∈N (k)

i

[
τil(t)

]α[
ηil
]β[

λ
(k)
il

]γ[
µ

(k)
il

]φ if j ∈ N (k)
i

∆τ
(k)
ij (t) =

(

1
L(k)(t)

)σ
+
(

1

R
(k)
1 (t)+1

)δ
+
(

1

R
(k)
2 (t)+1

)ω
if arc(i, j) is used by

ant k in iteration t,

0 otherwise.

In the first equation, µ
(k)
ij represents the function for the potential effective-

ness of ant k traveling from station i to station j in distributing the second
commodity, with ω as a parameter that stresses the relative importance of

the second commodity. In the second equation, R
(k)
2 represents the resid-

ual of the second commodity that is being distributed. Otherwise, all other
functions would be essentially the exact same.

Another interesting avenue of study that the ACO algorithm could poten-
tially map to is the time constricted BSP in which the user designates a
period of time that the vehicle has to perform its activities; however, each
activity has a cost of time. An example of this would be an unloading and
loading time for bikes, as well as a travel time between bike stations. The
motivation behind this variation of the BSP is to create a more realistic rout-
ing algorithm that takes into account the actual amount of time allotted to
repositioning process. This problem could also potentially implement the
revisitation of stations in an effort to create a more realistic model. Within
this time constricted variation of the BSP, we believe that it would be also
be possible to implement a dynamic element. Here, the idea would be to
have the vehicle work towards optimizing the current system, and every pe-
riod have the system update to the new information about station demand,
and adjust the ACO’s goals accordingly.

The last branch from BSP that we considered was using a system with more
than one vehicle present. We hypothesize that one could potentially imple-
ment ACO into a BSP like this by pairing certain ants together to work as
teams in repositioning the bikes. This would create a more realistic model
for systems that implement a method that uses multiple vehicles for the
redistribution of their bikes.

14

References

[1] Mike Benchimol, Pascal Benchimol, Benot Chappert, Arnaud de la
Taille, Fabien Laroche, Frederic Meunier, and Ludovic Robinet. Balanc-
ing the stations of a self service bike hire system. RAIRO - Operations
Research, 45:37–61, 1 2011.

[2] Christian Blum. Ant colony optimization: Introduction and recent
trends, 2005.

[3] Daniel Chemla, Frederic Meunier, and Roberto Wolfler Calvo. Bike
sharing systems: Solving the static rebalancing problem. Discrete Op-
timization, 10(2):120 – 146, 2013.

[4] Claudio Contardo, Catherine Morency, and L.-M. Rousseau. Balancing
a dynamic public bike-sharing system. Technical Report CIRRELT-
2012-09, Universitè de Montrèal, Montrèal, Canada, 2012.

[5] M. Dell’Amico, E. Hadjicostantinou, M. Iori, and S. Novellani. The bike
sharing rebalancing problem: Mathematical formulations and bench-
mark instances. Omega, 45:7–19, 2014.

[6] Güneş Erdoğan, Maria Battarra, and Roberto Wolfler Calvo. An exact
algorithm for the static rebalancing problem arising in bicycle sharing
systems. European Journal of Operational Research, 245(3):667–679,
2015.

[7] Luca Di Gaspero, Andrea Rendl, and Tommaso Urli. A Hybrid
ACO+CP for Balancing Bicycle Sharing Systems, 2013.

[8] Hipólito Hernández-Pérez and Juan-José Salazar-González. A branch-
and-cut algorithm for a traveling salesman problem with pickup and
delivery. Discrete Applied Mathematics, 145(1):126 – 139, 2004. Graph
Optimization {IV}.

[9] Hipólito Hernández-Pérez and Juan-José Salazar-González. The multi-
commodity pickup-and-delivery traveling salesman problem. Networks,
63(1):46–59, 2014.

[10] Christian Kloimüllner, Petrina Papazek, Bin Hu, and Günther R. Raidl.
Balancing Bicycle Sharing Systems: An Approach for the Dynamic
Case. In Christian Blum and Gabriela Ochoa, editors, Evolutionary
Computation in Combinatorial Optimization, volume 8600 of LNCS,
pages 73–84. Springer, 2014.

[11] Nenad Mladenovi, Dragan Uroevi, Sad Hanafi, and Aleksandar Ili. A
general variable neighborhood search for the one-commodity pickup-
and-delivery travelling salesman problem. European Journal of Opera-
tional Research, 220(1):270 – 285, 2012.

15

[12] Tal Raviv, Michal Tzur, and Iris A. Forma. Static repositioning in a
bike-sharing system: models and solution approaches. EURO Journal
on Transportation and Logistics, 2(3):187–229, 2013.

[13] Jasper Schuijbroek, Robert Hampshire, and Willem-Jan van Hoeve.
Inventory rebalancing and vehicle routing in bike sharing systems. 2013.

[14] Thomas Stützle and Holger H. Hoos. MAX-MIN Ant System, 1999.

[15] Fanggeng Zhao, Sujian Li, Jiangsheng Sun, and Dong Mei. Genetic
algorithm for the one-commodity pickup-and-delivery traveling sales-
man problem. Computers & Industrial Engineering, 56(4):1642 – 1648,
2009.

16

