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Introduction and background

Active scalars:

θt = (u · ∇)θ − (−∆)αθ, θ(x , 0) = θ0(x),

where the vector field u is determined from θ. We will usually consider the
equation on Rd or Td , with 0 ≤ α ≤ 1.

Examples:
1. 2D Euler equation: d = 2, no viscosity, u = ∇⊥(−∆)−1θ, where θ is
the vorticity, θ = curl u.
2. The Burgers equation: d = 1, u = θ, 0 ≤ α ≤ 1.
3. The surface quasi-geostrophic equation (SQG): d = 2, 0 ≤ α ≤ 1,
u = R⊥θ ≡ ∇⊥(−∆)−1/2θ. Constantin-Majda-Tabak (1994). 4. The
modified SQG: d = 2, u = ∇⊥(−∆)−γθ, 1/2 < γ < 1. Interpolates
between 2D Euler and SQG equations.
5. The Hilbert transform model: d = 1, u = Hθ, where Hθ is the Hilbert
transform of θ. Cordoba-Cordoba-Fontelos (2005)
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Introduction and background

Local existence of smooth solutions (if θ0 is smooth) holds for all these
equations.

Maximum principle: all Lp norms, 1 ≤ p ≤ ∞, are non-increasing (Resnick
1995, Cordoba-Cordoba 2004).
Critical dissipation: α = 0 for 2D Euler, α = 1/2 for Burgers, SQG and
Hilbert models.
Global existence is known for Euler equation (barely,
‖∇θ(·, t)‖L∞ ≤ C exp(C exp(Ct)).
SQG: Subcritical case α > 1/2. For smooth periodic initial data θ0, there
exists unique global smooth solution (Resnick 1995 for SQG).
Critical case: Constantin-Cordoba-Wu (2001) - global regularity for initial
data small in L∞.
Complete answer in critical case: K-Nazarov-Volberg and
Caffarelli-Vasseur.
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Theorem (KNV)

Assume that the initial data θ0 is smooth and periodic. Then the critical
SQG (and Burgers, and Hilbert) equation has a unique global solution
which is smooth and real analytic in x for any t > 0. Moreover,

‖∇θ(x , t)‖L∞ ≤ ‖∇θ0‖L∞ exp exp(C‖θ0‖L∞).

Idea of the proof.

Definition

ω(ξ) is a modulus of continuity if ω is (0,∞) 7→ (0,∞), increasing,
concave, piecewise C 2. f (x) obeys ω if |f (x)− f (y)| < ω(|x − y |) for all
x , y .

We find ω that is preserved by critical SQG evolution: if θ0 obeys it, so
does θ(x , t) for every t > 0.
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Introduction and background

Properties: ω(0) = 0, ω′(0) = 1, ω′′(0) = −∞, ω(ξ) ∼ log log ξ for large
ξ.

Also, due to the scaling of critical SQG, if ω is preserved by evolution, so
is ωB(ξ) = ω(Bξ).

For every smooth θ0 we can find B so that θ0 obeys ωB . Then we get
control ‖∇θ(·, t)‖L∞ ≤ B for all t > 0.

Caffarelli-Vasseur 2006: a similar result by completely different method.
They consider passive drift diffusion equation in Rd :

θt + (u · ∇)θ + (−∆)1/2θ = 0, ∇ · u = 0.

If ‖u‖BMO ≤ B for all time, then L2 initial data θ0 improve immediately to
Cβ for some β > 0. Method is based on De Giorgi-type iterative estimates.
For the SQG equation, the L∞ norm of θ is bounded. u is a Riesz
transform of θ, so BMO norm of u is bounded uniformly in time.
Thus we get control over some Cβ, β > 0 norm of the solution, which is
sufficient for global regularity.
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Introduction and background

K-Nazarov 2008: a third approach.

Theorem

Assume that θ(x , t), u(x , t) are C∞(Td) for all t ∈ [0,T ], and that

θt = (u · ∇)θ − (−∆)1/2θ (1)

holds for any t ≥ 0. Assume that the velocity u is divergence free and
satisfies a uniform bound ‖u(·, t)‖BMO ≤ B for t ∈ [0,T ]. Then there
exists β = β(B, d) > 0 such that

‖θ(x , t)‖Cβ(Td ) ≤ C (θ(x , 0))

for any t ∈ [0,T ].

The method is based on dualizing the equation (1) with appropriate class
of test functions, and then studying the evolution of these test functions.
2011: Constantin-Vicol, nonlinear maximum principle.
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The supercritical case

There are three kinds of results available for the supercritical case.

(1) Conditional regularity. Constantin, Wu 2008: if a weak solution θ(x , t)
of the supercritical SQG satisfies θ(x , t) ∈ C ([t0, t],Cβ), β > 1− 2α, then
θ(x , t) ∈ C ((t0, t],C∞).
(2) Finite time regularization. Silvestre 2009: finite time regularization of
slightly supercritical SQG equation: if α = 1

2 − ε, then there exists
T = T (α, θ0) such that the solution is smooth for t > T . A similar result
for the Burgers equation by Chan, Czubak and Silvestre (2010).
Dabkowski 2010: finite time regularization of supercritical SQG equation
for 0 < α < 1/2. The method builds on K-Nazarov dualization approach,
with a much smarter choice of test functions.
K 2011: finite time regularization of supercritical Burgers equation for
0 < α < 1/2. The method is closer to the original K-Nazarov-Volberg
approach, and gives an alternative proof for the SQG case as well.
(3) Global regularity for slightly supercritical SQG. Dabkowski-K-Vicol
2011.



The supercritical case

There are three kinds of results available for the supercritical case.
(1) Conditional regularity. Constantin, Wu 2008: if a weak solution θ(x , t)
of the supercritical SQG satisfies θ(x , t) ∈ C ([t0, t],Cβ), β > 1− 2α, then
θ(x , t) ∈ C ((t0, t],C∞).

(2) Finite time regularization. Silvestre 2009: finite time regularization of
slightly supercritical SQG equation: if α = 1

2 − ε, then there exists
T = T (α, θ0) such that the solution is smooth for t > T . A similar result
for the Burgers equation by Chan, Czubak and Silvestre (2010).
Dabkowski 2010: finite time regularization of supercritical SQG equation
for 0 < α < 1/2. The method builds on K-Nazarov dualization approach,
with a much smarter choice of test functions.
K 2011: finite time regularization of supercritical Burgers equation for
0 < α < 1/2. The method is closer to the original K-Nazarov-Volberg
approach, and gives an alternative proof for the SQG case as well.
(3) Global regularity for slightly supercritical SQG. Dabkowski-K-Vicol
2011.



The supercritical case

There are three kinds of results available for the supercritical case.
(1) Conditional regularity. Constantin, Wu 2008: if a weak solution θ(x , t)
of the supercritical SQG satisfies θ(x , t) ∈ C ([t0, t],Cβ), β > 1− 2α, then
θ(x , t) ∈ C ((t0, t],C∞).
(2) Finite time regularization. Silvestre 2009: finite time regularization of
slightly supercritical SQG equation: if α = 1

2 − ε, then there exists
T = T (α, θ0) such that the solution is smooth for t > T . A similar result
for the Burgers equation by Chan, Czubak and Silvestre (2010).

Dabkowski 2010: finite time regularization of supercritical SQG equation
for 0 < α < 1/2. The method builds on K-Nazarov dualization approach,
with a much smarter choice of test functions.
K 2011: finite time regularization of supercritical Burgers equation for
0 < α < 1/2. The method is closer to the original K-Nazarov-Volberg
approach, and gives an alternative proof for the SQG case as well.
(3) Global regularity for slightly supercritical SQG. Dabkowski-K-Vicol
2011.



The supercritical case

There are three kinds of results available for the supercritical case.
(1) Conditional regularity. Constantin, Wu 2008: if a weak solution θ(x , t)
of the supercritical SQG satisfies θ(x , t) ∈ C ([t0, t],Cβ), β > 1− 2α, then
θ(x , t) ∈ C ((t0, t],C∞).
(2) Finite time regularization. Silvestre 2009: finite time regularization of
slightly supercritical SQG equation: if α = 1

2 − ε, then there exists
T = T (α, θ0) such that the solution is smooth for t > T . A similar result
for the Burgers equation by Chan, Czubak and Silvestre (2010).
Dabkowski 2010: finite time regularization of supercritical SQG equation
for 0 < α < 1/2. The method builds on K-Nazarov dualization approach,
with a much smarter choice of test functions.

K 2011: finite time regularization of supercritical Burgers equation for
0 < α < 1/2. The method is closer to the original K-Nazarov-Volberg
approach, and gives an alternative proof for the SQG case as well.
(3) Global regularity for slightly supercritical SQG. Dabkowski-K-Vicol
2011.



The supercritical case

There are three kinds of results available for the supercritical case.
(1) Conditional regularity. Constantin, Wu 2008: if a weak solution θ(x , t)
of the supercritical SQG satisfies θ(x , t) ∈ C ([t0, t],Cβ), β > 1− 2α, then
θ(x , t) ∈ C ((t0, t],C∞).
(2) Finite time regularization. Silvestre 2009: finite time regularization of
slightly supercritical SQG equation: if α = 1

2 − ε, then there exists
T = T (α, θ0) such that the solution is smooth for t > T . A similar result
for the Burgers equation by Chan, Czubak and Silvestre (2010).
Dabkowski 2010: finite time regularization of supercritical SQG equation
for 0 < α < 1/2. The method builds on K-Nazarov dualization approach,
with a much smarter choice of test functions.
K 2011: finite time regularization of supercritical Burgers equation for
0 < α < 1/2. The method is closer to the original K-Nazarov-Volberg
approach, and gives an alternative proof for the SQG case as well.

(3) Global regularity for slightly supercritical SQG. Dabkowski-K-Vicol
2011.



The supercritical case

There are three kinds of results available for the supercritical case.
(1) Conditional regularity. Constantin, Wu 2008: if a weak solution θ(x , t)
of the supercritical SQG satisfies θ(x , t) ∈ C ([t0, t],Cβ), β > 1− 2α, then
θ(x , t) ∈ C ((t0, t],C∞).
(2) Finite time regularization. Silvestre 2009: finite time regularization of
slightly supercritical SQG equation: if α = 1

2 − ε, then there exists
T = T (α, θ0) such that the solution is smooth for t > T . A similar result
for the Burgers equation by Chan, Czubak and Silvestre (2010).
Dabkowski 2010: finite time regularization of supercritical SQG equation
for 0 < α < 1/2. The method builds on K-Nazarov dualization approach,
with a much smarter choice of test functions.
K 2011: finite time regularization of supercritical Burgers equation for
0 < α < 1/2. The method is closer to the original K-Nazarov-Volberg
approach, and gives an alternative proof for the SQG case as well.
(3) Global regularity for slightly supercritical SQG. Dabkowski-K-Vicol
2011.



The very slightly supercritical SQG

Let m(ξ) be a smooth, radial, positive, non-decreasing function on R2

satisfying

lim
ξ→∞

m(ξ)

log log |ξ|
= 0, |ξ|k |∂kξ m(ξ)| ≤ Cm(ξ) (2)

Consider the equation

∂tθ = (u · ∇)θ − (−∆)1/2θ, θ(x , 0) = θ0(x), (3)

where u = ∇⊥Λ−1m(Λ), Λ = (−∆)1/2.

Theorem (DKV)

Assume that θ0 is smooth and periodic. Then the equation (3) has a
unique globally regular solution.

The supercriticality is very slight. But it does destroy the scaling.
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The very slightly supercritical SQG: origins of the loglog

Recall the outline of the proof of regularity for critical SQG.

Assume that θ0 obeys ω : |θ0(x)− θ0(y)| < ω(|x − y |).
If the solution θ(x , t) ever loses ω, there must exist t1, x , y such that
θ(x , t1)− θ(y , t1) = ω(|x − y |) while θ(x , t) obeys ω for t < t1. Let
|x − y | ≡ ξ, e = (y − x)/|y − x |.
Consider

∂t (θ(x , t)− θ(y , t))|t=t1
= flow term + dissipation term,

where the flow term is equal to

(u · ∇)θ(x , t1)− (u · ∇)θ(y , t1) ≤ Ω(ξ)ω′(ξ),

where Ω(ξ) is such that |(u(x)− u(y)) · e| ≤ Ω(|x − y |).
For the SQG, one can use

Ω(ξ) = A

(∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞
ξ

ω(η)

η2
dη

)
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The very slightly supercritical SQG: origins of the loglog

The diffusion term is equal to

−(−∆)1/2θ(x , t1) + (−∆)1/2θ(y , t1) ≤ D(ξ),

where

D(ξ) =
1

π

 ξ/2∫
0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη+

∞∫
ξ/2

ω(ξ + 2η)− ω(2η − ξ)− 2ω(ξ)

η2
dη

 .

Therefore,

∂t (θ(x , t)− θ(y , t))|t=t1
≤ Ω(ξ)ω′(ξ) + D(ξ).

If Ω(ξ)ω′(ξ) + D(ξ) < 0 for all ξ > 0, then ω is conserved by evolution.
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The very slightly supercritical SQG: origins of the loglog

For large ξ, the balance that emerges is Ω(ξ)ω′(ξ) vs cω(ξ)/ξ. Given that
for large ξ, Ω(ξ) . ω(ξ) log ξ, this dictates at most double logarithmic
growth for ω.

And indeed, one can find a modulus of continuity ω that is growing as
double logarithm and is conserved by evolution.
It turns out that one can trade some of this growth for supercriticality.

When we introduce the modified u = ∇⊥Λ−1m(Λ), Ω(ξ) becomes larger:

Ω(ξ) = A

(∫ ξ

0

ω(η)m(η−1)

η
dη + ξ

∫ ∞
ξ

ω(η)m(η−1)

η2
dη

)
.

We can no longer construct a single modulus ω and then use scaling.
Instead, we need to construct a family of moduli ωB conserved by
evolution such that every smooth initial data will obey ωB for some B.
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The very slightly supercritical SQG

The family ωB can be defined as follows. Let κ be a sufficiently small
parameter. Define δ(B) by

Bδ(B)m(δ(B)−1) = κ.

Set

ω′B(ξ) =

{
B − B2

8κ ξm(ξ−1)
(

4 + log δ(B)
ξ

)
, 0 < ξ ≤ δ(B)

γ
ξ(4+log(ξ/δ(B)))m(δ(B)−1)

ξ > δ(B).

One can check that if κ, γ are sufficiently small, then ωB is conserved by
evolution.

Given initial data θ0, we need ωB (2‖θ0‖L∞/‖∇θ0‖L∞) ≥ 2‖θ0‖L∞ for θ0
to obey ωB .
But for any fixed a,∫ a

δ(B)

γ

ξ(4 + ln(ξ/δ(B)))m(δ(B)−1)
dξ =

γ

m(δ(B)−1)
ln(1+ln(a/δ(B)))→∞.

So any θ0 obeys ωB with B large enough.
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Finite time regularization for supercritical Burgers and SQG

Why is this interesting?
For example, finite time regularization is well known and straightforward
for Navier-Stokes equations in 3D.

This follows from global wellposedness of 3D Navier Stokes for small initial
data in H1 along with the basic inequality

∫∞
0 ‖∇u‖2L2 dt < C for weak

solutions of Navier-Stokes equation.

Difference for the SQG (or Burgers): elementary arguments only control
decay of the Hα norm of the solution. To conclude global regularity from
smallness by standard arguments, need control in a stronger norm
(H2−2α).

Consider a regularized active scalar

∂tθ = (u · ∇)θ − (−∆)αθ + ε∆θ, θ(x , 0) = θ0(x), ε > 0.

A viscosity solution of active scalar is a weak solution which is a limit of a
sequence of regularized solutions as ε→ 0.
I will focus on the Burgers (u = θ, set on T1) and SQG
(u = ∇⊥(−∆)−1/2θ, set on T2) cases.
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The main application: statement

Theorem

Assume 0 < α < 1/2 and θ0 is periodic and smooth. Let θ(x , t) be
viscosity solution of the Burgers or SQG equation. Then there exist
0 < T1(α, θ0) ≤ T2(α, θ0) <∞ such that θ(x , t) is smooth for
0 < t < T1 and t > T2.

Observe that there are examples where supercritical Burgers solutions
develop shocks in finite time (K-Nazarov-Shterenberg, 2008). After a
while, these shocks disappear.

The mechanism of the proof of the Theorem is a ”regularity cascade” from
larger to smaller scales. It is not a more usual argument giving decay of
some sufficiently strong norm. Other, different proofs share this feature
(Silvestre, Dabkowski).
Similar results can be proved for the supercritical modified SQG
(u = ∇⊥(−∆)−γθ, T2, 1/2 < γ < 1, α + γ < 1).
The proofs for all cases are quite similar, except in the SQG case there is
an additional, non-trivial difficulty to resolve.
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The mechanism of the proof of the Theorem is a ”regularity cascade” from
larger to smaller scales. It is not a more usual argument giving decay of
some sufficiently strong norm. Other, different proofs share this feature
(Silvestre, Dabkowski).

Similar results can be proved for the supercritical modified SQG
(u = ∇⊥(−∆)−γθ, T2, 1/2 < γ < 1, α + γ < 1).
The proofs for all cases are quite similar, except in the SQG case there is
an additional, non-trivial difficulty to resolve.
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The general criterion

Theorem

Let θ(x , t) be a periodic smooth solution of a regularized active scalar
equation. Suppose that ω(ξ, t) is continuous on (0,∞)× [0,T ], piecewise
C 1 in time variable and that for each fixed t ≥ 0, ω(·, t) is a modulus of
continuity. Let the initial data θ0(x) obey ω(ξ, 0). Then θ(x ,T ) obeys the
modulus of continuity ω(ξ,T ) provided that ω(ξ, t) satisfies

∂tω(ξ, t) > Ω(ξ, t)∂ξω(ξ, t) + Dα(ξ, t) + 2ε∂2ξξω(ξ, t)

for all ξ > 0, T ≥ t > 0.

Here Ω(ξ, t) is determined as previously (but may now depend on time).
The Dα(ξ, t) term is similar to the dissipative D(ξ) term appearing in the
critical case; η2 in the denominator needs to be replaced with η1+2α.
Thus regularity of an active scalar can be controlled by a supersolution of
a certain effective Burgers-type equation.
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The supercritical Burgers: finite time regularization

Here again Ω(ξ) = ω(ξ). Define a modulus of continuity

ω(ξ) =

{
H(ξ/δ)β, 0 ≤ ξ ≤ δ
H, ξ > δ

(4)

The first observation is

Proposition

Consider the supercritical (0 < α < 1/2) Burgers (regularized) equation.
Fix 1 > β > 1− 2α. There exists a constant C1 = C1(α, β) such that if
H ≤ C1δ

1−2α, then the equations preserve ω given by (4), independently
of ε > 0.

All we need to show here is that ω(ξ)ω′(ξ) + Dα(ξ) < 0 for all ξ > 0.

The Proposition is of course not sufficient for global regularity due to the
restriction H ≤ C1δ

1−2α (not every initial data will obey such modulus of
continuity).
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The supercritical Burgers: finite time regularization

Define the following derivative family of ”moduli of continuity”

ω(ξ, ξ0) =

 βHδ−βξβ−10 ξ + (1− β)Hδ−βξβ0 , 0 < ξ < ξ0
H(ξ/δ)β, ξ0 ≤ ξ ≤ δ
H, ξ > δ

Here H, δ, ξ0 are parameters, and 0 ≤ ξ0 ≤ δ.

To the left is the sketch of
ω(ξ, ξ0), ω(ξ, δ) and ω(ξ, 0).
The modulus
ω(ξ, 0) = H(ξ/δ)β is just
Hölder on 0 < ξ < δ. The
modulus ω(ξ, δ) is piecewise
linear and
ω(0, δ) = (1− β)H > 0.
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The supercritical Burgers: finite time regularization

Theorem

Let 0 < α < 1/2, β > 1− 2α, ε > 0. Assume that the initial data θ0(x)
for the Burgers (regularized) equation obeys ω(ξ, δ). Then there exist
positive constants C1,2 = C1,2(α, β) such that if ξ0(t) is a solution of

dξ0
dt

= −C2ξ
1−2α
0 , ξ0(0) = δ,

and H ≤ C1δ
1−2α, then the solution θ(x , t) obeys ω(ξ, ξ0(t)) for all t. All

constants and statements are independent of ε > 0.

To prove this Theorem, we need to show that for ω(ξ, ξ0(t)) we have

∂tω > ω∂ξω + Dα(ξ),

for all ξ > 0 and 0 ≤ t ≤ T - provided that C1 and C2 are sufficiently
small.
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The supercritical SQG case: the main issue

If ω(ξ) has a jump at ξ = 0, we only control L∞ norm of θ. For the SQG
equation, the components of u are Riesz transforms of θ, and we control
them only in BMO.

What can we use as Ω(ξ)? Looks hopeless.

Idea: a better dissipation estimate to control potential singularities in u.

Suppose x − y is directed along the first coordinate. The estimate

−(−∆)αθ(x , t1) + (−∆)αθ(y , t1) ≤ Dα(ξ, t)

is only sharp if θ(x1, x2, t1) = 1
2ω(2x1, t1) if x1 > 0 and odd in x1.

But observe that in this case u(x , t1) and u(y , t1) are perpendicular to
x − y and so nonlinear term vanishes!
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Set x = (ξ/2, 0) and y = (−ξ/2, 0).

Lemma

Assume that x , y , ξ, and t1 are in breakthrough scenario. Then
−(−∆)αθ(x , t1) + (−∆)αθ(y , t1) ≤ Dα(ξ, t1) + D⊥α (ξ, t1), where

D⊥α (ξ, t1) ≤ −C

( 1
2
+c)ξ∫

( 1
2
−c)ξ

dη

cξ∫
−cξ

ω(2η, t1)− θ(η, ν, t1) + θ(−η, ν, t1)((
ξ
2 − η

)2
+ ν2

)1+α
dν.

Here C , c > 0 are fixed constants that may depend only on α.

Observe that we always have D⊥α (ξ, t1) ≤ 0.

On the other hand, recall that

u(x)−u(y) = C

(
P.V .

∫
(x − z)⊥

|x − z |3
θ(z) dz − P.V .

∫
(y − z)⊥

|y − z |3
θ(z) dz

)
.

Let Qx , Qy be small squares with centers at x , y and side length 2cξ.
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The supercritical SQG case: the key estimate

The integrals in z away from Qx and Qy respectively can be estimated by

A

(
ξ

∫ ∞
ξ

ω(r)

r2
dr + ω(ξ)

)

The potentially singular part is∣∣∣∣∣
∫
Qx

(x − z)⊥ · e
|x − z |3

θ(z) dz −
∫
Qy

(y − z)⊥ · e
|y − z |3

θ(z) dz

∣∣∣∣∣ =∣∣∣∣∣∣∣∣∣
( 1
2
+c)ξ∫

( 1
2
−c)ξ

dη

cξ∫
−cξ

ν((
ξ
2 − η

)2
+ ν2

)3/2
(θ(η, ν)− θ(−η, ν)) dν

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
( 1
2
+c)ξ∫

( 1
2
−c)ξ

dη

cξ∫
0

ν(θ(η, ν)− θ(−η, ν)− θ(η,−ν) + θ(−η,−ν))((
ξ
2 − η

)2
+ ν2

)3/2
dν

∣∣∣∣∣∣∣∣∣
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The supercritical SQG case: the key estimate

Recall that D⊥α (ξ) is equal to

−C

( 1
2
+c)ξ∫

( 1
2
−c)ξ

dη

cξ∫
0

2ω(2η)− θ(η, ν) + θ(−η, ν)− θ(η,−ν) + θ(−η,−ν)((
ξ
2 − η

)2
+ ν2

)1+α
dν.

Now on the region of integration

0 <
ν((

ξ
2 − η

)2
+ ν2

)3/2
≤ Cξ2α((

ξ
2 − η

)2
+ ν2

)1+α

and

|θ(η, ν)− θ(−η, ν)− θ(η,−ν) + θ(−η,−ν)| ≤
2ω(2η)− θ(η, ν) + θ(−η, ν)− θ(η,−ν) + θ(−η,−ν).



The supercritical SQG case: finite time regularization

Lemma

Suppose that u = ∇⊥(−∆)−1/2θ, ω is a modulus of continuity, and x , y ,
ξ are as above (we are in a breakthrough scenario). Let e = x−y

|x−y | . Then
we have

|(u(x)− u(y)) · e| ≤ Ω(ξ), (5)

where

Ω(ξ) = A

(
−ξ2αD⊥α (ξ) + ξ

∫ ∞
ξ

ω(r)

r2
dr + ω(ξ)

)
.

Thus potential singularities of the left hand side of (5) can be controlled
by D⊥α (ξ).

Now the rest of the proof of the finite time regularization goes
through as in the Burgers case.
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Open questions

1. Supercritical blow up or regularity? So far settled completely only for
Burgers. The weakest link is likely the Hilbert transform model, where
blow up is possible if 0 ≤ α < 1/4 (Cordoba, Cordoba, Fontelos and
Li-Rodrigo), and global regularity is true for 1/2 ≤ α.

2. Can this technique give anything new for 2D Euler?
So far, just one more way to prove the upper double exponential bound in
time for the gradient of vorticity.

3. In the opposite direction, there are very few scenario where one can
prove lower bounds on growth of some higher order Sobolev norms. For 2d
Euler, the best results is just superlinear growth in time (Denisov 2009;
earlier work by Yudovich, Nadirashvili).
Double exponential finite time growth for 2D Euler (Denisov 2011).
For the conservative SQG, no infinite time results. K-Nazarov: if s > 11,
then for every A there exists θ0 such that ‖θ0‖Hs ≤ 1, but
limsupt→∞‖θ(·, t)‖Hs ≥ A.
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Happy Birthday Peter!


