CMU Campus
Center for                           Nonlinear Analysis
CNA Home People Seminars Publications Workshops and Conferences CNA Working Groups Summer Schools Summer Undergraduate Institute PIRE Cooperation Graduate Topics Courses SIAM Chapter Seminar Positions Contact
CNA Seminar
Paolo Marcellini
Universita' di Firenze
Title: Nonlinear elliptic systems with general growth

Abstract: We give some recent existence and interior regularity results for elliptic partial differential equations in divergence form of the type

\begin{equation*} \sum_{i=1}^{n}\frac{\partial }{\partial x_{i}}a^{i}\left( x,u\left( x\right) ,Du\left( x\right) \right) =b\left( x,u\left( x\right) ,Du\left( x\right) \right) \,, \end{equation*}

for $x\in \Omega $, open set of $\mathbb{R}^{n}$, $n\geq 2$, related to a vector field $a^{i}\left( x,s,\xi \right) $ locally Lipschitz continuous in $% \Omega \times \mathbb{R}\times \mathbb{R}^{n}$.

More generally we consider elliptic systems of $m$ partial differential equations in divergence form of the type \begin{equation*} \sum_{i=1}^{n}\frac{\partial }{\partial x_{i}}a_{\alpha }^{i}\left( x,u\left( x\right) ,Du\left( x\right) \right) =b_{\alpha }\left( x,u\left( x\right) ,Du\left( x\right) \right) ,\;\;\;\;\alpha =1,2,\ldots ,m\,, \end{equation*}% for maps $u:\Omega \subset \mathbb{R}^{n}\rightarrow \mathbb{R}^{m}$. Here the vector field $\left( a_{\alpha }^{i}\left( x,s,\xi \right) \right) $ assumes values in the set of $m\times n$ matrices and it satisfies some \emph{general growth conditions} with respect to the gradient variable $\xi \in \mathbb{R}^{m\times n}$.

Recording (avi): http://mm.math.cmu.edu/recordings/cna/CNA-PaoloMarcellini-Sep-18-2012.avi
Recording (mp4): http://mm.math.cmu.edu/recordings/cna/CNA-PaoloMarcellini-Sep-18-2012.mp4
Pdf File: Marcellini_Paolo.pdf
Date: Tuesday, September 18, 2012
Time: 1:30 pm
Location: Wean Hall 7218
Submitted by:  David Kinderlehrer