Why gradient flows of some energies good for defect equilibria are not good for dynamics, and an improvement

Chiqun Zhang1 Xiaohan Zhang1 Amit Acharya1 Dmitry Golovaty2 Noel Walkington1

1Carnegie Mellon University
2The University of Akron

PIRE-CNA 2016 Summer School
• An augmented Oseen-Frank energy density is introduced with additional symmetries to deal with non-singular defects in NLC.

• The gradient flow dynamics of this energy is capable of recovering defect equilibria but it cannot deal with the physically expected dynamic behaviors.

• A dynamic model is introduced based on defect kinematics and thermodynamics. With this model, we explain the reasons why the gradient flow fails and an improvement is given.

• Various problems of slow defect dynamics are solved with this model, indicating its capability.