The classical obstacle problem consists in finding u the minimizer of Dirichlet energy
in a domain (), among all functions v, with fixed boundary data, constrained to lie
above a given obstacle 1, studying proprieties of minimizer and analysing the regularity

of the boundary of the coincidence set Ay := {u =1} between minimizer and obstacle,

.

A

(1

In this context, we aim at minimizing the following energy (we are reduced to the O

obstacle case, so f = —div(AV)))
Ev) = JQ ((A(X)Vv(x), Vv(x)) + Zf(x)v(x)) dx, (1)

onKg={veH(Q) : v>0L" ge, Tr(v) = g € H2(dQ)), where O C R™ is a
smooth, bounded and open set, n > 2, A : Q — R™" ™ and f: Q — R are functions
satisfying:
A e W1+5>p(Q;Rnxn) with s > ]19 p > n(12§)—1 Anors=0and p =+4o0;
Ax) = <aij(x))i,j:1,...,n continuous, ajj = Qjj L™ ae. Qand A > 1

ATNER < (AX)E &) < AJE LM ae Q, VE € R™ (2)
f Dini-continuous
1
.t
J O 4t < 0o (3)
o ¢t
where w(t) = SUP|x—y|<t f(x) —f(y)], f >cy>0.
Let a > 2 be
1
J w(r) [log r|* dr < oo. (4)
o T
We analyse the properties of the minimizer and, studying the properties of , We

obtain the regularity of the . We prove that the minimizer u is a regular

solution of an elliptic differential equation in divergence form:
div(A(x)Vu(x)) = f(X)X{u>o}(X) a.e. on Q and in D'(Q). (5)

The lack of smoothness and homogeneity of the matrix of coefficients A does not permit
to exploit elementary freezing arguments to locally reduce the regularity problem above to
the analogous one for smooth operators, for which a complete theory has been developed
by Caffarelli [3]. We fix xg a point of the free-boundary I, and by a suitable change of

variable IL(xgp), w.l.o.g., we suppose

xo=0¢cTy, A0 =1I, f0)=1. (6)

Building upon the variational approach to the classical obstacle problem developed by

Weiss and Monneau, the strategy to prove the regularity of free-boundary is energy-based
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and relies on quasi-mononicity formulas, on Weiss' epiperimetric inequality as well as on

Caffarelli's fundamental blow up analysis. We proceed, as in [4], introducing the rescaled

- u TX " . [T
2-homogeneous functions Uy (x) = % and we introduce an associate energy “a la

Weiss”
X X

D(r) = JB<<A(TX)VLLT(X),Vur(x)>—|—2f(rx)ur(x)) dx+Ja (A(rx) Jug(x) dH™

)
1 B x|" [x

(7)

The rescaled functions satisfy an appropriate PDE and an uniform estimate.

Assume (6) holds. Then, VR > 0 94C > 0 such that, forr << 1

HuTHWZ,p*(BR) <C. (8)

n
*

/
In particular, the functions W, are equibounded in ChY for v <yi=1- SIE

It holds a quasi-monotonicity formula that extends Weiss' formula in [9]:

Assume that (H1)-(H3) and (6) are satisfied, and let © = ©(n,p,s) be an exponent
such that ® >n (O = 400 if A € WH®). Then 3 C3,C4 > 0 independent from
such that

n t s -5
t_@+w£ ))ecf‘ °dt (9)

_ 1_8) T
r— @) e 9 4Cy J
0

is nondecreasing on (0, }dist(O, 0Q)AT).
By Blanck and Hao [1] we have the following result.

Let xy € Ty, then 30 > O such that

sup u > 012, (10)
0Br(x)

By boundness estimate we have the , by quasi-monotonicity for-

mula we prove that the and by quadratic growth we obtain
the . Moreover thanks ['-convergence argument we give a

classification of blow-ups as in the classical case established by Caffarelli [2, 3].

Every blow-up v, at a free boundary point xy € Iy is of the form vy, = w(L™ T (x)y),

where W is a non-trivial, 2-homogeneous for which one of the following two cases occurs:

w(y) = %((y, v) V 0)2 for somev € SV 1
w(y) = (By,y) with B a symmetric, positive definite matrix satisfying and TrB = %

The above proposition allows us to formulate a simple criterion to distinguish between

regular and singular free boundary points.

A point xy € I, is a free boundary point, and we write x5 € Reg(u) if there

exists a blow-up of u at x( of type (A). Otherwise, we say that xg is and write
xg € Sing(u).
We prove a Monneau's type quasi-monotonicity formula (see [8]) for singular free bound-

ary points.

Let 0 € Sing(u). Below hypotesies of Theorem 1 4Cs > 0 independent of v such that for

some v 2-homogeneous polynomial positive function, solving Av = 1 on R™, the function

T — J (uy —v)2 dH™ ! + Cs (T“_g) + w(r)) (11)
dB;

is nondecreasing on (0, %dist((), 0QQ)A1).
The following result prove the property of uniqueness of blow-ups. We use the

for singular points and the 9] for regular points.

Assume (H1)-(H3), then Vx € Sing(u) there exists a unique blow-up limit
w(y) = w(L~! (x)y). Moreover, if K C Sing(u) is a compact subset, then Vx € K

HuL(X),T’ _WC1(B1) < ox(1) vr € (0, 1K), (12)

for some modulus of continuity oy : RT — R™ and a radius ¢ > 0.
Suppose (H1), (H2) and (H3)" and let xy € Reg(u). Then, 3ry = 19(xq),
No = Nol(xp) such that every x € Reg(u) N By,(xp) and, denoting by

Vx = W(L_1 (x)y) any blow-up of u in x we have
LB |U~L(x),r — W] dH™ ] (y) < Cyp(r) Vre (0,1y), (13)
1

where C~ is an independent constant from v and p(r) a growing, infinitesimal

function in Q. In particular, the blow-up limit vy is unique.

These results allow to prove the regularity of free-boundary:

We assume the hypothesis (H1)-(H3). The free-boundary decomposes as
. = Reg(u) U Sing(u) with Reg(u) N Sing(u) = 0.
Assume (H3)’. Reg(u) is relatively open in 0{u = 0} and for every point
xo € Reg(u) there exists v = 1(xg) > 0 such that 1, N By(xq) is a C! hypersurface
with normal versor o is absolutely continuous.
In particular if f is Holder continuous there exists v = 1(xg) > O such that

[y N By(x) is CHB hypersurface for some universal exponent 3 € (0,1).
Sing(u) = UE;SSk and for all x € Sy there exists v such that Sy N By(x) is

contained in a regular k-dimensional submanifold of R™.

As a direct outcome of Theorem 8 we shall deduce the analogous result for 1, solution

of nonlinear variational problem

minJ F(x,v, Vv) dx (14)
Ky Jo

]
where Ky, :={v € H'(Q) : v>y LM a.e., Tr(v) =g € Hz2(0Q))}, F(x,z,¢&) is a
nonlinear function for which (V¢F, 0,F)(x,z, &) is smooth strongly coercive vector field

and 1 is a regular obstacle.
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