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Upscaling Walls of Dislocations in Finite Domains

P. van Meurs't, A. Munteanf, M. A. Peletier'

_Understanding plasticity

The main challenge in many complex systems is to understand
the collective behavior of interacting particles on the micro-scale.
We examine dislocation networks (Figure 1), from which plastic
deformation of metals arises as the emergent property.

Main challenge: Metals contain a large amount of dislo-
cations, and every dislocation interacts with all the others.
No general theory exists to rigorously upscale the num-
ber of dislocations for non-local dislocation interactions,
which are moreover singular at 0 (Figure 2).
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where «,, := d,,/(nh,,) is asymptotically equal to the aspect ratio
of the horizontal and vertical distance between dislocations (Fig-
ure 1), and where x(p) is 0 if P is satisfied, and co otherwise.
A minimizer of E,, corresponds to a stable configuration of the
walls.

Results

Microscopic model

We choose a specific configuration for the edge dislocations as
motivated by [2] (Figure 1). Because of the imposed periodicity
in the vertical direction, the only unknowns are the horizontal
positions (denoted by Z;) of all n vertical walls of dislocations.
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Figure 1. Configuration of dislocations for n = 3.

Any two of such walls repel each other. The corresponding po-
tential is illustrated in Figure 2. The left boundary is modeled by
a fixed wall of dislocations at 2o = 0.
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Figure 2. Interaction potential V' (s) with two-scale repulsion.

A proper length scale for the pile-up length (i.e. ,) is given
by d,, := min{/,, L,}, where ¢, is obtained by balancing the
interactions with the applied stress (see [1]). After scaling = :=
Z/d,, we can describe the energy landscape by
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We have proven [3] that
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in P([0, co) with respect to narrow convergence, where
e the interaction term E; has the same structure as in [1];

o the force term Ep(u) equals the first moment of 1 when
L,> ¢, If L, <{,,wehave Ep(u) = 0;

o the finiteness of the domain is represented by Ep,(u) =
X{supp uclo,1]} When L, < f,. If L, > {,, we have
Er(p) = 0.

If L, ~ ¢, both Er and Ey, do not vanish. The prefactor in Ep
describes the transition between L,, < ¢,, and L,, > {,,. Itisin
this transition region that d,, (the pile-up length scale) changes
from L,, to £,,.

Future plans

How to upscale dislocation dynamics?
continuum limit n — oo in

dx
r (t) =

That is, pass to the
—VE,(x(t)).
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