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Understanding plasticity

The main challenge in many complex systems is to understand
the collective behavior of interacting particles on the micro-scale.
We examine dislocation networks (Figure 1), from which plastic
deformation of metals arises as the emergent property.

Main challenge: Metals contain a large amount of dislo-
cations, and every dislocation interacts with all the others.
No general theory exists to rigorously upscale the num-
ber of dislocations for non-local dislocation interactions,
which are moreover singular at 0 (Figure 2).

Microscopic model

We choose a specific configuration for the edge dislocations as
motivated by [2] (Figure 1). Because of the imposed periodicity
in the vertical direction, the only unknowns are the horizontal
positions (denoted by x̃i) of all n vertical walls of dislocations.
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Figure 1. Configuration of dislocations for n = 3.

Any two of such walls repel each other. The corresponding po-
tential is illustrated in Figure 2. The left boundary is modeled by
a fixed wall of dislocations at x̃0 = 0.
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Figure 2. Interaction potential V (s) with two-scale repulsion.

A proper length scale for the pile-up length (i.e. x̃n) is given
by dn := min{`n, Ln}, where `n is obtained by balancing the
interactions with the applied stress (see [1]). After scaling x :=
x̃/dn, we can describe the energy landscape by
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where αn := dn/(nhn) is asymptotically equal to the aspect ratio
of the horizontal and vertical distance between dislocations (Fig-
ure 1), and where χ{P} is 0 if P is satisfied, and ∞ otherwise.
A minimizer of En corresponds to a stable configuration of the
walls.

Results

We have proven [3] that

En
Γ−→ E := Ei + EF + EL

in P([0,∞) with respect to narrow convergence, where

• the interaction term Ei has the same structure as in [1];

• the force term EF(µ) equals the first moment of µ when
Ln � `n. If Ln � `n, we have EF(µ) = 0;

• the finiteness of the domain is represented by EL(µ) =
χ{suppµ⊂[0,1]} when Ln � `n. If Ln � `n, we have
EL(µ) = 0.

If Ln ∼ `n, both EF and EL do not vanish. The prefactor in EF

describes the transition between Ln � `n and Ln � `n. It is in
this transition region that dn (the pile-up length scale) changes
from Ln to `n.

Future plans

How to upscale dislocation dynamics? That is, pass to the
continuum limit n→∞ in

dx

dt
(t) = −∇En

(
x(t)

)
.
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