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Abstract

We study an evolution model for fractured elastic materials in the 2-dimensional antiplane case,
for which the crack path is not assumed to be known a priori. We introduce some general
assumptions on the structure of the fracture sets suitable to allow for kinking and branching of
the crack to develop. In addition we define the front of the fracture and its velocity.

By means of a time-discretization approach, we prove the existence of a continuous-time evo-
lution that satisfies an energy inequality and a stability criterion. The energy balance also takes
into account the energy dissipated at the front of the fracture. The stability criterion is stated in
the framework of Griffith’s theory, in terms of the energy release rate, when the crack grows at
least at one point of its front.

The class of admissible cracks
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Let Ω be a bounded connected open set in R2, with ∂Ω = ∂DΩ ∪ ∂NΩ Lipschitz.
Fix θ ∈ (0, π) and η > 0. Let S be the class of sets of the form

Γ =
M⋃
i=1

Ki

satisfying the following assumptions:

• open ball condition: Ki is a curve of class C1,1 and for every x ∈ Ki there exist two open balls B1, B2 of radius η, such that (B1 ∪ B2) ∩
(Ki ∪ ∂Ω) = ∅ and B1 ∩B2 = {x} (i.e. at any point x ∈ Ki the curvature of Ki is bounded from above by 1/η);
• intersection condition: if Ki ∩Kj 6= ∅ for some i 6= j, then they intersect in their endpoints;
• angle condition: if Ki ∩Kj 6= ∅ for some i 6= j, then they intersect with an angle greater than or equal to θ;
• bounded number of branches: there exists M0 ∈ N such that M ≤M0 for every Γ ∈ S.

Theorem 1. The class S is compact with respect to the Hausdorff metric. If Γn ∈ S and Γn → Γ in the Hausdorff metric, then

H1(Γn)→ H1(Γ ) .

We divide the points of a set Γ ∈ S in three groups:
• the set TΓ of crack tip points: x ∈ Γ belongs to TΓ if there exists r > 0 such that Γ ∩Br(x) is a C1,1 curve with endpoint x;
• the set SΓ of singular points: x ∈ Γ belongs to SΓ if there exist two unit vectors v1,v2 ∈ R2 tangent to Γ at x such that v1 · v2 6= ±1;
• the set RΓ of regular points: x ∈ Γ belongs to RΓ if there exists r > 0 such that Γ ∩Br(x) is a C1,1 curve and x is in the relative interior of Γ .

Velocity of crack tips
Let t 7→ Γ (t) be a 1-parameter family such that
• Γ (t) ∈ S for every t ∈ [0, T ]
• Γ (τ) ⊂ Γ (t) if τ ≤ t
• the function t 7→ H1(Γ (t)) is absolutely conti-
nuous in [0, T ].

Proposition 2. Set µ(t) := H1xΓ (t). Then µ ∈
AC([0, T ];Mb(Ω)) and for a.e. t ∈ [0, T ] there exi-
sts

µ̇(t) := w∗ − lim
s→t

µ(s)− µ(t)

s− t
.

In addition
supp µ̇(t) ⊂ TΓ(t) . (1)

We introduce the concept of velocity at crack tip
using the above variational approach: from (1)

µ̇(t) =
∑

p∈TΓ(t)

v(p, t)δp .

We call v(p, t) the velocity of p ∈ TΓ(t).

Existence result
For any crack set Γ ∈ S and any boundary displacement w ∈
H1(Ω), the bulk energy of the elastic body Ω \ Γ is given by

E(w,Γ ) := inf
{
‖∇u‖2L2 : u ∈ H1(Ω \ Γ ), u = w on ∂DΩ

}
,

where u are admissible antiplane elastic displacements.
Fix a crack tip p ∈ TΓ . We define the energy release rate at p
as

G(w,Γ , p) := − lim
s→0

E(w,Γ ps )− E(w,Γ )

s
,

where Γ ps is any C1,1 estension of Γ at p, such that H1(Γ ps \
Γ ) = s.

Γ

p

Γp
s

H1(Γ
p
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Theorem 3. Let w ∈ H1(0, T ;H1(Ω)) and Γ0 ∈ S . Then there
exists an evolution (Γ (·), u(·)) : [0, T ] → S × L2(Ω) with the
following properties:

(a) for every t ∈ [0, T ] the function u(t) belongs to H1(Ω\Γ (t))
and solves

∆u(t) = 0 in Ω \ Γ (t)
∂u(t)
∂ν = 0 on Γ (t) ∪ ∂Ω \ ∂DΩ
u(t) = w(t) on ∂DΩ

(b) energy inequality: for all 0 ≤ a < b ≤ T

‖∇u(b)‖2L2 +H1(Γ (b)) +

∫ b

a

∑
p∈TΓ(t)

v(t, p)2 dt

≤ ‖∇u(a)‖2L2 +H1(Γ (a)) + 2

∫ b

a

〈∇u(t),∇ẇ(t)〉 dt

(c) Griffith’s principle:
• v(p, t) ≥ 0 for every t ∈ [0, T ] and for every p ∈ TΓ(t);
• there exists an open set A ⊂ [0, T ] such that for every
t ∈ A, if p ∈ TΓ(t) \

⋃
τ<t TΓ(τ), then

G(w(t),Γ (t), p) ≤ 1 + v(t, p) (2)
[−G(w(t),Γ (t), p) + 1 + v(t, p)] v(t, p) = 0. (3)

Proof strategy: time discretization
Given Γ1,Γ2 ∈ S with Γ1 ⊂ Γ2, let C(Γ1,Γ2) be the set of
connected components of Γ2 \ Γ1.
We now construct the discrete-time evolution with time incre-
mental step τ > 0. Define

• u0τ := u0 and Γ 0
τ := Γ0;

• recursively uiτ and Γ iτ as minimizers of

‖∇u‖2L2 +H1(Γ ) +
1

τ

∑
c∈C(Γ i−1

τ ,Γ)

(
H1(c)

)2
︸ ︷︷ ︸

approximation of the velocity term

under the constraints Γ ∈ S, Γ i−1τ ⊂ Γ , u ∈ H1(Ω \ Γ )
and u = w(iτ) on ∂DΩ.
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Notice that at each incremen-
tal step the fracture is permit-
ted to grow simultaneously at
many tips and to develop new
branches.

Proposition 4. For any 0 ≤ i < j ≤ [T/τ ] the following inequa-
lity holds:

‖∇ujτ‖2L2 +H1(Γ jτ ) +
1

τ

j−1∑
h=i

∑
c∈C(Γhτ ,Γ

h+1
τ )

(
H1(c)

)2
≤ ‖∇uiτ‖2L2 +H1(Γ iτ ) + 2

∫ jτ

iτ

〈∇uτ (t),∇ẇ(t)〉 dt+ o(τ).

In addition, the following discrete Griffith’s principle is satisfied: for
every t ∈ (0, T ) and pτ ∈ TΓτ (t)

vτ (t, pτ ) ≥ 0

G(wτ (t),Γτ (t), pτ ) ≤ 1 + vτ (t, pτ )

[−G(wτ (t),Γτ (t), pτ ) + 1 + vτ (t, pτ )] vτ (t, pτ ) = 0 ,

where wτ (t) = w(iτ) and Γτ (t) = Γ iτ for iτ ≤ t < (i+ 1)τ , and

vτ (t, pτ ) =

{
0 if pτ ∈ TΓτ (t) ∩ TΓτ (t−τ)
1
τH

1(c) if pτ ∈ c ∈ C(Γτ (t− τ),Γτ (t)) .

We recover the continuous-time rate-dependent evolution
(Γ (t), u(t)) as limit of the discrete-time evolution (Γτ (t), uτ (t))
when the incremental step τ → 0.

Remarks on result and proof
(i) The key step in order to prove the energy inequality (b)
from its discrete version is the inequality∫ b

a

∑
p∈TΓ(t)

v(t, p)2 dt ≤ lim inf
τ→0

∫ b

a

∑
pτ∈TΓτ (t)

vτ (t, pτ )2 dt

for (a, b) ⊂ [0, T ].

(ii) Griffith’s principle (c) for the continuous-time evolution
provides a partial characterization of the process. It is ob-
tained from the correspondent discrete version in Proposi-
tion 4 as the time-step τ → 0. Note that, while the discrete
version holds true for every t ∈ [0, T ], in the continuous-time
case it is satisfied only in an open set A ⊂ [0, T ], due to the
following difficulties in the approximation procedure:
• bad news: in case of a static tip p ∈ TΓ(t0) at time t0, i.e. if
there exists t′ < t0 such that p ∈ TΓ(t) for t ∈ [t′, t0], then we
are not able to garantee that it is approximated by static tips
of the discrete-time evolutions or to avoid other problematic
behaviours.
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For example, a static tip might be approximated by a discrete-
time sequence of cracks that bifurcate or kink near the tip. The
approximation procedure suggests that, in this situation, many
direction of growth for the crack tip (of the continuous-time
evolution) are possible: which would be the preferred one?
How to deal with the energy release rate G, which, as proved
by Negri [7], depends on the kinking angle?
• good news: in case of a moving tip p ∈ TΓ(t0) at time t0, i.e.

p ∈ TΓ(t0) \
⋃
t<t0

TΓ(t) ,

the following local result holds:

Proposition 5. There exist α(t0) < t0 and r = r(t0, p) such that
for all t ∈ (α(t0), t0] and for τ small enough
• Γτ (t) ∩Br(p) and Γ (t) ∩Br(p) are C1,1 curves;
• TΓτ (t) ∩Br(p) and TΓ(t) ∩Br(p) have exactly one element each,
labelled pτ (t) and p(t);
• pτ (t)→ p(t) as τ → 0.
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Hence any ambiguity about kinking angle or multiple approxi-
mating tips is avoided, so that in this situation we are able to
deduce conditions (2) and (3) in (c) by the discrete Griffith’s
principle in Proposition 4.
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