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Mullins Model for Grain Growth

Assumptions:
• Interfacial energy ψ associated with interfaces Γ between grains.
• ψ = ψ(n, φ) depends on the normal n and misorientation φ.

Mullins model

The energy E of a collection of grains in Rd is given by:

E =
∑
k<`

∫
Γk`

ψ(nk`, φk`)ds.

The L2 gradient flow on E is:

vn(Γk`) = µk`
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i=1

(
∂2ψ(nk`, φk`)

∂(p
(i)
k` )

2
κ

(i)
k`

)
,

with interfacial mobility µk`, principal curvatures κ(i) in the tan-
gent directions p(i), and ψ extended to a one-homogenous function
on Rd.

A natural (Herring) boundary condition along triple lines is en-
forced. Under the assumption that the mobility of triple lines is
infinite, this boundary condition corresponds to the vanishing of
forces along the triple line.

Unequal Interface Energy Model

Simplifications:
• µk` ≡ 1.
• Surface energy independent of normal: ψ(nk`, φk`) = ψ(φk`) ≡ ψk`.

Simplified model

Energy:

E =
∑
k<`

∫
Γk`

ψk`ds.

Dynamics:
vn(Γk`) = ψk`κk`,

with ∑
Γk`∈TL

ψk`bk` = 0,

where bk` is orthogonal to nk` and the tangent to the triple line.

Numerical Schemes

DFDGM algorithm for additive surface energy

Assume: ψk` = 1
2
(γk + γ`).

Update each collection of grains Ξk for a discrete time step δt by:
1. Update: Compute Ak = dnk ∗Gγkδt.
2. Redistribute: Set Bk = Ak −

∑
6̀=k A`.

3. Redistance: Compute dn+1
k = Redist(Bk).

• Redistancing is a standard level set technique which computes
signed distance to 0-level set of input.
• Unconditionally stable, with O(N logN) complexity.

Observation: Arbitrary surface tensions ψ12, ψ13, and ψ23 can be
mapped to γ1;23, γ2;13, γ3;12 so that ψ12 = 1

2
(γ1;23 + γ2;13), etc., by: γ1;23

γ2;13

γ3;12

 =

 1 1 −1
1 −1 1
−1 1 1

 ψ12

ψ13

ψ23


.

This suggests an algorithm for full unequal interface energy model:

Unequal interface energy algorithm

Fix ε and K > 0.
Replace Update step above by:

1. Update: For each grid location x, define
R(x) = {k : dnk(x) > −ε}, and let r(x) = #R(x).

(a) If R(x) = {j}, set Aj(x) = dnj (x).
(b) If R(x) = {j, k}, set Aj(x) = dnj (x) ∗G(ψjk δt).
(c) If R(x) = {j, k, `}, set Aj(x) = dnj (x) ∗G(γj;k` δt).
(d) If r(x) > 3,
• For each j ∈ R, compute

Tj(x) =
1(

r(x)−1
2

) ∑
k,`∈R

dnj (x) ∗G(γj;k` δt).

• Compute

wj(x) =


ε, Tj(x) < −K
ε+ (1− ε)

(
1
2

+
Tj(x)

2K

)
, |Tj(x)| < K

1, Tj(x) > K.

• Set

Aj(x) =

∑
k,`∈R wjwkw` d

n
j (x) ∗G(γj;k` δt)∑

k,`∈R wjwkw`
.

Numerical Results (Fiber Texture)

• Grains with similar orientations tend to form clusters.

• Significant fraction of low-energy boundaries initially.
• MDF coarsens strongly around 0◦.
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• Difference between fiber and random texture evolutions attributed
to “almost-ideal” nature of random texture (very few interfaces feel
energy different that γmax).
• Assertion supported by numerical tests with different surface energy

functions γ(φ).

Numerical Results (3D Random Texture)

• Results qualitatively similar to 2D random texture simulation.
• Only 616 grains remain at end of simulation.

• Little evolution of the MDF.
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Additional Notes

• Simulations begin with over 600,000 grains in 2D and 64,000 grains
in 3D.
• Algorithm is expected to be unconditionally stable.
• Methods which implicity represent interfaces naturally allow topo-

logical changes to occur without additional user input (in contrast
to explicit methods).
• Computational efficiency attained by maintaining a collection of

spatially-separated grains in each signed distance function. Only
one convolution is performed per collection of grains via the re-
placement of dnk ∗G(γkδt) by

γk(x)

γ∗
(Gγ∗δt ∗ dnk) +

(
1− γk(x)

γ∗

)
dnk = dnk ∗G(γk δt) +O(t),

where γ∗ = maxj γj and the γk are the weights required by the
unequal interface energy algorithm.

Numerical Results (Random Texture)

• Clustering is not apparent.

• Very few low-energy boundaries initially.
• Little evolution of the MDF.
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Basic Crystallography

Misorientation: φij: Magnitude of the smallest rotation bringing the
crystal lattice of Σi into alignment with that of Σj.

Fiber texture: All grain orientations share common rotation axis.

Random texture: Rotation axis and angle assigned randomly.

Surface Energy and Misorientation

Surface energies commonly modeled by Read–Shockley relation:
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(left) K. Barmak, et al., “Grain Boundary Energy and Grain Growth in Highly-Textured
Al Films and Foils: Experiment and Simulation,” Mater. Sci. Forums (2005), 1255.

γ(φ) =

{
γmin + (1− γmin) φ

φmax

[
1− log

(
φ

φmax

)]
, φ ≤ φmax

1, otherwise

MDF and SEDF

• The misorientation distribution function (MDF) measures the (area-
weighted) proportion of grain boundaries with given misorientation.
• The surface energy distribution function (SEDF) is the analogous

quantity for surface energies.
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