
A quasistatic evolution model for perfectly plastic plates derived by
Γ-convergence

Elisa Davoli1 and Maria Giovanna Mora2

1 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA (USA)
2 Dipartimento di Matematica, Universitá degli studi di Pavia, Pavia (Italy)

Dimension reduction problems for thin structures
The rigorous derivation of lower dimensional models for thin structures is a question of great interest in mechanics and its applications.
In the early 90’s a rigorous approach to dimension reduction has emerged in the stationary framework and in the context of nonlinear
elasticity. This approach is based on Γ-convergence and, starting from the seminal paper [3, 4], has led to establish a hierarchy of limit
models for plates, rods, and shells. More recently, the Γ-convergence approach to dimension reduction has gained attention also in
the evolutionary framework: in nonlinear elasticity, crack propagation, elastoplasticity with hardening, and delamination problems.

Here we focus on the rigorous justification of a quasistatic evolution model for a thin plate in perfect plasticity. More precisely,
we show that solutions to the 3d quasistatic evolution problem converge, as the thickness parameter tends to zero, to a
solution to a quasistatic evolution problem associated to a limit model derived via Γ-convergence.

The setting
We consider a linearly elastic - perfectly plastic thin plate of
reference configuration

Ωε := ω × (− ε
2
, ε

2
)

where ω is a domain in R2 with a C2 boundary and ε > 0 is
the thickness parameter.

The classical formulation
The quasistatic evolution problem in perfect plasticity on Ωε can be formulated as follows. Let uε(t)
denote the displacement field at time t and let Euε(t) denote the infinitesimal strain tensor at t,
that is, the symmetric part of Duε(t). Let σε(t) be the stress tensor at t and let eε(t) and pε(t)
(a deviatoric symmetric matrix) be the elastic and plastic strain tensors at t. Assume that the plate
is subjected to a time-dependent boundary condition wε(t) prescribed on a subset Γε :=
γd × (− ε

2
, ε

2
) of the lateral boundary of Ωε and that for simplicity there are no applied loads. The

classical formulation of the quasistatic evolution problem on a time interval [0, T ] consists in finding
uε(t), eε(t), pε(t), and σε(t) such that the following conditions are satisfied for every t ∈ [0, T ]:

(cf1) kinematic admissibility: Euε(t) = eε(t) + pε(t) in Ωε and uε(t) = wε(t) on Γε;

(cf2) constitutive law: σε(t) = Ceε(t) in Ωε, where C is the elasticity tensor;

(cf3) equilibrium: div σε(t) = 0 in Ωε and σε(t)ν∂Ωε = 0 on ∂Ωε \ Γε, where ν∂Ωε is the outer
unit normal to ∂Ωε;

(cf4) stress constraint: σεD(t) ∈ K, where σεD is the deviatoric part of σε and K is a given convex
and compact subset of deviatoric 3×3 matrices, representing the set of admissible stresses;

(cf5) flow rule: ṗε(t) = 0 if σεD(t) ∈ intK, while ṗε(t) belongs to the normal cone to K at σεD(t)
if σεD(t) ∈ ∂K.

Condition (cf5) can also be written in the equivalent form:

(cf5′) maximum dissipation principle: H(ṗε(t)) = σεD(t) : ṗε(t), where H is the support function
of K, i.e., H(p) := sup{σ : p : σ ∈ K}.

The variational formulation
The first existence result of a quasistatic evolution in perfect plasticity has been proved in [7] by
means of viscoplastic approximations. More recently, in [1] the problem has been reformulated
within the framework of the variational theory for rate-independent processes, developed in [6].
The variational formulation reads as follows: to find a triple (uε(t), eε(t), pε(t)) such that for every
t ∈ [0, T ] we have

(qs1) global stability: (uε(t), eε(t), pε(t)) satisfies Euε(t) = eε(t) + pε(t) in Ωε, uε(t) = wε(t)
on Γε, and minimizes

1
2

∫
Ωε

Cf : f dx+

∫
Ωε

H(q − pε(t)) dx

among all kinematically admissible triples (v, f, q);

(qs2) energy balance:

1
2

∫
Ωε

Ceε(t) : eε(t) dx+

∫ t

0

∫
Ωε

H(ṗε(s)) dxds

= 1
2

∫
Ωε

Ceε(0) : eε(0) dx+

∫ t

0

∫
Ωε

Ceε(s) :Eẇε(s) dxds.

The existence of a quasistatic evolution according to the previous formulation and the extent to which
this is equivalent to the original formulation is the main focus of [1].

The static result: a weak formulation
We consider a boundary displacement wε independent of time, we introduce the functional

Eε(u, e, p) := 1
2

∫
Ωε

Ce : e dx+

∫
Ωε

H(p) dx

defined on the class A(Ωε, w
ε) of all triples (u, e, p) satisfying Eu = e+ p in Ωε and u = wε on

Γε, and we study its limit, as ε→ 0, in the sense of Γ-convergence. As pointed out in [1], because of

the linear growth ofH, the functional Eε is not coercive in any Sobolev norm. The natural setting for
a weak formulation is the spaceBD(Ωε) of functions with bounded deformation in Ωε for the
displacement u and the space Mb(Ωε ∪ Γε;M3×3

D ) of M3×3
D -valued bounded Borel measures

on Ωε ∪ Γε for the plastic strain p. This is also natural from a mechanical point of view, because
it is well known that in absence of hardening displacements may develop jump discontinuities along
so-called slip surfaces, on which plastic strain concentrates. Since p ∈ Mb(Ωε ∪ Γε;M3×3

D ), the
functional ∫

Ωε

H(p) dx

has to be interpreted according to the theory of convex functions of measures, developed in [5, 8],
as ∫

Ωε∪Γε

H
( dp
d|p|

)
d|p|,

where dp/d|p| is the Radon-Nicodym derivative of p with respect to its total variation |p|. Moreover,
the boundary condition is relaxed by requiring that

p = (wε − u)� ν∂ΩεH∈ on −ε, (1)

where � denotes the symmetric tensor product. The mechanical interpretation of (1) is that u may
not attain the boundary condition: in this case a plastic slip is developed along Γε, whose amount is
proportional to the difference between the prescribed boundary value and the actual value.

The static result: the limit model

Setting Γd := γd × (−1
2
, 1

2
), we show that the Γ-limit of Eε is finite only on the class AKL(w) of

triples (u, e, p) such that u ∈ BD(Ω), e ∈ L2(Ω;M3×3
sym), p ∈Mb(Ω ∪ Γd;M3×3

sym), and

Eu = e+ p in Ω, p = (w − u)� ν∂ΩH2 on Γd, (2)
ei3 = 0 in Ω, pi3 = 0 in Ω ∪ Γd, i = 1, 2, 3, (3)

wherew is a suitable limit boundary datum and ν∂Ω is the outer unit normal to ∂Ω. Note that, owing
to (3), we can identify e with a function in L2(Ω;M2×2

sym) and p with a measure inMb(Ω∪Γd;M2×2
sym).

Theorem 1. OnAKL(w) the Γ-limit is given by the functional

J (u, e, p) := 1
2

∫
Ω

Cre : e dx+Hr(p)

where
Hr(p) :=

∫
Ω∪Γd

Hr

( dp
d|p|

)
d|p|,

and the tensor Cr and the functionHr are defined through pointwise minimization formulas.

The class AKL(w)

Conditions (2)–(3) imply that u is a Kirchhoff-Love displacement in BD(Ω), that is, u3 belongs
to the space BH(ω) of functions with bounded Hessian in ω and there exists ū ∈ BD(ω) such
that

u(x) =
(
ū1(x′)− x3∂1u3(x′), ū2(x′)− x3∂2u3(x′), u3(x′)

)
for a.e. x = (x′, x3) ∈ Ω.

Moreover,
(Eu)αβ = (Eū)αβ − x3∂

2
αβu3 for α, β = 1, 2.

We note that the averaged tangential displacement ū may exhibit jump discontinuities, while, be-
cause of the embedding of BH(ω) into C(ω), the normal displacement u3 is continuous, but its
gradient may have jump discontinuities. Moreover, the second equality in (2), together with the sec-
ond condition in (3), implies that u3 satisfies the boundary condition u3 = w3 on γd. Since the
dependence of u on x3 is affine, we can conclude that in the limit model slip surfaces are vertical
surfaces whose projection on ω is the union of the jump set of ū and the jump set of∇u3.
Conditions (2)–(3) do not imply, in general, that e and p are affine with respect to x3. However,
one can prove that e and p admit the following decomposition:

e = ē+ x3ê+ e⊥, p = p̄⊗ L1 + p̂⊗ x3L1 − e⊥,

where ē, ê ∈ L2(ω;M2×2
sym), e⊥ ∈ L2(Ω;M2×2

sym), and p̄, p̂ ∈Mb(ω∪γd;M2×2
sym). Since it may be

energetically convenient to have e⊥ 6= 0, we cannot in general express the limit functional J
in terms of two-dimensional quantities only.

The main result

Theorem 2. Let wε(t) be a prescribed boundary datum of Kirchhoff-Love type on Γε, and consider a compact
sequence of initial data (uε

0, e
ε
0, p

ε
0). For every ε > 0, let (uε(t), eε(t), pε(t)) be a quasistatic evolution in the

sense of (qs1)–(qs2) for the boundary datum wε(t) and the initial datum (uε
0, e

ε
0, p

ε
0), then, (up to a suitable

scaling) (uε(t), eε(t), pε(t)) converges, as ε → 0, to a limit triple (u(t), e(t), p(t)) that solves the quasistatic
evolution problem associated to the limit model in Theorem 1.
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