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Cahn-Hilliard equation for phase separations

Let u(x) denote the density of components of a binary mixture and W(u) a
double-well potential. A transition layer between the two phases has thickness
of order ε.

The Cahn-Hilliard energy is

E(u) =

∫
Ω

ε2

2
|∇u|2 + W(u) dx.

The Cahn-Hilliard equation: H−1− gradient flow

ut = ∇ ·M(u)∇(−ε2∆u + W′(u))

Diffusion mobility dependent coarsening (Sheng et al. 2010)

(a) M = 1 (b) M = 1+u
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(c) M = 1− u2

Coarsening Rates

A characteristic length scale R(t) grows in time, the growth rate depends on
the diffusion mobility M.

1. M = 1 : R(t) ∼ t1/3

Front migrates according to Mullins-Sekerka model (Pego ’89).

2. M = 1− u2 : R(t) ∼ t1/4.
This rate is well known and is generally attributed to surface diffusion. But
surface diffusion is not enough for coarsening to occur when there are
disjoint branches of interfaces. What else is going on?

3. M =
1 + u

2
: R(t) ∼????

Numerical simulation: data fitting (M = 1+u
2

, Sheng et al. 2010)

Assume a power law relation

R(t)n − Rn
0 = kt,

data fitting indicates n = 3.3, that is

R(t) ∼ t1/3.3.

Question: How do we have such a weird rate?

Explanation through asymptotic analysis

The two phases are separated by an interface.
We can directly describe the evolution of the
interface.
Sharp interface models are connected to phase
field models.

Free energy is related to interface area by Γ-limit:

lim
ε→0

∫
Ω

(
ε

2
|∇u|2 +

1

ε
W(u)

)
dx =

∫
Γ

a1 dS.

Under the mass conservation restriction, minimizers of E minimize the
interface area.

Geometry of interfaces

The 0–level set of u is a hypersurface
Γ(t) ∈ Rn. Let ρ(x, t) be the signed
distance function from x to Γ(t) and

z =
ρ

ε
. Then x 7→ (s1, s2, z).

−
∂ρ

∂t
is the normal velocity of Γ, and

∇x =
2∑

i=1

(∇xsi)
∂

∂si

+ ε−1(∇xρ)
∂

∂z
.

ε2∆x = ∂zz + εκ∂z + ε2(∆s+zκ1∂z) + +ε3∆1 + O(ε4),

where in 3D:

κ = k1 + k2 = H,

κ1 = −k2
1 − k2

2 = 2K− H2.

Here k1, k2 are principal curvatures and H, K are mean and Gaussian
curvatures.

Interface migration laws for the CH with M = 1+u
2

I In time scale t = O(ε−1): one-sided Mullins-Sekerka (or Hele-Shaw)

∆µ1 = 0 in Ω+,

µ1 = H on Γ,

V = ∂nµ
+
1 on Γ.

Disjoint components of Ω+ do not communicate.
I In time scale t = O(ε−2), a quasi-stationary porous medium diffusion

process in Ω− determines the normal velocity of Γ.

∇ · (µ1∇µ1) = 0 in Ω−, (1)

µ1 = H on Γ, (2)

V = µ−1 ∂nµ
−
1 on Γ. (3)

I Scaling arguments suggest R ∼ t1/3 in the t = O(ε−1) dynamics and
R ∼ t1/4 in the t = O(ε−2) dynamics. So the numerical simulation is in
a regime where a hybrid behavior, or a crossover of coarsening occurs.

Interface migration laws for CH with M = 1− u2

I In t = O(ε−1) time scale, no migration of interface.
I In t = O(ε−2) time scale, the normal velocity of the interface is

determined by surface diffusion together with a quasi-stationary porous
medium diffusion process in both phases.

∇ · (µ1∇µ1) = 0 in Ω±, (4)

µ1 = H on Γ, (5)

V = ∆sH + µ+
1 ∂nµ

+
1 + µ−1 ∂nµ

−
1 on Γ. (6)

I Our asymptotic analysis indicates that even though the diffusion mobility
is degenerate in both phases, the quasi-stationary porous medium diffusion
process provides the communication mechanism for disjoint components of
the interface Γ, which makes coarsening possible.

I This mechanism depends on the fact that the double well potential W(u)
is smooth at u = ±1 with W′′(±1) 6= 0.
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