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The problem

We are interested in the behaviour of the following volume constraint minimization problem

Previous results

See [1] and [4] for a second variation ap-
proach with = 1 In a periodic setting and
IN a general one respectively, see [5] for

Origins

This kind of energies come from the theory
of domain patterns in systems with com-
peting short-range attractive interactions
and long range repulsive Coulomb interac-
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global issues iIn N < 7, and see [3] for a
detailed description of the geometry of sin-
gle droplet patterns in a bounded domain
with o = 1.

tions (« = 1, N = 3) (e.g. modeling of mi-
crophase separation for A/B diblock copolymer
melts, Gamov’s liquid drop model). See [6] for
more on physical background.

with respect to the variation of the parameters o« € (0, N — 1) and m > 0.

Second variation

Critical sets Let E ¢ RY be a regular critical set. We define the quadratic form 92F(E) : H'(0E) — R by

We call E c RY aregular critical set if
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e F is of class C! OF il

e the equation Hyg(x) + 2vvg(x) = X of Here D, denotes the tangential gradient, 0,,, the normal derivative and |Bsx|? the sum of the squares of the principal curvatures of OF.
null first variation holds weakly on OF, If X is a regular volume preserving vector field, then 9°F(E)[X - vg] is the second variation of F at I along the flow associated to X .

where we set vg(z) :== [, |$_1y|a dy.

Main result The proof (sketch)

Our Spaces Let E be a regular critical set for F such that 92 F(E)[p] > 0 forall o € T+(0E)\{0}. Then The proof has two main steps:

r7 . - - there exist o > 0 and C' > 0 such that
o H'(OE): functions of H*(9E) with e W27 local minimality: a non degenerat-

| | null average _ ing property and a W2 continuity of the
e T—(0OF): functions ¢ € H* (JF) s.t. second variation allow to prove a local

) N—1 __
: faEﬁ?E d1H ]\7 0 for every F ¢ RY suchthat |[F| =1and o(E, F) := min, g~ |[EA(x + F)| < 6. minimality w.r.t. W?2? perturbations.
oreachi:=1,..., N.

Notice that, by the translation invariance of . . L' local minimality: arguing by absurd
F.foreachi=1,... N we have Local and global minimality of the ball it is possible to construct a sequence of

guasl area minimizers that converges in
2P to E and do not satisfy the estimate

2

F(F)>F(E)+C(a(E,F))

0°F(E)[vy] = 0. Global minimality: Local minimality:
Mglob = mglob(N, Oz) IS bounded
m | Mioe = Mioe(N, ) — oo asa — 0+ of the theorem.
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