Local and global minimality issues for a nonlocal isoperimetric problem in \mathbb{R}^N

	The pr
	We are ir
	min
	perimete
	with resp
J	Secon
	Let $E \subset I$
	$\partial^2 {\cal F}$
	Here D_{τ} If X is a
)	Main r
	Let E be there exis
	for every
	Local
J	Global
	• Non existence
	• Characteriz infimum of $\inf_{ E =m}$ is obtained b the ener at most k -

Origins

This kind of energies come from the theory of domain patterns in systems with competing short-range attractive interactions and long range repulsive Coulomb interactions ($\alpha = 1, N = 3$) (e.g. modeling of microphase separation for A/B diblock copolymer melts, Gamov's liquid drop model). See [6] for more on physical background.

Critical sets

We call $E \subset \mathbb{R}^N$ a regular critical set if

- E is of class C^1
- the equation $H_{\partial E}(x) + 2\gamma v_E(x) = \lambda$ of null first variation holds weakly on ∂E , where we set $v_E(x) := \int_E \frac{1}{|x-y|^{\alpha}} dy$.

Our spaces

• $\widetilde{H}^1(\partial E)$: functions of $H^1(\partial E)$ with null average • $T^{\perp}(\partial E)$: functions $\varphi \in \widetilde{H}^1(\partial E)$ s.t.

 $\int_{\partial E} \varphi \nu_E^i \, \mathrm{d}\mathcal{H}^{N-1} = 0$ for each i = 1, ..., N.

Notice that, by the translation invariance of \mathcal{F} , for each $i = 1, \ldots, N$ we have $\partial^2 \mathcal{F}(E)[\nu_E^i] = 0.$

Main references

[1] E. ACERBI, N. FUSCO, M. MORINI, Minimality via second variation for a nonlocal isoperimetric problem. Accepted Paper: Commun. in Mathematical Physics (2011). [2] M. BONACINI, R. CRISTOFERI, Local and global minimality issues for a nonlocal isoperi*metric problm in* \mathbb{R}^N . In preparation.

[3] M. CICALESE, E. SPADARO, Droplet minimizers of an isoperimetric problem with longrange interactions. Preprint (2013).

[4] V. JULIN, G. PISANTE, Minimality via second variation for microphase separation of diblock copolymer melts. Preprint (2013).

[5] H. KNÜPFER, C.B. MURATOV, On an isoperimetric problem with a competing non-local term. II. The general case. To be published in Commun. Pure Appl. Math.

[6] C.B. MURATOV, Theory of domain patterns in systems with long-range interaction of Coulomb type. Phys. Rev. E 66 (2002), 1-25.

Riccardo Cristoferi - riccardo.cristoferi@sissa.it SISSA - International School for Advanced Studies, Trieste, Italy

roblem

nterested in the behaviour of the following volume constraint minimization problem

$$\begin{cases} \mathcal{F}(E) := \mathcal{P}(E) + m^{\frac{N-\alpha+1}{N}} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{\chi_E(x)\chi_E(y)}{|x-y|^{\alpha}} \, \mathrm{d}x \mathrm{d}y \, : \, |E| = 1 \end{cases}, \quad N \ge 2 \,, \\ \text{er:} \quad \text{eminimized by the ball} \quad \text{nonlocal term:} \quad \text{emaximized by the ball} \\ \text{favours compact configurations} \quad \text{favours scattered configurations} \end{cases}$$

product to the variation of the parameters $\alpha \in (0, N-1)$ and m > 0.

nd variation

 \mathbb{R}^N be a regular critical set. We define the quadratic form ∂^2 .

$$(E)[\varphi] = \int_{\partial E} \left(|D_{\tau}\varphi|^2 - |B_{\partial E}|^2 \varphi^2 \right) \mathrm{d}\mathcal{H}^{N-1} + 2m^{\frac{N-\alpha+1}{N}} \left(\int_{\partial E} (\partial_{\nu_E} v_E) \varphi^2 \, \mathrm{d}\mathcal{H}^{N-1} \right) + \int_{\partial E} \int_{\partial E} \frac{\varphi(x)\varphi(y)}{|x-y|^{\alpha}} \, \mathrm{d}\mathcal{H}^{N-1}(x) \mathrm{d}\mathcal{H}^{N-1}(y) \, \mathrm{d}\mathcal{H}$$

denotes the tangential gradient, ∂_{ν_E} the normal derivative and $|B_{\partial E}|^2$ the sum of the squares of the principal curvatures of ∂E . regular volume preserving vector field, then $\partial^2 \mathcal{F}(E)[X \cdot \nu_E]$ is the second variation of \mathcal{F} at E along the flow associated to X.

cesult

a regular critical set for \mathcal{F} such that $\partial^2 \mathcal{F}(E)[\varphi] > 0$ for all φ ist $\delta > 0$ and C > 0 such that

$$\mathcal{F}(F) \ge \mathcal{F}(E) + C(\alpha(E,F))^2$$

 $F \subset \mathbb{R}^N$ such that |F| = 1 and $\alpha(E, F) := \min_{x \in \mathbb{R}^N} |E \triangle (x + F)| < \delta$.

and global minimality of the ball

minimality:

• favours scattered configurations

Previous results

See [1] and [4] for a second variation approach with $\alpha = 1$ in a periodic setting and in a general one respectively, see [5] for global issues in $N \leq 7$, and see [3] for a detailed description of the geometry of single droplet patterns in a bounded domain with $\alpha = 1$.

$$\mathcal{F}(E): \widetilde{H}^1(\partial E) \to \mathbb{R}$$
 by

$$\in T^{\perp}(\partial E) \setminus \{0\}.$$
 Then

Local minimality:

The proof (sketch)

The proof has two main steps:

- $W^{2,p}$ local minimality: a non degenerating property and a $W^{2,p}$ continuity of the second variation allow to prove a local minimality w.r.t. $W^{2,p}$ perturbations.
- L^1 local minimality: arguing by absurd it is possible to construct a sequence of quasi area minimizers that converges in $W^{2,p}$ to E and do not satisfy the estimate of the theorem.

Open problems

- existence and non existence in the case $\alpha \in [\overline{\alpha}, N-1)$: are there other minimizers than the ball? Is the existence set an interval?
- the case $\alpha \in [N-1,N)$, where other techniques seem to be required.

