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Motivation

We want to describe the behavior of point singularities of the solution to

the Ginzburg-Landau equation.
Our physical inspiration comes from the theory of

superconductivity. In certain situations, the su-
perconducting matter forms Abrikosov vortices
(~ Nobel Prize in Physics, 2003). The nature of
the phenomenon is essentially probabilistic. The
existing mathematical theory does not take it into
account. Our problem is a toy model that helps
us to understand, what kind of difficulties can we
expect.

Vortex lattice in NbSe2

Ginzburg-Landau vortices

Evolution equations related to the Ginzburg-Landau enerqgy:
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Energy bound E(u.) < mnlogt as e — 0 gives rise to an S'-valued map
with a finite number of point singularities a = {a;} with non-trivial winding

number (vortices). Energy concentrates at the ay of the order mlog(1/¢)
when the winding numbers d = +£1.

Energy expansion (Bethuel et al):

E-(u:) =n (71' 10g§ +- 7) + Wi(a,d) + o(1)

Here ~v is a global constant and W (a, d) is the renormalized energy.

Theorem 1. For the solutions of
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the vortex dynamics 1s determined by an ODE
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Other equations: Jerrard and Soner, Lin, Sandier and Sertaty, etc.

Important ingredients

(A) How many vortices: upper bounds on the energy
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3) Where they are: compactness of the rescaled energy measure
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(C) How do they move for our equation: conservation laws
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Stochastic Ginzburg-Landau equations

If in (1) the force is random:
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Our goal is the vortex motion governed by
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We expect to obtain instead of this...
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» How to understand? - No derivatives, no conservation laws ~~
Stochastic calculus

» How to control? - One more tricky parameter w from the probability

space ~» Look at expectations

» What the correct scaling of (. is? ~» We are looking for the stochastic
forcing that is strong enough to make difference but still moderated
enough to preserve the general picture.

Existence and uniqueness

-

I'he equation (2) makes sense, when considered as an integral equation.
The stochastic integral is a well-defined object, whereas a derivative of a
stochastic process is not.

We transform (2) into a PDE with random, but nice coefficients and so
establish

Theorem 2. For every e > 0, the solution u-(z,t;w) to the equation (2)
exists and is unique fort € |0, T| for any T < +oo. This solution is a

continuous C*(D)-valued semimartingale, almost sure.

Instead of (C), we can derive the [t0 equation on the energy. That gives
us the control similar to (A).
Theorem 3. There exists C' such that the process

Y(t) = E-(us(t)) exp{ —Ctf:}

1S a supermartingale.

The quest of tightness

We want to pass to the limit, like in (B). Proving directly the relative
compactness for a stochastic process is a really hard task. We may check
the tightness for the family of interest instead, thanks to the Prokhorov
theorem!

Theorem 4. For . < —
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sures (-(u-(t)) is tight and consequently relatively compact in the space
C(0, T (CY™)) for every a € (0,1).

the family of the rescaled energy mea-

Further directions
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» Fffective motion law for the case 8. < i The intuition is, it should
Ogg

be deterministic.
» Tightness in the maximal regime 8. ~ 1. That is expected to give (3).
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