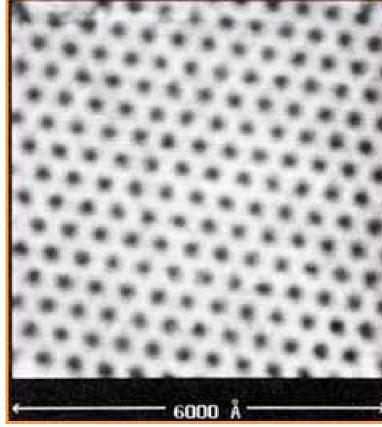
Vortices in stochastically perturbed Ginzburg-Landau equations Olga Chugreeva

Motivation

We want to describe the behavior of point singularities of the solution to the Ginzburg-Landau equation.



Our physical inspiration comes from the theory of superconductivity. In certain situations, the superconducting matter forms *Abrikosov vortices* (\rightsquigarrow Nobel Prize in Physics, 2003). The nature of the phenomenon is essentially probabilistic. The existing mathematical theory does not take it into account. Our problem is a toy model that helps us to understand, what kind of difficulties can we Vortex lattice in NbSe2 expect.

Stochastic Ginzburg-Landau equations

If in (1) the force is *random*: $du_{\varepsilon} = \log \frac{1}{\varepsilon} \left(\Delta u_{\varepsilon} + \frac{1}{\varepsilon^2} (1 - |u_{\varepsilon}|^2) u_{\varepsilon} \right) dt + \beta_{\varepsilon} \nabla u_{\varepsilon} \cdot F(x) \circ dB_t$ (2)Our goal is the vortex motion governed by $da_k = -\frac{1}{\pi} \frac{\partial W}{\partial a_k} dt - F(a_k) \circ dB_t.$ (3)We expect to obtain instead of this... something like this

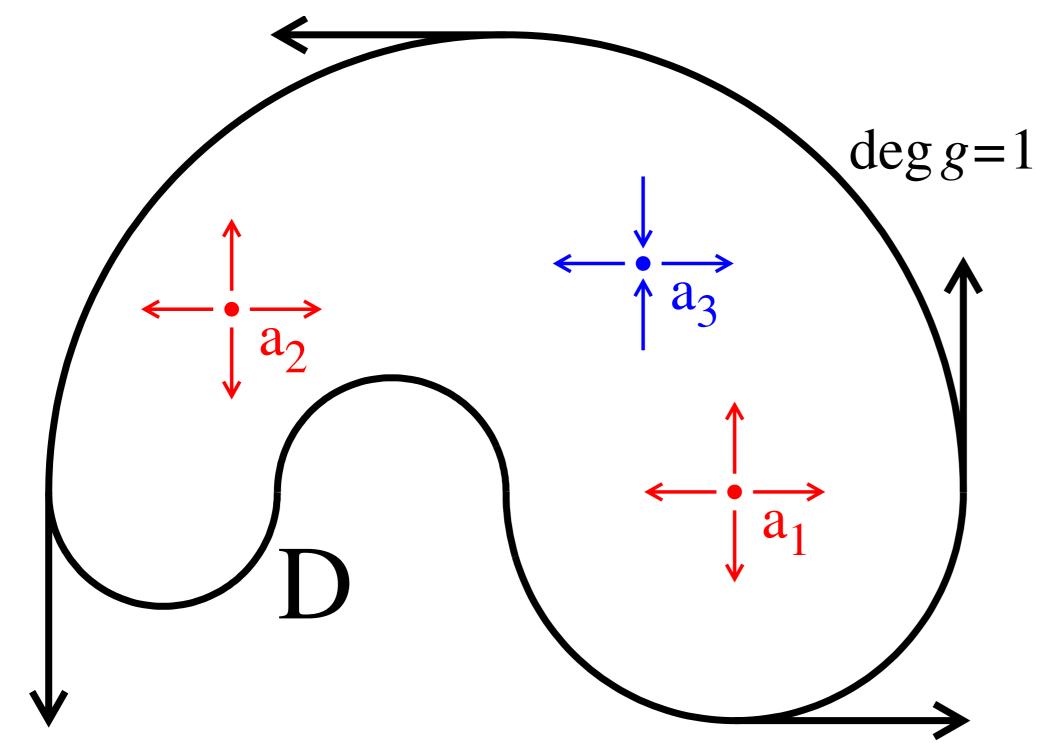
7a(t)

Ginzburg-Landau vortices

Evolution equations related to the *Ginzburg-Landau energy*:

$$E_{\varepsilon}(u_{\varepsilon}) = \int_{D} \frac{1}{2} |\nabla u_{\varepsilon}|^{2} + \frac{1}{4\varepsilon^{2}} (1 - |u_{\varepsilon}|^{2})^{2}$$
$$u_{\varepsilon} |\partial D = g, \quad |\deg g| = n \neq 0$$

Energy bound $E(u_{\varepsilon}) \lesssim \pi n \log \frac{1}{\varepsilon}$ as $\varepsilon \to 0$ gives rise to an S¹-valued map with a finite number of point singularities $a = \{a_k\}$ with non-trivial winding number (*vortices*). Energy concentrates at the a_k of the order $\pi \log(1/\varepsilon)$ when the winding numbers $d_k = \pm 1$.



Challenges

 $\mathbf{A}(t)$

- \blacktriangleright How to understand? No derivatives, no conservation laws \rightsquigarrow Stochastic calculus
- \blacktriangleright How to control? One more tricky parameter ω from the probability space \rightsquigarrow Look at expectations
- ► What the correct scaling of β_{ε} is? \rightsquigarrow We are looking for the stochastic forcing that is strong enough to make difference but still moderated enough to preserve the general picture.

Existence and uniqueness

The equation (2) makes sense, when considered as an integral equation. The stochastic integral is a well-defined object, whereas a derivative of a stochastic process is not.

We transform (2) into a PDE with random, but nice coefficients and so establish

Energy expansion (Bethuel et al):

$$E_{\varepsilon}(u_{\varepsilon}) = n\left(\pi \log \frac{1}{\varepsilon} + \gamma\right) + W(a, d) + o(1)$$

Here γ is a global constant and W(a, d) is the *renormalized energy*.

ODE for vortex paths

Theorem 1. For the solutions of

(1)
$$\frac{1}{\log \frac{1}{\varepsilon}} \partial_t u_{\varepsilon} = \Delta u_{\varepsilon} + \frac{1}{\varepsilon^2} (1 - |u_{\varepsilon}|^2) u_{\varepsilon} + \frac{1}{\log \frac{1}{\varepsilon}} \nabla u_{\varepsilon} \cdot F(x, t)$$

the vortex dynamics is determined by an ODE

$$\dot{a}_k = -\frac{1}{\pi} \frac{\partial W}{\partial a_k} - F(a_k, t).$$

Other equations: Jerrard and Soner, Lin, Sandier and Serfaty, etc.

Theorem 2. For every $\varepsilon > 0$, the solution $u_{\varepsilon}(x,t;\omega)$ to the equation (2) exists and is unique for $t \in [0, T]$ for any $T < +\infty$. This solution is a continuous $C^2(D)$ -valued semimartingale, almost sure.

Energy in the stochastic case

Instead of (C), we can derive the $It\hat{o}$ equation on the energy. That gives us the control similar to (A). **Theorem 3.** There exists C such that the process $Y_{\varepsilon}(t) := E_{\varepsilon}(u_{\varepsilon}(t)) \exp\{-Ct\beta_{\varepsilon}^{2}\}$ is a supermartingale.

The quest of tightness

We want to pass to the limit, like in (B). Proving directly the relative compactness for a *stochastic process* is a really hard task. We may check the *tightness* for the family of interest instead, thanks to the Prokhorov theorem!

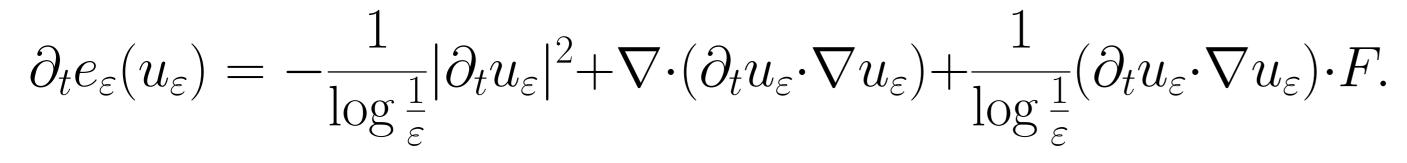
Important ingredients

(A) How many vortices: upper bounds on the energy $E_{\varepsilon}(u_{\varepsilon}) \leqslant \pi n \log \frac{1}{\varepsilon} + C.$

(B) Where they are: compactness of the *rescaled energy measure*

$$\mu_{\varepsilon}(u_{\varepsilon}(t)) := \frac{e_{\varepsilon}(u_{\varepsilon}(t))}{\log \frac{1}{\varepsilon}} \xrightarrow[\varepsilon \to 0]{\pi} \sum_{k=1}^{n} \delta_{a_{k}(t)}.$$

(C) How do they move for our equation: *conservation laws*



Theorem 4. For $\beta_{\varepsilon} \lesssim \frac{1}{\sqrt{\log \frac{1}{\varepsilon}}}$, the family of the rescaled energy measures $\mu_{\varepsilon}(u_{\varepsilon}(t))$ is tight and consequently relatively compact in the space $C(0, T; (C_0^{0,\alpha})^*)$ for every $\alpha \in (0, 1)$.

Further directions

- Effective motion law for the case $\beta_{\varepsilon} \lesssim \frac{1}{\sqrt{\log \frac{1}{\varepsilon}}}$. The intuition is, it should be deterministic.
- \blacktriangleright Tightness in the maximal regime $\beta_{\varepsilon} \sim 1$. That is expected to give (3).

This project is supported by

Deutscher Akademischer Austausch Dienst German Academic Exchange Service