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Motivation

We want to describe the behavior of point singularities of the solution to
the Ginzburg-Landau equation.

Vortex lattice in NbSe2

Our physical inspiration comes from the theory of
superconductivity. In certain situations, the su-
perconducting matter forms Abrikosov vortices
( Nobel Prize in Physics, 2003). The nature of
the phenomenon is essentially probabilistic. The
existing mathematical theory does not take it into
account. Our problem is a toy model that helps
us to understand, what kind of difficulties can we
expect.

Ginzburg-Landau vortices

Evolution equations related to the Ginzburg-Landau energy:

Eε(uε) =
∫
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uε|∂D = g, | deg g| = n 6= 0
Energy bound E(uε) . πn log 1

ε as ε → 0 gives rise to an S1-valued map
with a finite number of point singularities a = {ak} with non-trivial winding
number (vortices). Energy concentrates at the ak of the order π log(1/ε)
when the winding numbers dk = ±1.
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Energy expansion (Bethuel et al):
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)
+ W (a, d) + o(1)

Here γ is a global constant and W (a, d) is the renormalized energy.

ODE for vortex paths

Theorem 1. For the solutions of
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the vortex dynamics is determined by an ODE

ȧk = −1
π
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∂ak
− F (ak, t).

Other equations: Jerrard and Soner, Lin, Sandier and Serfaty, etc.

Important ingredients

(A)How many vortices: upper bounds on the energy

Eε(uε) 6 πn log 1
ε

+ C.

(B)Where they are: compactness of the rescaled energy measure

µε(uε(t)) := eε(uε(t))
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δak(t).

(C)How do they move for our equation: conservation laws

∂teε(uε) = − 1
log 1

ε
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(∂tuε·∇uε)·F.

Stochastic Ginzburg-Landau equations

If in (1) the force is random:

(2) duε = log 1
ε
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)
dt + βε∇uε · F (x) ◦ dBt

Our goal is the vortex motion governed by

(3) dak = −1
π
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∂ak
dt− F (ak) ◦ dBt.

We expect to obtain instead of this... something like this
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Challenges

IHow to understand? - No derivatives, no conservation laws  
Stochastic calculus
IHow to control? - One more tricky parameter ω from the probability

space  Look at expectations
IWhat the correct scaling of βε is?  We are looking for the stochastic

forcing that is strong enough to make difference but still moderated
enough to preserve the general picture.

Existence and uniqueness

The equation (2) makes sense, when considered as an integral equation.
The stochastic integral is a well-defined object, whereas a derivative of a
stochastic process is not.
We transform (2) into a PDE with random, but nice coefficients and so
establish
Theorem 2. For every ε > 0, the solution uε(x, t;ω) to the equation (2)
exists and is unique for t ∈ [0, T ] for any T < +∞. This solution is a
continuous C2(D)-valued semimartingale, almost sure.

Energy in the stochastic case

Instead of (C), we can derive the Itô equation on the energy. That gives
us the control similar to (A).
Theorem 3. There exists C such that the process

Yε(t) := Eε(uε(t)) exp{−Ctβ2
ε}

is a supermartingale.

The quest of tightness

We want to pass to the limit, like in (B). Proving directly the relative
compactness for a stochastic process is a really hard task. We may check
the tightness for the family of interest instead, thanks to the Prokhorov
theorem!
Theorem 4. For βε . 1√

log 1
ε

, the family of the rescaled energy mea-
sures µε(uε(t)) is tight and consequently relatively compact in the space
C(0, T ; (C0,α

0 )∗) for every α ∈ (0, 1).

Further directions

IEffective motion law for the case βε . 1√
log 1

ε

. The intuition is, it should
be deterministic.
ITightness in the maximal regime βε ∼ 1. That is expected to give (3).
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