• Laplace's method
 \[\lim_{\gamma \to \infty} \Psi(q(\gamma), 0) = \Psi(q_0, 0) \]

The long time average velocity field over the phase space differs when \(F \) is below, at or above the threshold \(F_0 \).

- The long time average velocity of the Smoluchowski equation converges to that of the Smoluchowski equation in the over-damped limit (\(m \to 0 \))
- The long time average velocity of the Smoluchowski equation converges to that of the corresponding deterministic equation as noise goes to zero and the convergence rate differs when \(F \) is below, at or above the threshold \(F_0 \).

- We proved:
 - The long time average velocity of the Langevin equation converges to that of the Smoluchowski equation in the over-damped limit (\(m \to 0 \))
 - The long time average velocity of the Smoluchowski equation converges to that of the corresponding deterministic equation as noise goes to zero and the convergence rate differs when \(F \) is below, at or above the threshold \(F_0 \).

\[\dot{q} = -\frac{\Psi'(q)}{\gamma} + \sqrt{2\gamma \beta W(t)}, \quad q(0) = q_0. \]

Langevin equation

\[m\ddot{q} = F - \nabla \Psi(q) - \gamma \dot{q} + \sqrt{2\gamma \beta W(t)}, \quad q(0) = q_0, \quad \dot{q}(0) = \dot{p}_0. \]

- \(F \)—the external force
- \(\Psi \)—the smooth periodic potential
- \(\gamma \)—the friction coefficient
- \(\beta \)—the inverse temperature
- \(W \)—the Brownian motion

\(F_0 \) is the threshold of the external force.

Tilted periodic potential

Long time average velocity

1. Motivation

Particle diffusion in tilted periodic potentials

The long time average velocity as a function of the external force \(F \)

The threshold \(F_0 \) of the external force \(F \)

The scaling law of the long time average velocity \(V_F \)

Langevin equation:

\[m\ddot{q} = F - \nabla \Psi(q) - \gamma \dot{q} + \sqrt{2\gamma \beta W(t)}, \quad q(0) = q_0, \quad \dot{q}(0) = \dot{p}_0. \]

- \(F \) is the external force
- \(\Psi \) is the smooth periodic potential
- \(\gamma \) is the friction coefficient
- \(\beta \) is the inverse temperature
- \(W \) is the Brownian motion

Pinning and de-pinning

Charge density waves

Phase boundary versus applied load

Josephson junction

Charge density waves

Phase boundary versus applied load

Josephson junction

1. Motivation

• Josephson effect
 WHAT is the effective voltage on a Josephson junction?

• Phase boundary propagation
 HOW to estimate evolvement of the earth crack in the long run?

• Charge density wave
 WHY do the charge-density wave appear non-Ohmic conduction when the applied field is small enough?

2. Model—pinning and de-pinning

• Particle diffusion in tilted periodic potentials

The long time average velocity as a function of the external force \(F \)

The threshold \(F_0 \) of the external force \(F \)

The scaling law of the long time average velocity \(V_F \)

Langevin equation:

\[m\ddot{q} = F - \nabla \Psi(q) - \gamma \dot{q} + \sqrt{2\gamma \beta W(t)}, \quad q(0) = q_0, \quad \dot{q}(0) = \dot{p}_0. \]

- \(F \) is the external force
- \(\Psi \) is the smooth periodic potential
- \(\gamma \) is the friction coefficient
- \(\beta \) is the inverse temperature
- \(W \) is the Brownian motion

Tilted periodic potential

Long time average velocity

Pinning and de-pinning

Phase boundary versus applied load

Josephson junction

Charge density waves

Phase boundary versus applied load

Josephson junction

3. Over-damped limit (\(\gamma \to \infty \) or \(m \to 0 \))—results

\[\dot{q} = F - \nabla \Psi(q) + \sqrt{2\gamma \beta W(t)}, \quad q(0) = q_0. \]

Smoluchowski equation

We proved:

- The long time average velocity of the Langevin equation converges to that of the Smoluchowski equation in the over-damped limit (\(m \to 0 \))
- The long time average velocity of the Smoluchowski equation converges to that of the corresponding deterministic equation as noise goes to zero and the convergence rate differs when \(F \) is below, at or above the threshold \(F_0 \).

\[q_0 = \frac{1}{\gamma} H(q_0, \dot{q}_0), \quad \dot{p}_0 = \frac{1}{\gamma} H(p_0, \dot{p}_0) + b(q_0, \dot{q}_0) + W, \]

where \(H(q, \dot{q}) \) is the Hamiltonian function.

\(q \) and \(\dot{q} \) are the position and velocity process respectively.

\[H(q, \dot{q}) = \frac{1}{2} m \dot{q}^2 + \Psi(q) \]

\(q_0, \dot{q}_0 \) are the initial values.

\(q, \dot{q} \) are the position and velocity process respectively.

\(m \) is the mass.

Rescaled random dynamical system

\[\dot{q} = \frac{1}{\gamma} H(q, \dot{q}), \quad \dot{p} = \frac{1}{\gamma} H(p, \dot{p}) + b(q, \dot{q}) + W, \]

where \(H(q, \dot{q}) \) is the Hamiltonian function.

4. Over-damped limit (\(\gamma \to \infty \) or \(m \to 0 \))—methods

Approximate the second order process by pieces of the first order process

Sample path approximation

We use pieces of the first order Smoluchowski process to approximate the position process of the second order Langevin equation and show that the total approximation error, i.e., the sum of deviations of each piece, vanishes as \(m \to 0 \).

Ergodicity

The long time average velocity equals to the integration of the velocity field over the phase space w.r.t. an invariant measure

Laplace’s method

\[V_F = \int \dot{q} \, dQ, \quad Q \text{ is the phase space.} \]

Convergence of \(V_F \) in the vanishing mass limit (\(m \to 0 \))

Convergence of \(V_F \) in the vanishing noise limit (\(\beta \to \infty \))

5. Under-damped limit (\(\gamma \to 0 \))—results

\[\dot{q} = F - \nabla \Psi(q) + \sqrt{2\gamma \beta W(t)}, \quad q(0) = q_0. \]

6. Under-damped limit (\(\gamma \to 0 \))—methods

Graph \(\Gamma \) and level sets of \(H(q, p) \)

Rescaled random dynamical system

7. Undergoing and future work

Bistability phenomenon, i.e., the pinning and running states coexist in the system

We obtained:

- Derivation of the bi-stability thresholds
- Asymptotics of the mean return time of the pinning or running state in the vanishing noise limit (\(\beta \to \infty \))

Bi-stability phenomenon, i.e., the pinning and running states coexist in the system

Undergoing work:

- Two dimensional gradient systems in tilted periodic potentials
 - Goal:
 - Scaling law of the long time average velocity
 - Method:
 - Structural stability theory and bifurcation theory

Future work:

- Diffusion in random potentials
- Jump-diffusion driven by more general noise