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Introduction

Gels are crosslinked three dimensional polymer net-
works that absorb solvent and swell without dissolu-
tion. Polyelectrolyte gels carry fixed charge groups.
Many polyelectrolyte gels experience volume phase
transition due to small changes in various environ-
mental parameters such as pH or temperature. The
volume phase transition is widely used in artificial de-
vices.
Goal: to understand volume phase transition of poly-
electrolyte gels. (Y. Hirose et.al., Macromolecules, 1987)

Equations for the Model

Let gel occupy region Ωt ⊂ R
3, surrounded by fluid

Rt. The medium has two phases: phase 1 as poly-
mer and phase 2 as fluid. In Ωt, let φi,vi be volume
fractions and velocities, respectively. They satisfy

φ1 + φ2 = 1,
∂φi
∂t

+∇ · (viφi) = 0, i = 1, 2

hence the mixture is incompressible:

∇ · (φ1v1 + φ2v2) = 0.
U = Rt ∪ Ωt ∪ Γt

Ωt

Γt

Rt

vf , p, ck, ψ

w,q

φ1, φ2,v1,v2, p,F , ck, ψ

n

The force balance equations for polymer and fluid are

∇ · Ti − φi∇p + fi = 0, i = 1, 2;

T1 = T FH
1 + T elas

1 + T visc
1 , T2 = T visc

2 , T visc
i =

1

2
ηi(∇vi +∇Tvi),

f1 = ffric − φ1ρp∇ψ, f2 = −ffric −

N
∑

k=1

qzkφ2ck∇ψ, ffric = κ(v2 − v1).

The ionic concentrations ck satisfy electro-diffusion equations under neutrality constraint:

∂

∂t
(φ2ck) +∇ · (v2φ2ck) = ∇ ·

(

Dkck
kBT

∇µk

)

, φ1ρp +

N
∑

k=1

qzkφ2ck = 0

in which Dk: diffusion coefficient, zk: valence of ion, ψ: electrostatic potential, ρp: fixed charge
density on polymer, µk: chemical potential.

We assume in the outside fluid Rt, the velocity field satisfies the Stokes equation, and ionic
concentrations satisfy electro-diffusion equations under the electro-neutrality constraint.

Boundary conditions at the interface

The polymer has mass balance in normal and tangential directions:

(vf − v1) · n = φ2(v2 − v1) · n ≡ w; (vf − v1)‖ = (v2 − v1)‖ ≡ q.

For ionic concentrations, the flux is continuous:

(

(vf − v1)ck −
Dkck
kBT

∇µk

)

· n|Rt
=

(

(v2 − v1)φ2ck −
Dkck
kBT

∇µk

)

· n|Ωt.

Force balance of total stress, normal fluid stress and tangential fluid stress:

Tfn− (T1 + T2)n + [p]n = 0, [p] = p|in − p|out,

η⊥w = n · (Tfn)− n · φ−1
2 (T2n) + [p]− πosm, πosm = kBT

N
∑

k=1

[ck] ,

(Tfn− T2n)‖ = η‖q.

At outside boundary ∂U, we assume the domain does not move, and ion flux is zero:

vf = 0, (vfck −
Dkck
kBT

∇µk) · n = 0.

Energy Dissipation Identity

We have the following free energy dissipation identity:

d

dt
(Eelas + EFH + Eion) = −Ivisc − Idiff − Jvisc,

Eelas =

∫

Ωt
φ1Welas(F)dx, EFH =

∫

Ωt
WFH(φ1)dx,

Eion =

∫

Ωt



φ2

N
∑

k=1

ck ln ck



 dx +

∫

Rt





N
∑

k=1

ck ln ck



 dx,

Ivisc =

∫

Ωt





2
∑

i=1

2ηi ‖∇Svi‖
2 + κ |v1 − v2|

2



 dx +

∫

Rt

2ηf
∥

∥∇Svf
∥

∥

2
dx,

Idiff =

∫

U

Dkck
kBT

|∇µk|
2 dx, Jvisc =

∫

Γt

(

η⊥w
2 + η‖ |q|

2
)

dS.

The equations and boundary conditions can be derived from the above energy identity via the
Onsager variational principle.

Linear Stability Analysis, 1-D case

Steady State Solution

We assume the free energy f (φ1) is convex. For gels with no ion species, the unique steady state
solution satisfies

φ1 ≡ φ0, f (φ0)− φ0f
′(φ0) = 0.

For polyelectrolyte gels, the unique steady state solution φ1 ≡ φ0 is implicitly determined by
initial data such as total ion concentrations and gel volume.

Nonionic Decay Rate

In 1-D case, let U = (0, L) and l < L be gel length, and ǫu(X, t) be a small perturbation near
the steady state. Then u(X, t) follows

Hutxx + φ20f
′′(φ0)uxx =

κut

(1− φ0)2
, H = η1 + η2

φ20
(1− φ0)2

with certain boundary condition at the two interfaces. When the gel is fully permeable, namely
η⊥ = 0,

λj = Aj(l) :=
φ20f

′′(φ0)
4κl2

(1−φ0)2j2π2
+H

for j ∈ N

A similar analysis can be performed when η⊥ 6= 0. Note that Aj are determined only by mecha-
nical properties of the gel.

Ionic Decay Rate, fast diffusive surrounding fluid

In 1-D case, when U = Ωt = (0, L), eigenvalues satisfy

αp

λ− Aj(L)
+

N
∑

k=1

αk
λ−Bk,j(L)

= 0 (1)

in which

Bk,j(L) =
Dkj

2π2

(1− φ0)L2
, αp ∝ ρ2p, αk ∝

Dk
1− φ0

z2k exp(−zkψ)

Here, B·,j can be considered as intrinsic spectrum of an ion species, which dissolves in the fluid
of gel region. In particular, the principal λ lies between the smallest and the second smallest
{Aj, Bk,j}.

Decay rate change as gel being charged

Equation (1) enables us to find the trend of λ as ρp changes. Fix the concentrations of ions in
the surrounding fluid and charge the gel, there are three possibilities:

(i) if A1 < Bk,j for all k,
dλ1
dρp

is uncertain;

(ii) otherwise, Bk0,1 is the smallest, and if N = 2, we have sgn(dλ1dρp
) =sgn(−zk0);

(iii) in (ii), N > 2, the conclusion is likely in many situations, but uncertain in general.

Ionic Decay Rate, two ion species, one side

We consider a 1-D case with

(1) Ωt = (0, a), Rt = (a, L), a = a(t);

(2) there are two ion species, i.e. N = 2;

(3) the gel is fully permeable, i.e. η⊥ = 0.

Let λ be the principal eigenvalue. It follows

•An upper bound estimate of λ holds for any situation:

λ < min

{

B1,3
2

(a), B2,3
2

(a),
Dout

(L− a)2

}

, Dout =
(|z1| + |z2|)D1D2

|z1|D1 + |z2|D2
;

•An lower bound estimate of λ holds if |z1| < |z2| and A1(a) <
D1

1−φ <
D2

1−φ:

λ > min

{

A1(a),
π2

4
·
Dout

1− φ

}

.

• The behavior of λ with respect to changing value ofDk is not clear, so it is not obvious whether
the lower bound estimate can be applied to the general case or not.

Numerical Simulations of 1-D polyelectrolyte gel

The force balance equation in Ωt is discretized in the reference configuration. We use the backward
Euler method for time discretization. At t = 0, the values of the electrostatic potential and the
velocity of gel are implicit, they are calculated by iteration along a homotopy path from the sol-
ved steady state solution. The following is an example showing φ1, c1, c2 and ψ at t = 0, 0.1, 1, 10.

η1 = 0.01, η2 = 0.02, η⊥ = 0, κ = 1,

f (φ) =
1

φ(1.2− φ)
, L = 5, a = 3, ρp = −0.5,

z1 = 1, z2 = −1, D
f
1 = 2, D

f
2 = 4,

D
g
1,2 = (1− φ)D

f
1,2, φ(t = 0) = 0.7,

c1(t = 0) =

{

2.49 + 0.05 · sin x for 0 < x < 3;

0.27 + 0.05 · x for 3 < x < 5;
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The linear approximations of λφ, λck and λψ match with the theoratical value.

Ongoing & Future work

•We will consider nonconvex energy and study phase separation phenomena.

•We will simulate 2-D or 3-D spherical case with/without ion species.
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