A second order minimality criterion for free discontinuity problems

Marco Bonacini - marco.bonacini@sissa.it SISSA - International School for Advanced Studies, Trieste, Italy

SCUOLA INTERNAZIONALE SUPERIORE di STUDI AVANZATI International School for Advanced Studies

Second variation and local minimality

Investigation of sufficiency minimality conditions based on the second variation, for functionals involving competing terms (bulk energies and surface energies):

- [6, 4]: Mumford-Shah functional
- [1]: diblock copolymers
- [9, 3]: epitaxial growth of elastic films
- [7]: cavities in elastic bodies

Here we develop this approach for a 3-dimensional variational model with a nonlinear elastic energy, arising in the context of epitaxial growth of strained elastic films.

The model

Denote $Q = (0, 1)^{N-1}$, $(x, y) \in \mathbb{R}^{N-1} \times \mathbb{R}$. We prescribe

• d > 0 (volume constraint)

• $u_0(x,y) := (A[x] + q(x), 0)$, with $A \in \mathbb{M}^{N-1}_+$ and $q : \mathbb{R}^{N-1} \to \mathbb{R}^{N-1}$ 1-periodic (mismatch strain at the interface $\{y = 0\}$).

Space of admissible pairs: $(h, u) \in X$ if

- $h: \mathbb{R}^{N-1} \to (0, +\infty)$ Lipschitz, 1-periodic in the coordinate directions,
 - $\Omega_h := \{(x, y) \in \mathbb{R}^N : x \in Q, 0 < y < h(x)\}$ (reference configuration),
 - $\Gamma_h := \{(x, h(x)) \in \mathbb{R}^N : x \in Q\}$ (free profile of the film),

Previous related results

- In [5, 8] a two-dimensional variational model for epitaxial growth of strained elastic films, in the framework of linearized elasticity, is introduced by relaxation methods
- In [8] regularity properties of minimizers are studied
- In [9] the local and global minimality of the flat configuration is discussed by means of a second variation approach to local minimality

Local minimizers

An admissible pair (h, u) is a local minimizer if $F(h, u) < +\infty$ and there exists $\delta > 0$ such that

```
F(h, u) \le F(g, v)
```

for all $(g, v) \in X$ such that

•
$$\|g - h\|_{\infty} < \delta$$
, $|\Omega_g| = |\Omega_h|$,
• $\|\nabla v \circ \Phi_g - \nabla u\|_{L^{\infty}(\Omega_h; \mathbb{M}^N)} < \delta$.

Here $\Phi_q:\overline{\Omega}_h\to\overline{\Omega}_q$ is a change of variables such that

- $\Omega_h^{\#}$, $\Gamma_h^{\#}$ periodic extensions,
- $u: \Omega_h \to \mathbb{R}^N$ (deformation of the film),
- $u Id u_0 \in \mathcal{V}(\Omega_h)$ (Dirichlet boundary condition + periodicity), where

$$\mathcal{V}(\Omega_h) := \left\{ w \in C^1\left(\overline{\Omega}_h^{\#}; \mathbb{R}^N\right) : w(x, 0) = 0, \ w(x + e_i, y) = w(x, y) \right\}$$

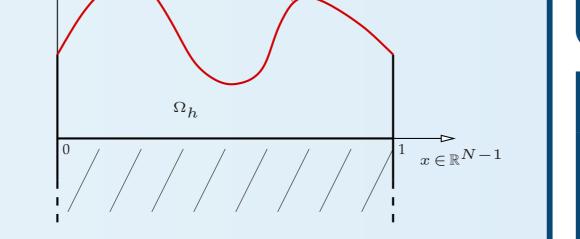
Total energy of the system:

$$F(h,u) := \int_{\Omega_h} W(\nabla u) \, dz + \int_{\Gamma_h} \psi(\nu_h) \, d\mathcal{H}^{N-1} \qquad (h,u) \in X.$$

Assumptions on the elastic energy density and anisotropic surface energy density:

- $W: \mathbb{M}^N_+ \to [0, +\infty)$ of class C^3 , $W(\xi) \to +\infty$ as $\det \xi \to 0^+$,
- $\psi : \mathbb{R}^N \to [0, +\infty)$ of class C^3 (away from the origin), positively 1-homogeneous, $m|z| \le \psi(z) \le M|z|$ for all $z \in \mathbb{R}^N$, and

 $\nabla^2 \psi(v)[w,w] > c |w|^2$ for all $v \in S^{N-1}$ and $w \perp v$.



$\|\Phi_q - Id\|_{\infty} \le \|g - h\|_{\infty}.$

Critical pairs

An admissible pair $(h, u) \in X$ is a regular critical pair if:

(H1) $h \in C^2$, $u \in C^2$, $\det \nabla u > 0$ in $\overline{\Omega}_h$

(H2) u is a critical point for the elastic energy in Ω_h , that is,

 $\begin{cases} \operatorname{div} \left[W_{\xi}(\nabla u) \right] = 0 & \text{ in } \Omega_h \\ W_{\xi}(\nabla u)[\nu_h] = 0 & \text{ on } \Gamma_h \end{cases}$ (1)

(H3) $W(\nabla u) + H^{\psi} = const$ on Γ_h , with $H^{\psi} := \operatorname{div}_{\Gamma_h}(\nabla \psi \circ \nu_h)$

In addition to these conditions, we will also assume that the second variation of the elastic energy is uniformly positive:

(H4) for every $w \in \mathcal{V}(\Omega_h)$

 $\int_{\Omega_h} W_{\xi\xi}(\nabla u) \nabla w : \nabla w \, dz \ge c_0 \|w\|_{H^1(\Omega_h;\mathbb{R}^N)}^2$

Second variation

Assume that $(h, u) \in X$ satisfies (H1), (H2), (H4). Given $\varphi \in C^2_{per}(\Gamma_h)$ with $\int_{\Gamma_h} \varphi \, d\mathcal{H}^{N-1} = 0$, we set

 $h_t := h + t\phi, \qquad \phi(x) := \varphi(x, h(x))\sqrt{1 + |\nabla h(x)|^2}.$

Thank to (H4) and to the Implicit Function Theorem, if t is sufficiently small we can consider a deformation
$$u_t$$
 satisfying (H2) in Ω_{h_t} (and the Dirichlet condition).

Then the function $\dot{u} = \frac{\partial u_t}{\partial t}\Big|_{t=0}$ belongs to $\mathcal{V}(\Omega_h)$ and satisfies the equation

 $W_{\xi\xi}(\nabla u)\nabla \dot{u}: \nabla w \, dz = \int_{-\infty}^{\infty} \operatorname{div}_{\Gamma_h}(\varphi \, W_{\xi}(\nabla u)) \cdot w \, d\mathcal{H}^{N-1} \quad \text{for all } w \in \mathcal{V}(\Omega_h),$ 10

Main result

Introduce the subspace of $H^1(\Gamma_h)$

$$\widetilde{H}^1_{\#}(\Gamma_h) := \left\{ \vartheta \in H^1_{loc}(\Gamma_h^{\#}) : \, \vartheta(x + e_i, h(x + e_i)) = \vartheta(x, h(x)), \, \int_{\Gamma_h} \vartheta \, d\mathcal{H}^{N-1} = 0 \right\}.$$

Note that the last integral in the expression of the second variation vanishes at a regular critical pair, due to (H3).

We define the quadratic form $\partial^2 F(h, u) : \widetilde{H}^1_{\#}(\Gamma_h) \to \mathbb{R}$

$$\partial^2 F(h,u)[\varphi] := -\int_{\Omega_h} W_{\xi\xi}(\nabla u) \nabla v_{\varphi} : \nabla v_{\varphi} \, dz + \int_{\Gamma_h} (\nabla^2 \psi \circ \nu_h) [\nabla_{\Gamma_h} \varphi, \nabla_{\Gamma_h} \varphi] \, d\mathcal{H}^{N-1}$$

and the second variation of
$$F$$
 at (h, u) along the direction φ is given by

$$\frac{d^2}{dt^2}F(h_t, u_t)|_{t=0} = -\int_{\Omega_h} W_{\xi\xi}(\nabla u)\nabla \dot{u}: \nabla \dot{u} \, dz + \int_{\Gamma_h} (\nabla^2 \psi \circ \nu_h) [\nabla_{\Gamma_h} \varphi, \nabla_{\Gamma_h} \varphi] \, d\mathcal{H}^{N-1} + \int_{\Gamma_h} \left(\partial_{\nu_h} (W \circ \nabla u) - \operatorname{trace} (\mathbf{B}^{\psi} \mathbf{B})\right) \varphi^2 \, d\mathcal{H}^{N-1} - \int_{\Gamma_h} \left(W \circ \nabla u + H^{\psi}\right) \operatorname{div}_{\Gamma_h} \left[\left(\frac{(\nabla h, |\nabla h|^2)}{\sqrt{1 + |\nabla h|^2}} \circ \pi\right) \varphi^2 \right] \, d\mathcal{H}^{N-1},$$

where $\mathbf{B} = D\nu_h$, $\mathbf{B}^{\psi} = D(\nabla\psi \circ \nu_h)$.

Two main steps in the proof

1. $W^{2,p}$ -local minimality (N = 2, 3)

- Minimality w.r.t. $W^{2,p}$ -perturbations of the profile
- Estimate carefully all the terms appearing in the expression of the second variation
- Work in fractional Sobolev spaces

2. $W^{2,p}$ -local minimality $\Longrightarrow L^{\infty}$ -local minimality $(N \ge 2)$

- Contradiction argument: $F(h_n, u_n) < F(h, u), h_n \rightarrow h$
- Consider solutions to penalization/obstacle problems
- Use the regularity theory for quasi-minimizers of the area functional to deduce $C^{1,\alpha}$ convergence
- Use Euler-Lagrange equations to deduce $W^{2,p}$ -convergence

References

- [1] E. ACERBI, N. FUSCO, M. MORINI, Minimality via second variation for a nonlocal isoperimetric problem. Comm. Math. Phys., to appear (2013).
- [2] M. BONACINI, A second order minimality condition for functionals with bulk and surface energies. In preparation.
- [3] M. BONACINI, Epitaxially strained elastic films: the case of anisotropic surface energies. ESAIM Control Optim. Calc. Var. 19 (2013), 167-189.
- [4] M. BONACINI, M. MORINI An L^1 -local minimality criterion for the Mumford-Shah functional. In preparation.
- [5] E. BONNETIER, A. CHAMBOLLE, Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62 (2002), 1093-1121.
- [6] F. CAGNETTI, M.G. MORA, M. MORINI, A second order minimality condition for the Mumford-Shah functional. Calc. Var. Partial Differential Equations 33 (2008), 37-74.
- [7] G.M. CAPRIANI, V. JULIN, G. PISANTE, A quantitative second order minimality criterion for cavities in elastic bodies. SIAM J. Math. Anal., accepted paper (2013).

+ $\int_{\Gamma_{\iota}} \left(\partial_{\nu_h} (W \circ \nabla u) - \operatorname{trace} (\mathbf{B}^{\psi} \mathbf{B}) \right) \varphi^2 d\mathcal{H}^{N-1},$

where $v_{\varphi} \in \widetilde{\mathcal{V}}(\Omega_h)$ is the unique solution to

$$\int_{\Omega_h} W_{\xi\xi}(\nabla u) \nabla v_{\varphi} : \nabla w = \int_{\Gamma_h} \operatorname{div}_{\Gamma_h}(\varphi W_{\xi}(\nabla u)) \cdot w \, d\mathcal{H}^{N-1} \quad \text{for every } w \in \widetilde{\mathcal{V}}(\Omega_h).$$

Theorem. Let N = 2, 3. Assume that $(h, u) \in X$ is a regular critical pair satisfying (H4) and

 $\partial^2 F(h, u)[\varphi] > 0$ for every $\varphi \in \widetilde{H}^1_{\#}(\Gamma_h) \setminus \{0\}.$

Then (h, u) is a local minimizer for the functional F.

Application: stability of flat morphologies

Flat configuration with volume *d*:

 $(d, v_0), \qquad v_0(z) = M[z], \quad M \in \mathbb{M}^N_+$

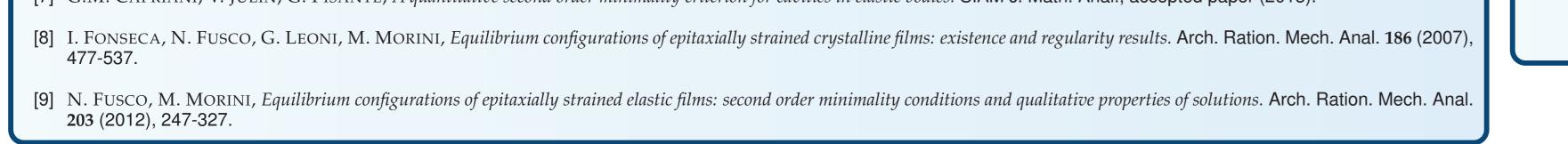
(2)

satisfying (H2), (H4) in $\Omega_d = Q \times (0, d)$. Then:

- there exists $d_0 > 0$ such that condition (2) is satisfied at the flat configuration for every $d < d_0$;
- for large values of d, the flat configuration is no longer a local minimizer;
- crystalline case: assume $\psi : \mathbb{R}^N \to [0, +\infty)$ Lipschitz, convex, positively 1-homogeneous, such that the associated Wulff shape

 $W_{\psi} := \{ z \in \mathbb{R}^N : z \cdot \nu \le \psi(\nu) \text{ for every } \nu \in S^{N-1} \}$

has a flat horizontal facet intersecting the *y*-axis. Then for every d > 0 the flat configuration is a local minimizer



for the associated functional (if N = 2, 3).