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Second variation and local minimality
Investigation of sufficiency minimality conditions based on the second variation, for functionals
involving competing terms (bulk energies and surface energies):

• [6, 4]: Mumford-Shah functional
• [9, 3]: epitaxial growth of elastic films

• [1]: diblock copolymers
• [7]: cavities in elastic bodies

Here we develop this approach for a 3-dimensional variational model with a nonlinear elastic
energy, arising in the context of epitaxial growth of strained elastic films.

Previous related results
• In [5, 8] a two-dimensional variational model for epitaxial growth of strained elastic films,

in the framework of linearized elasticity, is introduced by relaxation methods
• In [8] regularity properties of minimizers are studied
• In [9] the local and global minimality of the flat configuration is discussed by means of a

second variation approach to local minimality

The model
Denote Q = (0, 1)N−1, (x, y) ∈ RN−1 × R. We prescribe

• d > 0 (volume constraint)
• u0(x, y) := (A[x] + q(x), 0), with A ∈MN−1

+ and q : RN−1 → RN−1 1-periodic (mismatch strain at the interface {y = 0}).

Space of admissible pairs: (h, u) ∈ X if

• h : RN−1 → (0,+∞) Lipschitz, 1-periodic in the coordinate directions,

– Ωh :=
{

(x, y) ∈ RN : x ∈ Q, 0 < y < h(x)
}

(reference configuration),

– Γh :=
{

(x, h(x)) ∈ RN : x ∈ Q
}

(free profile of the film),

– Ω#
h , Γ#

h periodic extensions,

• u : Ωh → RN (deformation of the film),

• u− Id− u0 ∈ V(Ωh) (Dirichlet boundary condition + periodicity), where

V(Ωh) :=
{
w ∈ C1

(
Ω

#

h ;RN
)

: w(x, 0) = 0, w(x+ ei, y) = w(x, y)
}
.

Ωh

Γh

10
x∈RN−1

y∈R

νh

Total energy of the system:

F (h, u) :=

∫
Ωh

W (∇u) dz +
∫

Γh

ψ(νh) dHN−1 (h, u) ∈ X.

Assumptions on the elastic energy density and anisotropic surface energy density:

• W : MN
+ → [0,+∞) of class C3, W (ξ)→ +∞ as det ξ → 0+,

• ψ : RN → [0,+∞) of class C3 (away from the origin), positively 1-homogeneous, m|z| ≤ ψ(z) ≤M |z| for all z ∈ RN , and

∇2ψ(v)[w,w] > c |w|2 for all v ∈ SN−1 and w ⊥ v.

Local minimizers
An admissible pair (h, u) is a local minimizer if F (h, u) < +∞
and there exists δ > 0 such that

F (h, u) ≤ F (g, v)

for all (g, v) ∈ X such that

• ‖g − h‖∞ < δ, |Ωg| = |Ωh|,
• ‖∇v ◦ Φg −∇u‖L∞(Ωh;MN ) < δ.

Here Φg : Ωh → Ωg is a change of variables such that

‖Φg − Id‖∞ ≤ ‖g − h‖∞.

Critical pairs
An admissible pair (h, u) ∈ X is a regular critical pair if:

(H1) h ∈ C2, u ∈ C2, det∇u > 0 in Ωh
(H2) u is a critical point for the elastic energy in Ωh, that is,{

div [Wξ(∇u)] = 0 in Ωh

Wξ(∇u)[νh] = 0 on Γh
(1)

(H3) W (∇u) +Hψ = const on Γh, with Hψ := divΓh(∇ψ ◦ νh)

In addition to these conditions, we will also assume that the
second variation of the elastic energy is uniformly positive:

(H4) for every w ∈ V(Ωh)∫
Ωh

Wξξ(∇u)∇w :∇w dz ≥ c0‖w‖2H1(Ωh;RN )

Second variation
Assume that (h, u) ∈ X satisfies (H1), (H2), (H4).
Given ϕ ∈ C2

per(Γh) with
∫

Γh
ϕdHN−1 = 0, we set

ht := h+ tφ, φ(x) := ϕ(x, h(x))
√

1 + |∇h(x)|2.

Thank to (H4) and to the Implicit Function Theorem, if t is sufficiently small we can consider a
deformation ut satisfying (H2) in Ωht (and the Dirichlet condition).

Then the function u̇ = ∂ut
∂t

∣∣
t=0

belongs to V(Ωh) and satisfies the equation∫
Ωh

Wξξ(∇u)∇u̇ : ∇w dz =

∫
Γh

divΓh(ϕWξ(∇u)) · w dHN−1 for all w ∈ V(Ωh),

and the second variation of F at (h, u) along the direction ϕ is given by

d2

dt2
F (ht, ut)|t=0 = −

∫
Ωh

Wξξ(∇u)∇u̇ : ∇u̇ dz +

∫
Γh

(∇2ψ ◦ νh)[∇Γhϕ,∇Γhϕ] dHN−1

+

∫
Γh

(
∂νh(W ◦ ∇u)− trace (BψB)

)
ϕ2 dHN−1

−
∫

Γh

(
W ◦ ∇u+Hψ

)
divΓh

[(
(∇h, |∇h|2)√

1 + |∇h|2
◦ π

)
ϕ2

]
dHN−1,

where B = Dνh, Bψ = D(∇ψ ◦ νh).

Main result
Introduce the subspace of H1(Γh)

H̃1
#(Γh) :=

{
ϑ ∈ H1

loc(Γ
#
h ) : ϑ(x+ ei, h(x+ ei)) = ϑ(x, h(x)),

∫
Γh

ϑ dHN−1 = 0
}
.

Note that the last integral in the expression of the second variation vanishes at a regular critical
pair, due to (H3).
We define the quadratic form ∂2F (h, u) : H̃1

#(Γh)→ R

∂2F (h, u)[ϕ] := −
∫

Ωh

Wξξ(∇u)∇vϕ : ∇vϕ dz +

∫
Γh

(∇2ψ ◦ νh)[∇Γhϕ,∇Γhϕ] dHN−1

+

∫
Γh

(
∂νh(W ◦ ∇u)− trace (BψB)

)
ϕ2 dHN−1,

where vϕ ∈ Ṽ(Ωh) is the unique solution to∫
Ωh

Wξξ(∇u)∇vϕ : ∇w =

∫
Γh

divΓh(ϕWξ(∇u)) · w dHN−1 for every w ∈ Ṽ(Ωh).

Theorem. Let N = 2, 3. Assume that (h, u) ∈ X is a regular critical pair satisfying (H4) and

∂2F (h, u)[ϕ] > 0 for every ϕ ∈ H̃1
#(Γh)\{0}. (2)

Then (h, u) is a local minimizer for the functional F .

Application: stability of flat morphologies
Flat configuration with volume d:

(d, v0), v0(z) = M [z], M ∈MN
+

satisfying (H2), (H4) in Ωd = Q× (0, d).

Then:

• there exists d0 > 0 such that condition (2) is satisfied at
the flat configuration for every d < d0;

• for large values of d, the flat configuration is no longer a
local minimizer;

• crystalline case: assume ψ : RN → [0,+∞) Lipschitz,
convex, positively 1-homogeneous, such that the asso-
ciated Wulff shape

Wψ := {z ∈ RN : z · ν ≤ ψ(ν) for every ν ∈ SN−1}

has a flat horizontal facet intersecting the y-axis. Then
for every d > 0 the flat configuration is a local minimizer
for the associated functional (if N = 2, 3).
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Two main steps in the proof
1. W 2,p-local minimality (N = 2, 3)

• Minimality w.r.t. W 2,p-perturbations of the profile
• Estimate carefully all the terms appearing in the

expression of the second variation
• Work in fractional Sobolev spaces

2. W 2,p-local minimality =⇒ L∞-local minimality (N ≥ 2)

• Contradiction argument: F (hn, un) < F (h, u), hn → h

• Consider solutions to penalization/obstacle problems
• Use the regularity theory for quasi-minimizers of the area

functional to deduce C1,α convergence
• Use Euler-Lagrange equations to deduce W 2,p-convergence


